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Sustainable crop production in arid regions is challenged by soil moisture loss,
low organic matter content, and intense weed competition. This study aimed to
assess the impact of different mulching strategies on the main crop yield, soil
moisture conservation, the contribution of dry biomass and nitrogen to the soil
by living covers, and the efficacy of weed control. The experiment was
conducted in Santa Rita de Siguas (Arequipa, Peru) using a completely
randomized block design with four treatments and three replicates.
Measurements included biometric and physiological parameters of rocoto
pepper (Capsicum pubescens), volumetric soil moisture, dry biomass, and
nitrogen content in living covers, as well as weed density. Results indicated
that most treatments had no significant impact on the biometric and
physiological parameters of rocoto. Plastic mulch reduced irrigation demand
and suppressed weeds, although crop yield did not significantly differ among
treatments. Among the living mulches, Trifolium pratense was more effective
than Melilotus albus in conserving soil moisture, maintaining levels up to 15.86%.
In contrast, Melilotus albus produced the highest above-ground dry biomass
(8.57 t-h™Y), although both legume species accumulated similar amounts of
nitrogen in their biomass. Both living covers gradually reduced weed
populations, though without complete eradication. In conclusion, plastic
mulch represents a potential option under conditions of severe water
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limitation. Meanwhile, leguminous cover crops, particularly M. albus, offer an
alternative complementary strategy for enhancing soil organic matter and could
promote long-term sustainability of the cropping system. These findings warrant
extended temporal validation to confirm their reproducibility and reliability.

KEYWORDS

living covers, weed control, sustainable agriculture, arid environments, melilotus albus,

trifolium pratense

1 Introduction

The rocoto pepper (Capsicum pubescens Ruiz & Pav.) is one of
the five domesticated species within the Capsicum genus. It is native
to the arid regions of the Peruvian-Bolivian Andes and later
expanded into tropical regions (Walsh and Hoot, 2001). Peru
holds the greatest genetic diversity of this species, with 712
preserved accessions, 299 of which belong to C. pubescens. Many
of these are conserved at the Arequipa Agrarian Experimental
Station (Libreros et al., 2013). These accessions are classified into
two primary genotypes, serrano and monte, which are distinguished
by differences in fruit size and pungency (Hernandez-Amasifuen
et al, 2022). Among the monte accessions, the red rocoto is
particularly notable for its commercial significance in Peru, with
an annual production of up to 54,000 tons, 80% of which is
concentrated in the central jungle, especially in the Pasco
department (MIDAGRI, 2022; Lozano Alarcon, 2012).

In the Arequipa region, the consumption of red rocoto is
particularly significant, as it serves as the main ingredient in the
traditional dish ‘rocoto relleno’ and various other culinary
preparations (Fuentes and del, 2014; Blanco de Alvarado-Ortiz,
2016). However, the monte red rocoto is not commercially
cultivated in this region, despite similar temperature ranges
between the province of Oxapampa, the main rocoto-producing
area, and the province of Arequipa. Historical average temperatures
range from a maximum of 24.78°C and a minimum of 13.55°C in
Oxapampa to a maximum of 32.2°C and a minimum of 9°C in Santa
Rita de Siguas, Arequipa (SENAMHI - Descarga de Datos).

Agriculture in arid regions is subject to severe water limitations.
In Arequipa, 25,942 hectares out of 146,824 hectares of agricultural
land are located in arid zones, including Majes (15,932 ha), Santa
Rita de Siguas (3,032 ha), and La Joya (6,978 ha), all of which rely
exclusively on irrigation (Superficie Agricola). This dependence
results in critical water constraints, particularly in the Majes
irrigation system, where high water-demand crops contribute to
recurrent water deficits (Zapana Churata, 2018). The situation is
further exacerbated by inefficient water management, which leads to
low irrigation efficiency and substantial water losses through deep
infiltration (Wei et al., 2021). Additionally, these arid areas present
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low organic matter content and reduced water retention capacity
(Weil and Brady, 2017) However, proper irrigation management
has the potential to increase soil organic carbon (Trost et al., 2013)
and improve the cation exchange capacity of coarse-textured soils
(Weil and Brady, 2017). These challenges highlight the need to
evaluate agronomic strategies, such as mulching use, to optimize
water management and organic carbon sequestration in rocoto
pepper production in Arequipa.

Mulching involves covering the soil surface with organic or
inorganic materials to improve soil properties and optimize crop
development (Mulching (Ac.) (484) Conservation Practice
Standard | Natural Resources Conservation Service). This practice
increases soil organic matter, reduces bulk density, enhances
aggregate stability, increases water retention, and regulates soil
temperature (Mulching (Ac.) (484) Conservation Practice
Standard | Natural Resources Conservation Service; Alyokhin
et al, 2019). Additionally, mulching can contribute to pest
control and increase crop yields (Cai et al, 2022; Muhammad
et al,, 2022). Plastic mulch is particularly effective in reducing soil
evaporation, increasing soil temperature, and providing efficient
weed control (Sokombela et al., 2025), whereas living mulches
promote soil biological activity and enhance nutrient availability
through the decomposition of plant biomass (Kolota and
Adamczewska-Sowinska, 2013). Leguminous cover crops are
particularly valuable for their ability to fix atmospheric nitrogen,
enrich the soil with high-quality organic matter, and improve
nutrient cycling and water retention (Stagnari et al., 2017).

Trifolium pratense L. and Melilotus albus Medik exhibit high
agronomic potential. T. pratense is a perennial species native to
temperate regions, characterized by variable root architecture. Erect
plants develop deep main roots, whereas low-growing forms
produce branched root systems with secondary roots near the
stem base (Taylor and Quesenberry, 1996), thereby optimizing
water uptake based on the distribution of soil moisture.
Commercial cultivars typically produce greater biomass than wild
types (Heslop et al., 2025) and have a high nitrogen fixation
capacity, reaching up to 545 kg N-ha ".year™’, along with notable
weed control potential (Guntli et al., 1999; Anglade et al., 2015). M.
albus is an annual or biennial species with erect stems ranging from
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30 to 180 cm, capable of producing substantial above-ground
biomass (12 tha™' of dry matter), making it a promising
candidate for restoring degraded soils (Titei, 2022). This species is
well-adapted to saline grasslands and arid environments, although
its ecology remains largely unexplored (Zabala et al., 2018; Wang
et al, 2024), and it has demonstrated adaptability to the desert
conditions of Arequipa (Quipuscoa Silvestre et al., 2016).

The application of mulching in rocoto (Capsicum pubescens)
cultivation remains poorly researched. In related Capsicum
species, live mulching with Trifolium pratense has been shown
to provide superior soil moisture retention under water-stress
conditions compared to conventional tillage (Biazzo and
Masiunas, 2000). Meanwhile, plastic mulch has significantly
increased yields under arid conditions (Odokonyero et al,
2025). In this regard, no studies have directly compared the
effects of plastic mulching and leguminous living mulches on
this crop in Peru, despite the economic importance of rocoto
peppers and the cultivation challenges posed by arid regions. This
gap proves particularly significant given the dual need to optimize
water use while enhancing soil carbon sequestration in these
environments. Within this context, the present study aims to
evaluate the impact of different mulching strategies (plastic
mulching versus leguminous living mulches) on crop yield, soil
moisture conservation, dry biomass and nitrogen inputs to soil, as
well as weed control in rocoto pepper cultivation under
arid conditions.

72°6'45"W 72°6'40"W 72°6'35"W.

10.3389/fagro.2025.1663633

2 Materials and methods

2.1 Study area

The study was conducted at the Arequipa Agrarian Experimental
Station of the National Institute for Agrarian Innovation (INIA),
located in the district of Santa Rita de Siguas, province and
department of Arequipa, Peru. The experimental plot was situated at
16°28'22.0" S, 72°06'35.9" W, at 1,274.28 m.a.sl. (Figure 1). The region
experiences an average annual rainfall of 0.11 mm, with minimum
temperatures of 9.3°C in July and maximum temperatures ranging
from 25 to 26°C between September and April. These values were
calculated based on historical records (1949-2013) of the Majes weather
station (16°20'8.4" S, 72°9'8.92"” W), managed by the National Service
of Meteorology and Hydrology of Peru (SENAMHI) (SENAMHI -
Descarga de Datos). Additionally, meteorological data were obtained
during the experimental period from the Santa Rita weather station,
also operated by SENAMHI (Figure 2).

2.2 Experimental design

The experiment was arranged in a randomized complete block
design (RCBD) with four treatments and three replicates, resulting
in a total of 12 experimental units, each measuring 6 x 5 m, with
Im-wide alleys separating the blocks. The planting layout,
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FIGURE 1

Study area. Location of the experimental plot and weather station at the Arequipa Agrarian Experimental Station — INIA, Santa Rita de Siguas district,
Arequipa province, Arequipa region, Peru. (A) Image of the surrounding area of the experimental plot of the rocoto (Capsicum pubescens Ruiz &

Pav.) plot during the fruiting stage. (B) Layout of the experimental plot.
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FIGURE 2

Meteorological parameters during the 2024-2025 growing season. Potential evapotranspiration (ETo), precipitation, maximum temperature (Tmax),
and minimum temperature (Tmin) during crop development. Blue arrows indicate the beginning of each phenological stage: transplanting (T);
beginning of flowering (BF); fruiting stage (FS); beginning of harvest (BH); and last harvest (LH).

measuring 1.2 x 0.8 m, provided a planting density of 10,416
plants-ha™. The treatments were as follows: T1 - soil cover with
Melilotus albus; T2 - soil cover with Trifolium pratense; T3 - plastic
mulch; and T4 - manual weeding (control). A RCBD was employed
to control for potential longitudinal edaphic variability across the
experimental field.

2.3 Physicochemical characteristics of the
soils

Prior to the establishment of the experimental plot, a composite
soil sample was collected from the topsoil layer (0-30 cm) and
analyzed at the Soil, Water, and Foliar Analysis Laboratory
(LABSAF) of INIA Arequipa to determine its physicochemical
properties. The soil was characterized as loamy sand, comprising
80.9% sand, 11.3% silt, and 7.9% clay, as determined by the
Bouyoucos hydrometer method (Bouyoucos, 1962). The pH was
7.4 (1SO, 1982), and electrical conductivity (EC 1:5) was 1.05dS-m ™"
(Standardization, 1994). Organic matter content was 1.30%
(Walkley and Black, 1934), available phosphorus (P) was 30.40
mgkg™" (Olsen and Sommers, 1982), and available potassium (K)
was 598.80 mgkg ™ (DOF - Diario Oficial de la Federacion).

2.4 Experimental plot management

The experiment was conducted between May 2024 and March
2025. The land was prepared by subsoiling, ploughing, and leveling
using a John Deere 6110D tractor, forming raised beds 0.30 m in
heigh and spaced 1.20 m from center to center, resulting in an
effective bed width of 0.80 m. A drip irrigation system was installed,
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consisting of a 2” main line, 1” distribution lines, and 16 mm lateral
lines with 1.5 L-h™" emitters at 60 kPa every 0.20 m, along with a
fertigation arc equipped with %” Wade Rain Venturi injectors.

Prior to transplanting, the beds were irrigated for one hour.
Forty-day-old rocoto seedlings with 4-6 true leaves of the accession
‘rocoto rojo de la selva central’, obtained from a local nursery, were
used. Plants were transplanted in a single row at the center of each
bed, maintaining a spacing of 0.80 m between plants, which
extrapolated to a density of 10,416 plants-ha™".

Based on the soil characteristics, a fertigation dose of 200-100-
200 kg-ha™' of N (as ammonium nitrate), P,Os (as
monoammonium phosphate), and K,O (as potassium nitrate) was
applied at seven-day intervals, starting two days after transplanting
(DAT). The fertilization was split according to the requirements of
each phenological stage: vegetative growth (40%-60%-15% of N-
P,05-K,0), flowering (25%-20%-30%), fruiting (20%-15%-30%),
and maturation (15%-5%-25%).

At 120 DAT, staking was performed by placing two 1.2-meter-
high posts at the ends of each bed, connected with ropes.
Additionally, an individual 1.2-meter stake was installed for each
plant. These practices aimed to ensure plant stability and minimize
the risk of fruit-soil contact.

Pest and disease control of the crop was carried out based on
field evaluations. For the management of Thrips spp., Bemisia
tabaci, and Myzus persicae, LOVERA® (lambda-cyhalothrin +
thiamethoxam; 20 mL per 20 L backpack sprayer; applied at 26,
64, 105, 148, 188, 225 and 243 DAT) and KRAKEN® (imidacloprid
+ lambda-cyhalothrin; 20 g per 20 L; applied at 47, 84, 125, 170, 214
and 238 DAT) were sprayed alternately. CIPERMEX® Super 10 CE
(alpha-cypermethrin; 30 mL per 20 L; applied at 63 and 98 DAT)
was used for larval control. To manage Tetranychus urticae, DK-
TINA® (abamectin; 15 mL per 20 L) was applied to both the main
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crop and Trifolium pratense living cover at 148, 217, 231, and 243
DAT. Control of Leveillula taurica on living covers and Botrytis
cinerea on rocoto was achieved with PROTEXIN® 500 FW
(carbendazim; 30 mL per 20 L; applied at 98, 112, and 180 DAT)
and EPICO® 750 WG (tebuconazole + azoxystrobin; 20 g per 20 L;
applied at 148 DAT). For the control of Phytophthora capsici,
PREDOSTAR® (propamocarb + metalaxyl; 30 g per 20 L; applied
at 125 and 180 DAT) and ALIETTE® WG (fosetyl-Al; 2.5 kg ha™%;
applied at 169, 186, and 208 DAT) were used. All products were
applied via foliar spray, except for fosetyl-Al, which was applied
through the irrigation system.

Harvesting was staggered using hand scissors to prevent
damage and maintain fruit quality. Fruits were harvested with
their peduncles attached to extend post-harvest shelf life,
depending on their stage of maturity. The final harvest took place
at 316 DAT, marking the end of the experiment.

2.5 Water requirement

The irrigation program was initially designed based on
historical data from the Majes Meteorological Station.
Subsequently, specific adjustments were made for each treatment
using a soil moisture meter (FIELDSCOUT TDR 150, Spectrum
Technologies, Inc., Aurora, Illinois, USA). The adjustments aimed
to maintain a soil moisture content of around 9%, as Ratliff et al.
(1983) reported that the typical moisture thresholds for loamy sand
soil are 16% at field capacity and 7% at the permanent wilting point,
representing 9% available water.

The water requirement was determined using the irrigation
depth (ID), based on the formula proposed by Allen et al. (1998) , as
shown in Equations 1, 2:

ID=ET. - P, 1)

ET. = ET, x K, )

Where ID is the irrigation depht (mm), ET, is the crop
evapotranspiration (mm), P, is the effective precipitation (mm), E
T, is the reference evapotranspiration (mm), and K, is the crop
coefficient. P, was estimated using the method proposed by the
USDA (Smith, 1992). The ET, value was calculated using the
Penman-Monteith equation modified by the FAO (Allen et al,
1998), based on climate data recorded at the Santa Rita weather
station. The K, coefficient varied according to the crop’s
phenological stage, with the following values: 0.65 during
vegetative growth, 0.97 at flowering, 1.06 during fruiting, and 1.13
at maturity (Sanchez Vesga et al., 2003).

2.6 Establishment of coverage

The selected species were Trifolium pratense var. americano,
whose seeds were obtained from the local market, and Melilotus
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albus, whose seeds were collected from the field due to its behavior
as a weed. Although the introduction pathway of M. albus into Peru
is unknown, it has successfully adapted to desert regions such as
Arequipa (Quipuscoa Silvestre et al., 2016) and is currently
naturalized in various agricultural systems. Propagation was
conducted in 288-cell trays using PROMIX-GTX (a blend of
blond peat and vermiculite) as the substrate. Seven seeds were
sown per cell. At 125 DAT of the rocoto crop, M. albus and T.
pratense seedlings, 35 days old, were transplanted according to their
respective T1 and T2 treatment layouts. The seedlings were
arranged in four rows (two on each side of the main crop) with
10 cm spacing between plants, following manual weeding to ensure
uniform experimental conditions. Treatment T3 involved a
synthetic cover consisting of white-on-black plastic mulch (50-
micron polyethylene with >60% visible light reflectance), which was
installed at 28 DAT. Treatment T4 consisted of a no-cover control,
where manual weeding was performed on 44, 61, 98, 125, and
155 DAT.

2.7 Biometric and physiological parameters

Plant height was measured every 7 days, starting at 5 DAT, in
six representative plants per experimental unit, recording the
distance from the stem base (collar) to the apex of the plant stem.
The chlorophyll index was assessed in fully developed young leaves
following the methodology described by Hu et al. (2010). Three
plants per experimental unit were evaluated, considering three
readings taken per plant. Measurements were conducted using a
SPAD-502 Plus chlorophyll meter (Soil Plant Analysis
Development), which provides an index proportional to the
chlorophyll content in the leaf. Evaluations of the plants’
phenological behavior included monitoring the onset of flowering.
An experimental unit was considered to have reached this stage
when more than 50% of the plants exhibited visible signs of
flowering (Arcila Pulgarin, 2007).

After harvesting, the fruits were selected and classified by size
and weight according to the criteria described by Sardén Mamani
(2015) Bola, with a height of 5.1 ¢cm, width of 5.6 cm, and weight
less than 100 g; Primera, with a height of 6.2 cm, width of 6.8 cm,
and weight between 100 and 140 g; Extra, with a height of 6.9 cm,
width of 8.5 cm, and weight between 140 and 160 g; and Super
Extra, with a height of 8.7 cm, width of 9.6 cm, and weight greater
than 189 g. Classification was performed on six representative
plants per experimental unit, from which yield data were obtained.
Yields were extrapolated to tons per hectare (t-ha') and number of
fruits per treatment. The dry matter content was determined using
a 5 g fruit sample, which was cut into cubes, homogenized, and
weighed with an electronic balance (ExplorerTM Pro Precision,
Ohaus, USA; accuracy: 0.001 g). The sample was dried in an oven
(Memmert Schwabach 854) at 105°C until a constant weight was
achieved, following the AOAC 930.15 method (Brilhante
et al., 2024).
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Soil volumetric moisture was monitored using a FIELDSCOUT
TDR 150 (Time Domain Reflectometer), with six measurements
taken per experimental unit every 7 days starting at 33 DAT, at a
depth of 20 cm. This depth was selected based on Grasso et al
(Grasso et al., 2020), who reported that under drip irrigation,
approximately 80% of the root system of Capsicum annuum is
concentrated within the top 20 cm of soil. Additionally, it has been
established that the easily evaporable layer in sandy loam soils is
approximately 5 cm deep (Lehmann and Or, 2024) and that the
wetting bulb depth in drip irrigation systems reaches around 20 cm
in soils with similar characteristics under comparable irrigation
durations (Hao et al., 2007).

2.8 Determination of weed control and
living cover biomass

Weed control by living covers was assessed by counting the
number of individuals per square meter (weed density), as described
by Braun-Blanquet (1932). Three representative evaluations were
conducted at 173, 202, and 254 DAT. Weed species were classified
into functional groups based on their morphological characteristics:
broadleaf weeds (dicotyledons) and narrow-leaf weeds (grasses),
according to Najul and Anzalone (2006).

To evaluate the biomass of the living covers (Melilotus and
Trifolium), three samples were collected per experimental unit
following the method described by Baldivieso et al (Baldivieso-
Freitas et al., 2018). Each sample covered an area of 1 m> and was
taken from the head, middle, and tail sections of different beds. The
aerial parts of the plants were cut and weighed to determine fresh
weight, while the roots were extracted and washed before being
weighed. Both the aerial and root parts were dried in an oven at 60 ©
C for 48 hours to obtain their dry weights. Dry biomass was then
calculated based on these measurements.

2.9 Determination of N, P, and K in the
biomass of living covers

To determine the total nitrogen (N), phosphorus (P), and
potassium (K) content in the aerial and root biomass of the living
covers, representative subsamples were collected, oven-dried at 65°C
to a constant weight, ground, and sent to the laboratory (150 g per
experimental unit). Total nitrogen was quantified using the Kjeldahl
method, following the ISO 11261:1995 (International Organization
for Standardization, 1995). Total phosphorus was determined using
the AS-11 method, based on the Bray and Kurtz procedure (Bray and
Kurtz, 1945), as specified in the Mexican Official Standard NOM-
021-RECNAT-2000 (DOF - Diario Oficial de la Federacion). Total
potassium was analyzed using the modified AS-12.2002 method, as
described by Semarnat et al (DOF - Diario Oficial de la Federacion).
All analyses were conducted at the Soil, Water and Foliar Analysis
Laboratory (LABSAF) of INIA Arequipa.
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2.10 Statistical analysis

Variables assessed at the end of the growing season (i.e., fresh
and dry yields, and dry biomass and nutritional composition of
living mulches) were evaluated using analysis of variance
(ANOVA). Significant differences were analyzed using Tukey’s
test (o0 = 0.05). Assumptions of normality and homoscedasticity
were verified using Shapiro-Wilk and Bartlett’s tests, respectively.

Variables measured repeatedly over time (i.e., plant height,
chlorophyll index, soil volumetric moisture content, and weed
density) were analyzed using generalized linear mixed models
(GLMM), also evaluating the random effect of plots. The
corrected Akaike information criterion (AICc) was applied for
model selection. Thus, Tweedie distribution with square root link
was used for plant height and SPAD variables; beta distribution
with logit link for soil moisture; and Tweedie distribution with
logarithmic link for weed density. The significance of fixed effects
and their interactions was evaluated using likelihood ratio tests
(Chi?), and statistically significant factors and combinations (p <
0.05) were reported.

Discrete variables (i.e., flowering onset and number of fruits per
plant) were analyzed using the Kruskal-Wallis test, applying Dunn’s
test as post hoc analysis (o = 0.05) in case of significant differences.
InfoStat version 2020 (Di Rienzo et al., 2020) was used for ANOVA
analyses, and R version 4.4.3 (R: The R Project for Statistical
Computing) for the other aforementioned analyses.

3 Results
3.1 Development of living covers

Trifolium pratense germinated 3 days after sowing (DAS), while
Melilotus albus emerged at 7 DAS. During the seedling stage, T. pratense
exhibited greater uniformity and vigor, with an average of 6 viable
seedlings per cell, compared to only two seedlings in M. albus, which
was affected by intraspecific competition. At the time of transplanting
(at 35 DAS), T. pratense reached a height of 12 cm and displayed dense
foliage, whereas M. albus measured 8 cm and exhibited limited foliar
development. In field conditions, however, M. albus demonstrated
accelerated growth, attaining a height of 135 cm at 132 days, in
contrast to 30 cm for T. pratense. In terms of root development, T.
pratense formed a dense fasciculated and shallow root system, while M.
albus developed a thick taproot with lower lateral root density.

3.2 Biometric and physiological variables

The GLMM used for plant height explained 98% of the observed
variation in the data (Supplementary Table S1). Thus, plant height
(Supplementary Figure S1) varied significantly as a function of time
(i.e., days after transplanting), but not according to the applied
treatments. Regarding the chlorophyll index, the best-fitting model
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explained no more than 37% of the observed deviance in the data
(Supplementary Table S2). Overlapping confidence bands were
identified for the five evaluation timepoints across the four
treatments (Supplementary Table S3). They highlight the non-
significant differences in the evaluations conducted after the
implementation of the cover crops.

3.3. Yield variables

No significant differences were observed in fruit number per
plant, fruit dry matter (Supplementary Table S4), or total yield
(Table 1). However, T3 and T4 exhibited a tendency toward higher
values with reduced variability. The analysis by commercial
categories revealed significant differences for Primera Category
(C3), where T4 achieved the highest values. No treatment
produced fruits classified as Extra Super Category (Cl).

3.4 Soil volumetric moisture

The GLMM with beta distribution and logit link explained 95%
of the variation in soil volumetric moisture (SVM) (Supplementary
Table S5). A significant effect was observed in the quadratic
interaction between treatments and time, revealing differentiated
trajectories. T1 and T4 maintained stable moisture levels (=12-
15%) throughout the entire period, while T2 and T3 exhibited
contrasting patterns. T2 started with the lowest SVM (=11.1%) and
increased progressively toward day 245, whereas T3 initiated with the
highest moisture content (=28.9%) and decreased quadratically after
the plastic mulch was installed and the irrigation time proportion was
reduced by approximately 50% (Figure 3B). The establishment of
living coverage in T1 and T2 increased their irrigation time
proportion (Figure 3A). After 166 DAT, the volume of water
applied to T1 and T2 was increased. T2 significantly showed
greater soil moisture content than T1 despite both receiving the
same irrigation volumes. The maximum effect was recorded at 257
DAT (maturation of M. albus) coinciding with the peak development
of the aerial and root biomass of the living cover. From 266 DAT

TABLE 1 Rocoto yield by commercial categories.

10.3389/fagro.2025.1663633

onward, all treatments converge toward similar irrigation time
proportions, coinciding with the crop’s maturation stage.

Analysis of variance revealed significant differences among
treatments for irrigation water productivity (IWPt) (F = 8.53;
p = 0.0139). Treatment T3 demonstrated the highest water use
efficiency, with IWPt values significantly superior (2.2 and 2.0
times) compared to T1 and T2, respectively (Table 2). Treatment
T4 exhibited intermediate behavior, with no significant differences
from T3 or the T1-T2 group. These results reflect a significant effect
of applied irrigation volume on IWPt, where the volume reduction in
T3 (6690 m® ha™) resulted in statistically higher efficiency compared
to treatments with greater water input (T1 and T2: 9635 m® ha™").

3.5 Potential contribution of biomass and
nutrients to the soil

T1 produced significantly greater above-ground dry biomass
(8.57 tha™) compared to T2 (3.04t-ha™"), whereas T2 exhibited
higher root biomass (1.42 vs. 0.56 th™") as shown in Figure 4. The
total N, P, and K content potentially contributed to the soil by living
covers did not differ significantly between treatments (Table 3).
However, organ-specific analysis revealed distinct patterns:
Trifolium pratense (T2) showed higher concentrations of P and K
in the roots, while Melilotus albus (T1) was notable for its elevated K
content in the above-ground biomass.

3.6 Control of broadleaf weeds and
grasses

The GLMM model (Tweedie distribution, log link; AICc
216.16) explained 99% of the variation in weed density. The
Treatment x Type interaction (> = 9.69; p < 0.01) was significant
(Supplementary Table S6), as was the main effect of time. Weed
presence decreased progressively over time (Figure 5A); T1 and T2
showed similar efficacy in controlling broadleaf weeds, whereas T2
demonstrated superior efficiency in controlling grass-type
weeds (Figure 5B).

Treatments C2 (t-ha™) C3 (t-ha™) C4(t-ha™) Y (tha™)
Tl 000 3774087 ° 35.78 + 3.26 39.55 + 2.39
™ 1.98 + 1.06 405+ 143" 37.91 + 9.30 4394 +9.24
T3 0.52 + 052 438+ 151° 56.42 + 2.63 61.32 + 3.95
T4 157 + 1.57 13.35 337 4655 + 2.51 6147 + 6.90

E-value 124 842 215 2.18
p-value 0.371 0.015 0.201 0.196
Significance NS * NS NS

Cl: Super Extra category (not included since no fruits were produced in any treatment); C2: Extra category; C3: Primera category; C4: Bola category; Y: total yield. Data were extrapolated to t ha™

1

and are expressed as mean =+ standard error. Different letters within each variable indicate statistically significant differences among treatments at p < 0.05 according to Tukey’s test. NS, not

significant; * = significant at p < 0.05.
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4 Discussion
4.1 Uniform behavior among treatments

The cover treatments (T1: Melilotus albus, T2: Trifolium pratense,
T3: plastic mulch, T4: no cover) did not result in significant differences
in plant height, Chlorophyll index, flowering onset, fruit number, or
dry matter content of rocoto fruits. This lack of variation could be
attributed to factors related to nitrogen nutrition and the timing of

TABLE 2 Irrigation Water Productivity (kg m~3) related to the total
rocoto yield.

Treatment Irrigation volume (m® ha™!) IWPt (kg m™)
Tl 9635 411 + 043"

T2 9635 4.56 + 1.66°

T3 6690 9.17 + 1.02°

T4 9195 6.68 + 1.3%
p-value 0.0139
F-value 8.525
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evaluation. Aminifard et al. (2012) demonstrated that variations in
nitrogen fertilization significantly influence these parameters in
peppers; however, in the present study, all treatments received the
same mineral fertilization regime. As noted by Havlin et al. (2016),
symbiotically fixed nitrogen is primarily utilized by the host legume,
with minimal release into the soil during its life cycle. It becomes
available to the main crop only after the legume biomass is
decomposed and incorporated into the soil.

Chu et al. (2017) emphasize that the evaluation period is a
determining factor, as the benefits of living covers tend to manifest
predominantly in the medium- to long-term. Similarly, plastic
mulch did not exhibit immediate effects. Hochmuth and
Hochmuth (1994) reported that white-on-black plastic mulch did
not influence the number of pepper fruits during the first year of
evaluation. However, positive effects emerged in the second year.

4.2 Response of fruit yield to cover
management

In this study, no statistically significant differences were
detected in total yield (Y) or in the Extra (C2) and Bola (C4) fruit
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FIGURE 4

Organ-specific dry biomass of Melilotus albus (T1) and Trifolium pratense (T2), separated into aboveground biomass, root biomass, and total
biomass. Data are presented as mean + standard error. Different letters above the bars indicate statistically significant differences between

treatments for each evaluated component (Tukey test, p < 0.05).

Root Biomass

Treatments
T
T2

Total

categories among treatments. Although certain trends were
observed in mean values, these should be interpreted with caution
due to the high variability recorded, particularly in treatment T2.
This level of dispersion reduced the statistical power of the analysis
and limited the detection of effects attributable to cover
management, a situation also reported by other authors in
experiments with high genetic or environmental heterogeneity
(Gomez and Gomez, 1984).

TABLE 3 Contribution of N, P, and K from living cover biomass.

These results are consistent with studies in Capsicum and other
crops showing that traits related to yield and quality are highly
sensitive to environmental factors such as radiation, humidity, and
nutrient availability (Zewdie and Bosland, 2000; Sahmat et al,
2024). Consequently, genotype stability cannot be evaluated solely
on the basis of mean yield, but requires considering its differential
response under contrasting environmental conditions (Sran et al.,
2021; Sahmat et al., 2024). A key aspect to consider is the marked

Organ biomass Treatments P (kg-ha™) K (kg-ha™)
Tl 455 +204° 1.74 + 0.03 ° 2.95 +0.05 °
T2 1491 + 538 ° 5.70+ 0.87 * 17.67 £ 1.07 *
Roots
F-value 19.58 180.98
P-value 0.047 0.005
Tl 73.54 +20.26 a 2331+3.75a 127.68 + 6.4 *
T2 32.09 + 26.76 a 1038 + 0.69 a 73.90 + 7.43 °
Aboveground
F-value 8.5 23.09
P-value 0.10 0.04
Tl 78.09 + 18.73 a 25.05 +3.78 a 130.64 + 6.41 a
T2 47.00 + 22.16 a 16.08 + 1.18 * 91.57 + 6.63 a
Total
F-value 3.52 12.92
p-value 0.2 0.06

Data are presented as mean + standard error. Different letters within each organ-nutrient combination represent statistical significance between treatments (Tukey test, p < 0.05). F and p values

correspond to ANOVA analysis between treatments.

Frontiers in Agronomy

frontiersin.org


https://doi.org/10.3389/fagro.2025.1663633
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org

Poma-Chamana et al.

10.3389/fagro.2025.1663633

144 ®

12 4

ab

-
o
1

Density (plants m’z)

173 202
Day after transplanting (DAT)

FIGURE 5

Density of broadleaf species and grasses. (A) Main effect of DAT. (B) Effect of treatment X weed interaction. Error bars represent 95% confidence
intervals. Different letters indicate significant differences in density at a significance level of 0.05 according to the False Discovery Rate (FDR)

correction method.

climatic discrepancy between the origin of the genetic material and
the experimental site. The Oxapampa accession is associated with a
production zone characterized by high relative humidity (88%) and
low solar radiation (166 W-m™?). In contrast, Santa Rita de Siguas
presents opposite conditions, with 49% relative humidity and 279
W-m? solar radiation, according to SENAMHI data (SENAMHI -
Descarga de Datos). This genotype x environment mismatch likely
constrained the expression of genetic potential, regardless of
treatment. In this regard, climate represents a particularly
complex factor, as it integrates relatively predictable components
defined by the prevailing climatic regime with unpredictable
components derived from interannual variability (Oladosu et al.,
2017). Moreover, the relative stability of fruit load, in contrast with
the variability of quality traits, highlights the complexity of
genotype x environment interactions and their influence on
yield stability.

In the Primera (C3) category, significant differences were
detected, with treatment T4 (manual weeding) achieving the
highest yield. Its superiority over living covers (T1 and T2) may
be related to the reduction of interspecific competition, while the
difference with plastic mulch (T3) could be associated with
accelerated fruit ripening, as previously reported in studies with
white mulch (Overbeck et al., 2013). This earlier ripening may have
favored the harvest of smaller fruits, thereby reducing the
proportion of C3 fruits. However, under conditions of high
radiation and low humidity, the influence of both environment
and genetic material on this differential response cannot be ruled
out. Since this study was conducted during a single growing season,
the conclusions should be interpreted within these limitations, as
they do not account for interannual variability that could
substantially modify the genotype’s response.
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4.3 Dynamics of volumetric soil moisture

Optimizing water resources is essential in arid regions. In this
context, plastic mulch (T3) proved highly effective in conserving
water, reducing irrigation time by about 50% and maintaining soil
moisture at an optimal content for plant-available water in sandy
loam soils (Ratliff et al., 1983). These results align with those of
Diaz-Perez (2010) and Ren et al (Ren et al., 2021), who found higher
water content in the top 60 cm of soil when using plastic mulch.
Among living cover treatments, T2 shows greater soil moisture
retention than T1, indicating improved water use efficiency once
fully established. This advantage of T. pratense in conserving water
is likely linked to differences in its root system. M. albus develops
deeper, less dense roots near the surface (Rios et al., 1993), while T.
pratense has a denser, more superficial root system (Fergus and
Hollowell, 1960; Bowley et al., 1984), which favors moisture
retention in the upper soil layers. High root density decreases
macroporosity (Daly et al., 2015), possibly limiting rapid
infiltration but increasing water retention capacity. Additionally,
root exudates can alter soil structure and absorb large amounts of
water (Xiao et al, 2024), boosting water availability in the
rhizosphere. Morphologically, M. albus grows upright and taller,
resulting in a larger leaf area exposed to sunlight, which leads to
higher transpiration rates. Conversely, the prostrate growth habit
and shorter stature of T. pratense keep its foliage shaded beneath the
rocoto, reducing water loss through transpiration.

The literature confirms that bare soil promotes greater water
loss through direct evaporation (Brun et al., 1986; Gomes de
Andrade et al, 2011), whereas living covers help reduce both
evaporation and runoff, thereby enhancing infiltration and water
conservation (Wyngaarden et al., 2015). However, as we found, it

frontiersin.org


https://doi.org/10.3389/fagro.2025.1663633
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org

Poma-Chamana et al.

depends on the living covers’ characteristics. Biazzo and Masiunas
(2000) reported that living mulch with T. pratense retains more
moisture compared to bare soil. Nevertheless, Niclsen and Vigil
(2005) and Blanco-Canqui et al. (2015) cautioned that in semi-arid
environments, living covers can reduce the moisture available to the
main crop by 20-50%, depending on the timing of their suppression
and the management practices applied.

To the best of our knowledge, no previous reports of IWPt
values are available for Capsicum pubescens. In our study, IWPt

3

ranged from 4.11 to 9.17 kg m >, with higher values observed under
plastic cover. However, the variability in the yields obtained,
compared with those reported in the literature (Pérez-Grajales
et al., 2004; Puente et al., 2014; MIDAGRI, 2025), suggests that
further research is needed to better understand water productivity

responses in this crop.

4.4 Biomass production by living plant
covers and nutrient accumulation

In terms of biomass contribution, T1 (Melilotus albus)
produced 2.05 times more dry above-ground biomass than T2
(Trifolium pratense). This difference is attributed to the erect
growth habit and greater height of the Melilotus genus, which
enables more effective light interception and higher
photosynthetic efficiency (Fontana et al., 2018), further supported
by its rapid vegetative regrowth from basal shoots (Titei, 2022).

Conversely, T2 (Trifolium pratense) exhibited 2.6 times greater
dry root biomass, consistent with its capacity to develop dense and
deep root systems (Blanco-Canqui et al,, 2015; Dlamini et al., 2024),
with reported root dry matter yields ranging from 2.3 to 2.9 tha™.

The above-ground to root biomass ratio differed significantly
between species These proportions reflect contrasting
ecophysiological strategies. Melilotus albus prioritizes above-
ground biomass, which is advantageous for forage production or
rapid surface coverage, (Titei, 2022). In contrast, Trifolium pratense
allocates more biomass to its root system, making it more suitable
for biopore formation, enhanced water infiltration and retention,
and increased rhizospheric biological activity (Yu et al., 2016;
Mckenna et al., 2018; Adetunji et al., 2020 ).

Living covers can generate significant agronomic interactions
with the main crop. In this context, the high above-ground biomass
production of Melilotus albus may increase competition for light in
high-density systems, potentially affecting the development of
rocoto pepper. White et al. (2016) note that fast-growing covers
with early foliage closure can exert intense physical competition and
may also release allelopathic compounds. In contrast, species such
as Trifolium pratense, which produce less above-ground biomass,
may reduce such competition in polyculture systems (Thorsted
et al,, 2006). Their greater biomass allocation to the root system,
however, contributes to improved soil physical structure and the
formation of stable aggregates (Mckenna et al., 2018).
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As leguminous species, both Melilotus albus and Trifolium
pratense contribute to biological nitrogen fixation; however, the
total amount fixed may vary due to differences in biomass
production (McEwen and Johnston, 1985; Nesheim and Qyen,
1994; Hernandez Escarefio, 1998; Pederson et al., 2002; Terroba
et al,, 2024).In the present study, although the differences were not
statistically significant. This variability among studies can be
explained by differences in nitrogen fixation efficiency among
legume species, which is influenced by nodule morphology and
root system development, with higher efficiency observed in species
with more developed root systems (Terpolilli et al., 2012).

The total nutrient accumulation (from root and above-ground
biomass) indicates that Melilotus albus (T1) can contribute 78.09 kg
N-ha™, 25.05 kg P-ha™’, and 130.64 kg K-ha™. In comparison,
Trifolium pratense (T2) contributes 47.00 kg N-ha™', 16.08 kg
P-ha™, and 91.97 kg K-ha™". However, this contribution will only
effectively improve soil fertility after biomass incorporation, and the
availability of nutrients for the subsequent crop will depend on the
decomposition rate, moisture and temperature conditions, the
residue’s C/N ratio, and soil microbial activity (Havlin et al,
2016; Weil and Brady, 2017).

4.5 Broadleaf and grass weed control

Although treatments T3 (plastic mulch) and T4 (manual
weeding) are not shown in Figure 5, both achieved complete
weed control. The synthetic cover and manual weeding
eliminated weed competition, aligning with findings by Kasirajan
and Ngouajio (Sokombela et al., 2025), who reported that plastic
mulches block photosynthetically active radiation, which is
necessary for weed germination. Similarly, studies by Barla et al.
(2018) and Mzabri et al. (2021) confirm that plastic mulching
effectively reduces weed biomass, yielding results comparable to
those achieved with chemical treatments and superior to those
obtained with organic mulching.

Treatments with living covers (T1 and T2) showed no
statistically significant differences in terms of broadleaf weeds;
however, T2 was more effective at controlling grasses weeds,
suggesting a selective suppressive effect. Living covers suppress
weeds through multiple mechanisms: allelopathy (Fujii, 2003),
competition for resources (Williams et al., 1998), reduced light
availability (Teasdale and Mohler, 2000), and the release of
allelochemical compounds that enhance shading and competition
(Mohammadi and Mohammadi, 2012).

The temporal weed control T2 suggests that this cover may
favour the growth of particular grass species. According to Brainard
etal (Brainard et al., 2011), leguminous covers may be less effective at
weed suppression due to unpredictable fluctuations in temperature
and soil fertility, reducing their suppressing effectiveness.

The results have practical implications for integrated weed
management. While synthetic mulches and manual weeding offer
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higher effectiveness, they require greater financial investment or
labour inputs (Steinmetz et al, 2016). In contrast, plant covers,
although less effective at suppressing weeds, provide additional
benefits, including moisture conservation, contribution of organic
matter, and enhanced biodiversity (Teasdale, 1996; Blanco-Canqui
et al,, 2015). However, the prolonged use of plastic mulch can alter
soil biocoenosis, increase greenhouse gas emissions, and lead to the
accumulation of plastic residues in the soil (Steinmetz et al., 2016).
Although biodegradable alternatives are available, their high cost
limits their widespread adoption compared to polyethylene mulch
(Sokombela et al., 2025), underscoring the need for a comprehensive
assessment of their use. This challenge is exemplified in China, where
the accumulation of 550,800 tons of plastic residues resulted in a 6-
10% reduction in cotton yields (Zhang et al., 2020). The problem is
further exacerbated by the projected growth of the global synthetic
mulching market, estimated to reach USD 19.49 billion by 2029 with
an annual growth rate of 7.1% (MarketsandMarkets, 2025), while the
high recovery costs undermine its long-term economic feasibility
(Steinmetz et al, 2016). On the other hand, manual weeding,
although effective for weed removal, has limitations that reduce its
feasibility in large areas due to its high demand for labor, physical
effort, and time, which substantially increase operational costs
(Hujerova et al., 2016; Assani Bin Lukangila et al., 2024).
Moreover, its environmental benefits are limited compared to those
provided by living covers (Poeplau and Don, 2015; Koudahe
et al., 2022).

4.6 Management recommendations for
cover crops in arid zones

4.6.1 Scenarios of severe water scarcity

In the context of the arid regions of Arequipa, where water
availability is limited, plastic mulch showed potential as a strategy to
conserve soil moisture and reduce weed incidence, which could
contribute to improving water use efficiency (WUE).

As a sustainable alternative, it is recommended that the
economic viability of biodegradable plastics be assessed. Despite
their higher initial cost, their implementation should be evaluated
through a cost-benefit analysis that considers reduced labor
requirements for post-harvest removal, decreased environmental
impact, and the potential for enhanced marketability of products
under sustainable certifications.

4.6.2 Strategies for organic matter enrichment

Arid soils, such as those found in Arequipa, with low organic
matter content (1.31% in this study), tend to present limitations in
water retention, cation exchange capacity, and biological activity. In
this context, high-biomass leguminous cover crops, particularly
Melilotus albus due to its drought tolerance, nitrogen-fixing
capacity, and high above-ground biomass production, may
represent a promising alternative. The biomass could potentially
be used as green manure or compost input, contributing to a
circular economy approach within systems that also employ
plastic mulch.
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4.6.3 Management under moderate water
availability conditions

In arid zones where water availability is sufficient, the
establishment of Trifolium pratense may offer potential benefits,
as it can provide multiple ecosystem services such as improved soil
moisture retention, increased organic matter content, and
atmospheric nitrogen fixation.

Furthermore, in compacted soils, its dense and fasciculated root
system may contribute to biological decompaction, enhancing
water infiltration and improving soil structure. This hypothesis
requires experimental validation through medium- and long-term
monitoring of soil physical parameters.

4.7 Study limitations and recommendations
for future research

The main limitations of this study include its confinement to a
single agricultural season, which restricts the assessment of
interannual variability and the cumulative effects of living covers
over the medium and long term. The limited number of replicates
reduces the statistical robustness of the findings and hampers the
detection of significant differences among treatments. Furthermore,
variations in irrigation timing, implemented as part of the
management strategy, prevented valid statistical comparisons of
soil moisture retention across all treatments, thereby limiting the
objective quantification of this key parameter. Finally, measuring
moisture only at 20 cm depth may not fully capture the dynamics in
deeper soil layers.

For future research, it is recommended to integrate
management variables, soil moisture measurement at different
depths, differentiated irrigation levels, crop associations, and
various cover crop species (including grasses, cruciferous plants,
and legumes) according to the local agroecological conditions, and
family farming systems.

5 Conclusions

The use of soil covers in rocoto pepper (Capsicum pubescens)
cultivation under arid conditions was insufficient to produce
significant effects on most production variables evaluated during
the growing season studied. However, plastic mulching showed
potential for water use efficiency and weed control under the
established experimental conditions. Among the living mulches
evaluated, Trifolium pratense tended to register greater soil
moisture retention than Melilotus albus, with differences of up to
63.3% observed during the maturation stage of Melilotus albus. In
terms of biomass contribution to the soil, Melilotus albus evidenced
favorable characteristics as a living mulch contributor. This
behavior could be associated with its morphological characteristic
and observed growth patterns. Regarding nitrogen input through
biomass incorporation, both leguminous species demonstrated
nitrogen accumulation potential, with Melilotus albus exhibiting
numerically higher values that did not achieve statistical
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significance (P > 0.05). For weed control, both living mulches
provided moderate weed suppression without significant
differences between species, though showing reduced efficacy
compared to plastic mulching or manual weeding. The patterns
observed in this study require multi-year evaluation to establish
their consistency and validity. Consequently, future research should
incorporate medium to long-term experimental designs, increase
replication numbers, and broaden the scope of assessed variables to
derive more robust conclusions regarding soil cover utilization in
rocoto pepper production under arid conditions.
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