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Biodegradable plastic film
mulch increased nitrous
oxide emissions in organic
leek but decreased emissions
in organic cabbages

Martin Samphire®, Davey L. Jones and David R. Chadwick

School of Environmental and Natural Sciences, Bangor University, Gwynedd, United Kingdom

Plastic film mulch (PFM) controls weeds and increases yields, making it attractive
to vegetable growers; biodegradable PFMs potentially reduce the harms
associated with conventional PFMs. PFMs increase soil biological activity,
accelerating the decomposition of soil organic matter and potentially
increasing emissions of some greenhouse gases (GHGs). Conversely, they are a
barrier to rainfall infiltration and gas exchange, reducing harmful nitrate (NOsz")
leaching and ammonia (NH=) volatilisation. The effects of PFMs on the processes
resulting in GHG emissions are not well explored outside conventionally grown
commodity crops in major growing regions. To address this, we conducted a
field experiment on an organic vegetable farm with a temperate maritime
climate. We measured nitrous oxide (N,O), methane (CHy), carbon dioxide
(CO,) and potential NHz emission from the soil, growing leeks or cabbages,
with or without biodegradable PFM and amended with poultry manure or green-
waste compost. Averaged across both crops, yield was 26% higher with PFM;
potential NHz emissions were 18% lower (43% on a yield-scaled basis) in mulched
treatments than unmulched; CH,4 emissions were not significantly affected.
Yield-scaled N,O emissions were 62% higher in mulched leeks than
unmulched but 56% lower in mulched cabbages than unmulched; this
coincided with higher soil NO3z~ content in mulched leeks than either
unmulched crop or mulched cabbages. Results were not obtained for CO,, so
partial global warming potential (GWP) and greenhouse gas intensity (GHGI) were
determined mainly by N,O emissions. Overall, our results indicate that
biodegradable PFM can potentially reduce harmful gaseous N emissions in
organic horticulture.
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1 Introduction

Enhancing crop yield has been the primary imperative of
agronomists; however, it is increasingly recognised that this must
be balanced against the harms caused to the environment and
human health, particularly those associated with nitrogen (N) losses
(Fowler et al., 2013). Recent years have seen a rapid expansion in the
use of plastic film mulches (PFM) within agricultural production
due to their ability to increase crop yields (Nachimuthu et al., 2017;
Sun et al., 2020). These increases have been attributed to increased
water and nutrient use efficiency, protection against soil erosion, the
suppression of weeds and pests and thermal insulation of the soil
(Gao et al.,, 2019; Kasirajan and Ngouajio, 2012; Lamont, 2005).
They can act as a barrier to rainfall infiltration and gas exchange at
the soil surface and affect the system’s energy balance by regulating
radiation, convection, and evaporation, which can influence soil
moisture, temperature, and gas exchange (Li et al., 2013; Saglam
et al,, 2017; Tarara, 2000). These, in turn, may affect crop growth,
soil biological processes and soil carbon (C) and N cycling in
numerous ways (Supplementary Figure S1) (Liu et al, 2017; He
et al., 2018; Sintim et al., 2021).

However, the problems of removal and disposal as well as the
legacy of plastic left in the soil at the end of the cropping season and
its potential to generate nano- and micro-plastics has led to
significant concerns about the sustainability of plastic mulch film
use in agriculture (Salama and Geyer, 2023; Steinmetz et al., 2016).
One potential solution to this has been the adoption of
biodegradable mulch films, which biodegrade in the soil at the
end of the growing season (Kasirajan and Ngouajio, 2012).
Recently, mesocosm-based experiments have suggested that
biodegradable plastic mulch films may, however, negatively alter
soil functioning and N dynamics, while others have shown minimal
effect (Brown et al., 2023; Rauscher et al., 2023; Reay et al., 2023).
The potential effect of residual micro-plastics is in contrast to the
positive impact of using the films as a mulch in field experiments
(Lee et al., 20215 Samphire et al., 2023). The relative importance of
positive effects on N cycling and yield and the adverse effects of
biodegradable PFM in long-term use are poorly explored. This has
led to the call for more research to better understand how PFMs
alter soil and plant functioning when used in the field, particularly
with biodegradable mulch films (Qi et al., 2020; Salama and Geyer,
2023; Serrano-Ruiz et al., 2021).

Most previous studies have indicated that conventional LDPE-
based PFMs can reduce NH; emissions despite the increases in soil
temperature and NH," concentration under the film (Chae et al,
2022; Fang et al., 2022; Li et al., 2022; Mo et al., 2020). This has been
ascribed to the PFM reducing gas exchange, increasing the partial
pressure of NHj in the air under the mulch, preventing soil drying
and tipping the equilibrium towards the retention of dissolved
NH,". In contrast, there is no consensus on the effect of PFM on
N,O fluxes. Fang et al. (2022) found that PEM reduced N,O
emissions, while Nan et al. (2016) found the opposite effect.
Three meta-analyses in China have also reported different results:
(i) PFM reduces N,O emissions under moderate N fertilisation rates
but increases emissions at high N application rates (Mo et al., 2020);

Frontiers in Agronomy

10.3389/fagro.2025.1623738

(ii) PEM use increases N,O emissions (Yu et al,, 2021), but only in
paddy fields or with non-biodegradable PEM; or (iii) PEM has no
significant effect on N,O emissions (Wei et al,, 2022). The
differences in these analyses were probably due to the inclusion of
different crops, management practices and climate regimes, but all
involved major staple crops under conventional conditions.

PEM often leads to increased microbial activity and, hence,
respiration and breakdown of soil organic matter (SOM). This can
lead to increased CO, emissions (Li et al., 2022) and a net loss of soil
C. However, increased crop growth and C returns (e.g.,
rhizodeposition and crop residues) can mitigate this (Wang et al.,
2016). A meta-analysis found that although PFM increased CO,
emissions, it resulted in net C sequestration in dry upland areas (Mo
et al., 2020). Several studies have also shown that PFM can increase
CH, emissions which has been attributed to higher soil water
content under the PFM (Cuello et al,, 2015; Wang et al., 2021a;
Yu et al,, 2021), although occasionally, the opposite trend is found
(Nan et al,, 2016). As the use of PFM usually results in increased
crop yields, it is important, however, to yield-scale greenhouse gas
(GHG) emissions (Islam Bhuiyan et al., 2021),for example, the
higher GHG emissions under PFM management were shown to be
lower than the unmulched control when crop yield was taken into
account (Li et al., 2022; Zhang et al., 2022).

Most previous studies on the effects of biodegradable PFM on
GHG emissions have focused on major commodity crops,
conventional farming using mineral fertilisers, and regions with
drier or warmer climates. In contrast, there is very little information
regarding their performance under organic management regimes,
in vegetable crops, or in moist temperate climates, contexts which
present particular challenges with yield-scaled environmental
impacts from gaseous N emission (Hergoualc’h et al., 2021;
Skinner et al., 2014; Tei et al., 2020). However, PEM may play a
significant role in these conditions: it may speed up the breakdown
of organic matter (Jin et al, 2018), reduce the impacts of high
rainfall, such as leaching (Quemada and Gabriel, 2016) and
waterlogging (Snyder et al,, 2015), and increase N use efficiency
(NUE) in vegetable crops, some of which are known to be poor in
this respect (Samphire et al., 2023). Despite the functional
similarities often observed (Tofanelli and Wortman, 2020; Wang
et al,, 2021¢) biodegradable PFM has different physical properties
including significantly higher different gas permeability (Briassoulis
and Giannoulis, 2018) and smaller effects on temperature
(Cozzolino et al., 2023) than PE which may be important in this
context. However, the most significant difference between them is
likely to be that of soil biology and chemistry after incorporation
(Bandopadhyay et al.,, 2018), which will not be seen in a single-
season experiment. While the effects of PFM on the soil
microclimate (temperature and moisture), crop yield and N
availability are relatively well studied, little is known about the
effect of biodegradable PFMs on gaseous emissions, particularly
with horticultural crops, in wetter climates, and the interaction with
organic amendments.

To address this knowledge gap, we investigated the effect of
biodegradable PFM on gaseous N fluxes in field-grown organic
vegetables (N-efficient cabbages vs. N-inefficient leeks) under two
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contrasting organic fertiliser regimes (poultry manure vs. green
waste compost). We hypothesised that (i) PFM would increase crop
growth and yield due to more consistent soil moisture availability
and higher soil temperature; (ii) PFM would result in higher NH,"
and NOj3™ content due to greater rates of SOM turnover and reduced
leaching; (iii) the increases in mineral N would result in higher
gaseous losses of NH; and N,O, but (iv) net GHG losses would be
lower when expressed on a yield-scaled basis.

2 Materials and methods
2.1 Experimental site

The experimental field site was at a commercial organic
horticultural farm in SW Wales, UK (51°47’N, 4°12’E; 130 m
a.sl.). The soil is classified as a free-draining, silty clay loam
textured Eutric Cambisol developed on a carboniferous sandstone
and shale parent material. The main soil chemical and physical
properties (n=5) for the top 10 cm of soil at the start of the
experiment are summarised in Supplementary Table S1. Initial
values for soil pH, P, K and Mg content were determined by
NRM Laboratories, Cawood Scientific, Berkshire, UK (n =5).
Olsen P content was determined by extraction with 0.5 M sodium
bicarbonate (Olsen and Sommers, 1982), and extractable K and Mg
were determined by extraction with 1 M ammonium nitrate
(Thomas, 1982).

The mean annual rainfall (1981-2010) is 1380 mm, and the
annual mean air temperature is 10.4°C (Met Office, 2021). During
the experimental period (June 1% to Sept. 10", 2022), daily
temperature and precipitation data were measured at a nearby
weather station (within 2 km), giving a mean air temp of 16.5°C and
total rainfall of 355 mm (The Weather Company, 2022).

The experimental site has been under commercial organic
horticulture since 2010, growing mixed vegetable crops in
rotation with green manures. In the previous season, the
experimental plot had been planted with a mixed ley of grass,
clovers, and herbs. This was incorporated by ploughing in January,
and the seedbed was prepared by secondary cultivation and rolling
to create beds running across the slope. Irrigation is not usually
necessary in this region and was not used in this experiment.

2.2 Experimental treatments

The experiment consisted of two crops, namely leeks (Allium
ampeloprasum L. cv. Jolant) and cabbages (Brassica oleracea L. var.
capitata cv. Stanton). These were chosen to represent typical
horticultural crops with contrasting N uptake profiles, with
cabbages being faster growing with a more extensive root system,
producing more biomass and having the ability to use a greater
portion of plant available N from the soil than leeks (D"Haene et al.,
2018; Everaarts, 1993; Karic et al.,, 2005; Thorup-Kristensen and
Sorensen, 1999). Cell-grown transplants raised by a commercial
nursery (Delfland Nurseries Ltd. Doddington, March,
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Cambridgeshire, UK) were used. The mulch film was a 15 pm
thick, black biodegradable polylactic acid (PLA)- based PFM, Gro-
clean Bio-Mulch® (Gromax Industries Ltd., Hadleigh, Suffolk, UK).

Two organic fertilisers were used: pelleted organic fertiliser
based on sterilised poultry manure (Greenvale Farms Ltd.,
Middleton Tyas, North Yorkshire, UK) spread at 100 g m™ (total
N 4.4 g m™) which is the rate recommended by the manufacturer
and municipal green waste and food waste compost (Cwm
Environmental Ltd., Nantycaws, Carmarthenshire, UK) applied at
a rate of 2.5 kg m™ (total N 16.3 g m™®) which is a typical rate for
compost use in organic horticulture (Eva Erhart and Wilfried Hartl,
2010); the equivalent field spreading rate was 0.8 and 20 t ha™
respectively as fertilisers were only applied on the beds and not the
wheelings between beds. The nutrient analysis of these amendments
is shown in Supplementary Table S2.

2.3 Experimental design

A randomised block design was used with 32 plots and four
blocks with all combinations of the three treatments in each block.
Beds were created by rolling on 2™ July, and the biodegradable
PFM was laid on the plots on 4™ July 2022. The main treatments
consisted of plots with and without biodegradable PFM. Cabbages
were planted at 40 x 40 cm spacing (6.25 plants m on the bed,
50,000 plants ha™ on field scale including wheelings) and leeks at 30
x 30 cm spacing (11.1 plants m™ on the bed, 88,000 plants ha™ on
field scale including wheelings) on 5 June 2022, the size and layout
of these plots are shown in Supplementary Figure S2. These
planting densities are typical for commercial organically grown
cabbages and leeks (Davies and Lennartson, 2005). The subplots
used two treatments: poultry manure and green waste compost. To
avoid sampling affecting subsequent results, all measurements were
taken at least 20 cm from holes made in the PFM for previous
observations. When multiple samples were taken on a single
occasion (for soil mineral N analysis), these were taken from a
defined area rather than the whole plot; this requirement
determined the size of the plots required.

2.4 Plant measurements

During the experiment, rows of plants (three cabbages or four
leeks) were harvested 54 days and 97 days after planting, and their
fresh weight was determined before oven-drying (80°C, 8 h). The
dried samples were ground using a Retsch stainless steel ball mill
and then analysed for total C and N using a TruSpec® CN analyser
(Leco Corp., St Joseph, MI). Only above-ground parts were
analysed; we did not test the N content of the roots, but amounts
are likely to be small for these crops (Huett and Dettmann, 1991).
The yield was calculated as fresh and dry matter yield per plant and
economic yield, which was the weight of the fresh plants trimmed of
outer leaves and stems to the standard of the farm on which the
experiment was conducted and scaled per hectare. Mid-season
measurements were taken from plants adjacent to the gas
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sampling area, but at harvest, measurements were taken from plants
both within and adjacent to this area.

2.5 Soil measurements

Soil temperature and volumetric moisture sensors (TDT-SDI-12;
Acclima Inc., Meridian, ID) were installed at a depth of 5 cm. One
sensor was placed within the gas sampling area and one in an
adjacent area of the plot (Supplementary Figure S2). Readings were
recorded hourly using SDI-12 DataSnap data loggers (Acclima Inc.).
Volumetric soil moisture content was converted to gravimetric soil
water content and then to Water-Filled Pore Space (WEPS) as follows
(Equation 1):

WEPS = 6,/ (1)

where 0, is volumetric soil water content, and @ is total soil
porosity. @ was calculated by (Equation 2):

@ =(1-P,/P,) @)

where py, is soil bulk density, and p, represents soil particle
density (2.47g cm™) (Sumner, 2000).

The tea bag method of Keuskamp et al. (2013) was used to
estimate soil biological activity. For this, the mass loss of the
relatively easily degraded ‘green’ tea (C: N of 12) and the more
recalcitrant rooibos (‘red’) tea (C: N of 60) were measured to
determine the rate of decay k (the exponential rate of decay
calculated from the proportion of mass lost from the ‘red’ tea),
and stabilisation factor S (the proportion of the mass of green tea
remaining relative to the fraction thought to be degradable
estimated from chemical hydrolysis) (Duddigan et al., 2020). The
equations to calculate k and S are (Equations 3, 4):

k=In(a, (W - (1-a,))/T 3)

S = (1 - (ag/Hy)) (4)

where ar=the decomposable fraction of red tea assumed to be
the same fraction of hydrolysable material as that calculated for
green tea so (Equation 5):

a, = Hr(ay Hy) (5)

where T=length of time buried in days, W, _fraction of red tea
remaining after burial for time T, ag is the fraction of green tea lost,
and Hg and H, are the easily degradable fractions of green and red
tea, respectively, determined by hydrolysis (Hr=0.522, Hy=0.842;
(Keuskamp et al., 2013).

Three pairs of Lipton Green Sencha (‘green’ tea) or Lipton
Rooibos and Hibiscus tea bags (‘red’ tea) (Unilever Ltd., London,
UK) were buried at a soil depth of 5 cm, spaced 20 cm apart
(Supplementary Figure S2). These were recovered at the end of the
experiment. The mass loss relative to the starting weight was
determined after oven-drying the remaining tea in the litter bags
at 60°C until constant weight.
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To assess soil available NH," and NO5~ content, five soil cores
(0-10 cm) were taken every 14 days from between the plants in each
subplot. After sample homogenisation, 5 g of soil was extracted with
25 ml of 1 M KCI (200 rev min™, 1 h), the extracts filtered, and the
filtrate stored at -18°C prior to analysis. Soil moisture was
determined by oven drying (105°C, 12 h). NO; and NH," in the
KCI extracts were measured colourimetrically using the vanadate
methods of Miranda et al. (2001) and the salicylic acid method of
Mulvaney (1996), respectively. To avoid damaging the PFM within
the gas sampling area, samples were taken from adjacent areas
during the growing season, but at the end of the experiment,
samples were taken from both within the gas sampling area and
adjacent to it.

2.6 Measurement of gaseous fluxes

Measuring gaseous emissions through a PFM under field
conditions has several challenges. Gases may escape through
planting holes or damaged film and by diffusion through the film
or from the edge of the bed. Gas may build up in spaces under the
film and be concentrated in the soil profile. Any penetration of the
film to place a measuring chamber could measure a release of the
accumulated gases rather than the steady state flux from the soil.
Placing a chamber for a prolonged period may also affect soil
conditions (Rochette and Hutchinson, 2005). If a hole in the film is
made for one set of observations, the conditions may be changed for
the following observations. To deal with these challenges, the static
chamber method described by Li et al. (2022) was modified as
follows. The apparatus for sampling gases is shown in
Supplementary Figure S3. Before mulch and fertility treatments
were applied, a UPVC collar was pushed into the soil so the rim was
flush with the soil surface. Adhesive tape was then used to fix the
mulch film to the collar. A UPVC sampling chamber (internally 390
mm x 390 mm x 300 mm) was placed on the collar and sealed using
wet clay for each sampling occasion. The chambers were removed
from the collars after each GHG and potential NH; emission
measurement to prevent any differences in the microclimate in
the area when the chamber was not in use.

GHG sampling was conducted at least weekly at first, but after
mid-season, the frequency was reduced to approximately every two
weeks; in all, there were 11 sampling occasions over the course of
the experiment. Unfortunately, the cabbages grew too large for the
chambers in August, so the two penultimate observations were for
leeks only. The final GHG flux measurements were taken
immediately after the crop harvest so all plots could again
be sampled.

Gas samples were withdrawn through the rubber septum using
a 25 ml syringe and injected into pre-evacuated 20 ml vials. GHG
flux was calculated from the change in concentration in the
headspace gases between initial samples and samples taken after
60 min. Additional samples were taken from one randomly selected
chamber on each occasion, at 15, 30, and 45 mins, to check for
linearity of change in headspace gas concentrations; these were
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satisfactory. Samples were analysed on a Perkin Elmer 580 Gas
Chromatograph with a TurboMatrix 110 auto sampler
(PerkinElmer, CT, USA). Gas samples passed through two Elite-
Q mega bore columns via a split injector, with one connected to a
®*Ni electron-capture detector for N,O determination and the other
connected to a Flame Ionisation Detector for CH, and CO,
determination. Fluxes were estimated using the slope of the linear
regression between 0 min and 60 mins, considering the temperature
and the ratio between chamber headspace volume and soil surface
area. Cumulative GHG fluxes were estimated by linear interpolation
between sampling points.

Potential ammonia emission was measured using the same
chamber on different occasions. A sponge (80 x 80 x 10 mm was
soaked with 10 ml of 1 M H,SO, mixture containing 5% glycol
(Shigaki and Dell, 2015). This was suspended from the lid of the gas
chamber and left in the closed chamber for 4 h. The sponge was
kept in a closed vessel before and after collection to avoid
absorption of background atmospheric NH;. After being returned
to the laboratory, the sponges were shaken with 40 ml 1 M KCl for
20 min, and the extract was subsequently stored at -18°C.
Subsequently, 10 ml of the extract was placed in a 50 ml
polypropylene tube, and an excess of 1 M NaOH was added to
promote NHj; release. The NH; released was trapped in 0.015 M
H3PO,4 over 16 h, and the NH," in the traps was determined
colourimetrically using the salicylic acid method of
Mulvaney (1996).

Yield-scaled emissions were calculated by (Equation 6):

Eys = Et/Yec (6)

where Eyis the yield-scaled emissions, E, is total emissions, and
Y. is the economic yield.

To investigate the effect of PFM on nitrification and
denitrification rates, we examined the relationship between soil
NO3- and NH4+ content and N2O efflux. N20 efflux as a
proportion of soil NO3- and NH4+ content was calculated by
(Equation 7):

E,, = E,/C, ™)

where E,, is the N,O efflux as a proportion of soil NO;™ and
NH," content, E,_N,O efflux, and C, is the content of either NO5
and NH," in the top 10 cm of soil at the nearest sampling period (10
out of 12 of these where within 24 h, the other two within 48 h of
N,O efflux measurement).

As nitrification dominates N,O in drier soils, switching to
denitrification at between 60% and 70% soil moisture (Wang
et al., 2023), we also analysed the relationship between soil NO;
and NH," content and N,O efflux separately for drier and wetter
soil conditions.

Global Warming Potential (GWP) over a 100-year period was
calculated by Equation 8 (Forster et al., 2021):

GWP = 273(N, O flux) + 27(CH,flux) + CO,flux (8)

and Greenhouse Gas Intensity (GHGI) was calculated by
(Equation 9):
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GHGI = GWP/Y,, 9)

2.7 Statistical analysis

Data were analysed in R (The R Foundation for Statistical
Computing, 2020). Mixed effects modelling was carried out using
the Lme4 package (Bates et al, 2015). The best-fit model was
determined by a comparison of models using the experimental
variables (mulch, crop density and fertility treatments) as fixed
effects and the block and bed, and where relevant (in analysis of
time series data) date, as random effects in random intercept
models. The anova function from the R ‘stats’ package was used
to determine the best fit model by comparison of log-likelihood
(Chambers and Hastie, 1992). A summary of coefficients and
significance levels was extracted with the lmerTest package
(Kuznetsova et al.,, 2017). Results are assumed to be significant
where p<0.05, but some results are presented where terms in the
best fit model have p<0.1 but > 0.05.

3 Results

3.1 Effect of biodegradable mulch film on
crop yields and N content

Fresh and dry matter yield per plant (for both leeks and
cabbage) was significantly higher when grown with biodegradable
PFM (30% and 26%, respectively; Figure 1). The interaction of PEM
with poultry manure fertiliser increased cabbage yield further. The
economic yield of cabbage was more affected by PEM than leeks
(Figure 1). Poultry manure resulted in slightly higher yields when
used with PFM and lower without PFM compared to compost in
the same combination; however, this was not statistically significant.
The fresh and dry yield per plant was not significantly different
between the GHG monitoring areas and the other areas of the plot.

Cabbages had significantly higher N content and a lower C: N
ratio at harvest (Table 1); this, combined with higher yield, resulted
in N uptake that was three to five times higher than that of leeks
(Table 2). Biodegradable PFM increased crop N content (15%,
<0.001) and reduced the C: N ratio (18%, p<0.001), but the effect
was smaller in cabbages than in leeks (p<0.005). The choice of
organic amendment did not significantly affect these metrics.

3.2 Effect of biodegradable mulch film on
soil gas fluxes

On most occasions, measured fluxes of N,O were significantly
higher from PFM plots with leeks, but the magnitude of the
difference varied (Table 2, Figure 2). There was a notable
emission peak for all treatments three days after the start of the
experiment. Over the growing season, PFM resulted in significantly
higher cumulative N,O emissions than unmulched treatments for
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FIGURE 1

Yield characteristics of cabbages (6.25 plants m™2) and leeks (11.1 plants m™) grown with or without a biodegradable plastic film mulch (PFM) and

with green waste compost (2.5 kg m™)

or pelleted poultry manure (100 g m”

2). Panel (A) shows the total fresh weight of above-ground plant

material; (B) dry matter content; (C) the total fresh weight of above-ground plant material; and (D) the total marketable yield when trimmed to the
standard of the farm where the experiment was conducted and taking account of planted area and the unplanted area between beds (4:1). Values

represent means + SEM (n=8) and dots represent individual data points.

leeks (111% higher, p<0.005); however, for PFM with cabbages, this
situation was reversed (4% lower, p<0.05) (Table 2, Figure 3). Crop
type did not affect cumulative N,O emissions from the unmulched
plots. The organic amendment did not significantly impact
N,O emissions.

On most occasions, the measured daily CH, fluxes were very
low and not significantly different between treatments. Despite a
peak in emissions in the second week of the experiment, the
cumulative effect was a net CH, consumption. However, there
was no significant difference between the treatments.

Measured potential NH; fluxes were higher overall in the
unmulched than in the PFM treatments, but the significance was
marginal (p=0.055); daily NHj; fluxes significantly differed in the
first week and at the end of the experiment but not at other times
(summary data and MLM analysis not presented). This resulted in
cumulative seasonal emissions, which were also numerically higher
in the unmulched plots, but again with marginal significance
(Table 2, p=0.07). However, cabbages resulted in a significant
increase in cumulative emissions compared to leeks, and the use
of poultry manure with cabbages led to an additional increase
compared to cabbages with compost. On a yield-scaled basis, PFM
led to significantly lower NH; emissions (Figure 4).

N,O emission as a proportion of NO3™ content in the topsoil (0-
10 cm) was significantly lower in mulched plots (p<0.05); the
occasions when there was a significantly higher proportion of
emissions in unmulched plots appear to coincide with peaks of %
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WEPS (Figure 5). In contrast, N,O emission as a proportion of the
soil NH," content was significantly higher in mulched
plots (p<0.05).

Analysis of the relationship between N,O efflux and soil NH,"
and NO;™ content at higher and lower WEPS revealed different
trends with biodegradable PFM than without (Supplementary Table
S3 shows the best fit MLMs). When WFPS was<60%, there was a
significant positive correlation between N,O flux and soil NH,"
content in PFM plots which was significantly reduced by
biodegradable PFM (p<0.001), and PFM increased the rate of
emission (p<0.001); on the other hand, there was no relationship
between N,O flux and soil NO;5". In contrast, when WFPS was >
60%, PFM did not significantly affect the relationship between N,O
flux and soil NH," content. However, there was a strong positive
correlation between N,O flux and soil NO; content, which was
significantly reduced by biodegradable PFM (p<0.05).

3.3 Effect of biodegradable mulch film on
soil mineral N dynamics

There was an initial peak in soil NH," content in the first 4
weeks, after which the content remained low. This pattern was the
same in all treatments, but this initial peak was higher in the poultry
manure amended plots (Figures 6A, B). Overall, MLM analysis of
the time-series data revealed PFM and poultry manure significantly
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TABLE 1 Crop N content, C/N ratio and N uptake in response to the presence or absence of a biodegradable plastic film mulch and the application of
either compost or poultry manure.

Fertiliser Crop N contentat Crop C/N ratio = Crop N uptake mid- Crop N uptake at
harvest (%) at harvest season (g m™) harvest (g m™)
No Mulch Leek Compost 3.59 +£0.35 11.75 +£ 0.94 0.27 £ 0.03 9.06 + 1.47
Poultry
3.68 + 0.41 11.82 £ 0.68 0.21 + 0.04 10.10 + 0.44
Manure
Cabbage =~ Compost 529 +0.35 7.61 + 0.08 3.65 + 1.08 45.59 + 4.59
Poultry
492 £0.23 8.13+0.21 245+ 049 36.61 + 1.24
Manure
Biodegradable Leek Compost 4.70 £ 0.41 8.98 + 0.39 0.45 + 0.06 14.79 £ 0.63
PFM
Poultry
4.72 £ 0.46 8.79 + 0.19 0.40 + 0.04 14.59 £ 1.20
Manure
Cabbage =~ Compost 5.31 +0.22 7.45 + 0.34 3.45+0.22 48.35 + 3.44
Poultry
543 +0.31 7.14 +0.14 3.06 + 0.42 57.56 + 4.82
Manure
Statistical analysis
MlllCh A A
Fertiliser ns ns
Crop ok ok
Mulch*Fertiliser ns ns
Mulch*Crop > b
Crop*Fertiliser ns ns
Mulch*Crop*Fertiliser ns ns

ns -not significant; Significant differences: *p<0.05, **p<0.005, ***p<0.001.
Values represent means + SEM (n=4).

increased soil NH," content. Initially, soil NO;™ content was also
high but decreased after four weeks in all treatments other than
PEM with leeks, which had a substantial surplus by harvest of 99 +
18 mg NO; N kg (Figures 6C, D). The unmulched plots had the
lowest soil NO;™ content at harvest, averaging 2.4 + 0.4 mg NO;"N
kg'. The soil in mulched cabbage plots (8.2 + 3 mg NO; N kg'!)
was higher than that in unmulched plots but less than 10% of that of
mulched leeks. Table 3 shows the measured N inputs and outputs
and the changes in soil mineral N content over the course of the
experiment: mulched leeks resulted in an increase in soil mineral N
content, but unmulched plots and mulched cabbages all resulted in
a loss. Cabbages had significantly higher crop N uptake due to their
higher yield and N content; PFM increased N uptake in both crops
because of increased yield and N content.

3.4 Effect of biodegradable mulch film on
soil biological activity

The teabag biodegradation assay showed that biodegradable
PFM caused a significantly higher rate of decay, k, and a
significantly lower stabilisation index, S (Figure 7). These
parameters were not significantly affected by organic amendment
or crop type.
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3.5 Effect of biodegradable mulch film on
soil microclimate

Biodegradable PFM moderated temperature and moisture
fluctuations, resulting in lower soil moisture and higher average
soil temperature relative to the unmulched soil over the growing
period (Supplementary Table S4, Supplementary Figure S4).
Cabbages resulted in drier and cooler soil on average than leeks;
these differences were larger than those for the mulch treatments
(Supplementary Table S4, Supplementary Figure S4).

4 Discussion
4.1 Soil microclimate

Applying a PFM resulted in relatively small overall changes in
soil microclimate (0.6°C and 0.8% WEFPS); however, it effectively
reduced fluctuations in soil moisture and prevented extremes of
both soil temperature and moisture. This contrasts with previous
studies where black PFMs are often found to raise mean soil
temperatures by 2°C or more (Locher et al., 2005; Schonbeck and
Evanylo, 1998a). This is possibly due to less film-soil contact and
the insulating effect of air gaps between mulch and soil (Liakatas
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TABLE 2 Cumulative seasonal emissions and yield-scaled emissions of N,O, CH, and NH3 from soils with PFM mulch or No mulch combined with a crop of cabbages or leeks and fertilised with poultry manure
or green-waste compost.

Fertiliser Seasonal N,O Yield-scaled Seasonal CH,4 Seasonal GHGI Yield-scaled GHGI Seasonal NHsz Yield-
emission N>O emission emission (N>O +CHy) (g (N,O +CHy) (kg CO, emissions scaled NHz
(mg N m™) (kg N Mg™) (mg m™3) CO, eg m™) eq Mg™?) (mg N m™) emissions
(kg N Mg™)
No Mulch Leek Compost 71.5 £ 15.7 0.065 + 0.017 -75.0 £25.0 17.5 £ 49 16.0 £ 5.0 336.1 + 64.8 0.291 + 0.056
Poultry
77.1 £22.6 0.076 + 0.021 -65.7 £ 23.7 193 £ 6.1 19.0 £ 5.7 299.6 £ 58.2 0.299 + 0.058
Manure
Cabbage Compost 53.5 + 235 0.038 + 0.016 -91.8 £ 16.5 122 £ 6.7 89+43 423.0 + 389 0.282 + 0.037
Poultry
88.7 £ 15.2 0.070 + 0.014 -70.2 £29.9 223 +4.0 17.8 + 3.8 598.4 + 147.3 0.480 + 0.126
Manure
Biodegradable Leek Compost 149.5 £ 51.9 0.109 + 0.040 -64.0 £ 31.0 39.1 + 14.6 285+ 112 242.1 + 86.5 0.178 + 0.066
PFM
Poultry
163.4 + 30.7 0.121 + 0.017 -44.8 £ 41.6 434 + 8.7 334 +52 239.6 + 39.0 0.178 + 0.022
Manure
Cabbage Compost 51.6 £ 185 0.023 + 0.007 -25.1 £479 134 £ 4.7 58+ 1.7 368.3 + 48.8 0.173 + 0.044
Poultry
858 + 8.5 0.036 + 0.006 -80.6 £ 28.2 212 +20 89+12 546.5 + 58.6 0.236 + 0.051
Manure
Statistical analysis
Mulch b * ns b * b 0.07
Fertiliser ns ns ns ns ns ns ns
Crop ns ns ns ns ns ns *
Mulch*Fertiliser ns ns ns ns ns ns ns
Mulch*Crop * > ns * > ns ns
Crop*Fertiliser ns ns ns ns ns * *
Mulch*Crop*Fertiliser ns ns ns ns ns ns ns

ns -not significant; Significant differences: *p<0.05, **p<0.005, ***p<0.001, numerical values given for marginal cases.
Values represent means + SEM (n=4).
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FIGURE 2
Nitrous oxide flux from soil (across both fertiliser treatments) covered with biodegradable plastic film mulch (PFM) or un-mulched and with a crop of
leeks or cabbages. Values represent means + SEM (n=8). The cabbage treatment was not sampled on the two dates in August.
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FIGURE 3
Yield-scaled N,O emissions for the growing season for cabbages and leeks with or without a biodegradable plastic film mulch (PFM) and fertilised
with green-waste compost or poultry manure. Values represent means + SEM (n=4) and dots represent individual data points.
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FIGURE 4
Yield-scaled (potential) NHz emissions for the growing season for cabbages and leeks with or without a biodegradable plastic film mulch (PFM) and
fertilised with green-waste compost or poultry manure. Values represent means + SEM (n =4), and dots represent individual data points.
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FIGURE 5

Plot of N,O flux divided by soil nitrate content (measured within 24 hours of efflux, except on two occasions) from the two fertiliser treatments over
the course of the experiment with or without a biodegradable plastic film mulch (PFM), plotted with soil moisture on the second y-axis. Values
represent means + SEM (n=16), (except n=8 for the two points in August). Soil moisture values represent means (n=4).
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FIGURE 6

Soil content of NH,™ (A, B) and NO3™ (C, D) in the area adjacent to the collar used to fit the greenhouse gas sampling chamber throughout the
experiment, with and without a biodegradable plastic film mulch (PFM) and with green waste compost (2.5 kg m™2) or poultry manure (100 g m™2)
(A, C) or a crop of leeks or cabbages (B, D). Values represent means + SEM (n =8).

et al., 1986; Tarrara, 2000), as well as reduced sunlight hours and,
thus, incident UV radiation in the maritime climate. PEM reduces
evaporation and rainfall infiltration, reducing the rate of both
wetting and drying (Snyder et al., 2015; Tarara, 2000). The effects
of PFM on soil moisture are likely to vary spatially with both depth
and distance from the planting holes (Chen et al., 2018; Saglam
etal, 2017). It is likely that at shallower depths, the differences that
PEM causes to soil wetting and drying will be more pronounced
than those measured in deeper soil layers. The difference in soil
moisture between cabbages and leeks was larger than between

mulch treatments; we ascribe this to the greater relative leaf area
of cabbages, which resulted in shading and increased transpiration.
Further, the mulched cabbage plots had fewer planting holes as they
were planted less densely than the leeks, and it is possible that the
canopy architecture of cabbages directed rainfall away from the
planting holes (Chen et al., 2018; Haraguchi et al., 2003; Li et al,
2005). This heterogeneity of soil moisture response to wetting and
drying is likely to have influenced the highly moisture-dependent
biotic (e.g., plant N uptake, microbial N cycling) and abiotic (e.g., N
leaching, NHj volatilisation) processes in this study. This is

TABLE 3 Changes in soil mineral nitrogen (N) content and known N inputs and outflows.

Mulch Crop Fertiliser Change in soil Crop N uptake Measured losses  Added N in
mineral N conc. (g Nm™) of N,O and NHz  fertiliser (g N m™2)
(0-10 cm) (g Nm™3
(gNm™3
No Mulch Leek Compost -2.56 + 0.04 9.06 + 1.47 0.41 + 0.03 16.5
Poultry Manure 277 +0.07 10.10 + 0.4 0.38 + 0.03 44
Cabbage Compost -2.57 £ 0.03 45.59 + 4.59 0.48 + 0.02 16.5
Poultry Manure 248 + 0.25 36.61 + 1.24 0.69 + 0.07 44
Biodegradable Leek Compost 6.17 +0.23 14.79 + 0.63 0.39 + 0.05 16.5
PFM
Poultry Manure 6.39 + 1.14 14.59 + 1.20 0.40 + 0.02 44
Cabbage Compost -2.13 +1.85 48.35 + 3.44 0.42 + 0.03 16.5
Poultry Manure -1.56 + 0.30 57.56 + 4.82 0.63 + 0.03 44

Values represent means + SEM (n=4).
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Tea bag index (across both fertiliser treatments) in the presence or absence of biodegradable plastic film mulch (PFM): A) early decay rate constant k,
and B) stabilisation index S. The centre line is the mean value; lower and upper hinges are the first and third quantile; and the whiskers represent 1.5

times the inter-quartile range (n=16).

supported by Berger et al. (2013), who observed lower N,O
emissions in dry soil away from planting holes and higher
emissions in the wetter areas around the planting holes, resulting
in an insignificant net effect of PEM.

4.2 Crop yield

The average economic yield of cabbages was slightly lower than
the standard benchmark for UK organic producers but higher than
expected for leeks (Lampkin et al., 2017), possibly reflecting the
slightly shorter growing period for the cabbages. Economic yield
showed bigger differences between the treatments than yields per
plant; this probably reflects enhanced maturity of the crops in
mulched plots, resulting in lower leaf-to-head or leaf-to-
pseudostem ratio, which comprise the marketable product.

PFM increased dry matter yield per plant by 26%, which is in
the range typically found for horticultural crops grown with PEM
for leeks (10 — 40%) (Benoit and Ceustermans, 2002; Golian and
Anyszka, 2015), cabbages (5 - 36%) (Ponjican et al., 2021; Trdan
et al,, 2008) and other horticultural crops (Nachimuthu et al., 2017;
Samphire et al., 2023; Wojciechowska et al., 2007). The yield
differences are often attributed to the effect of PFM on soil
temperature or moisture; however, in this experiment, the
differences in these are relatively small, suggesting that other
factors were more important (e.g., higher soil NH," and
NO;~ content).

In the unmulched plots, there was no significant difference
between the effect of organic amendment type on the yield between
the two crops; however, the use of PFM and poultry manure caused
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a significant increase in yield, particularly for leeks (> 48%). This
effect was not detected with compost. This is perhaps related to the
relative growth rate of the two crops, leeks being slow to establish
(Davies and Lennartson, 2005) and perhaps unable to take
advantage of the initial short-lived higher available N.

4.3 Soil microbial activity

The Tea Bag Index results indicate that biodegradable PFM
causes significantly higher rates of SOM turnover. This replicates
previous findings on the same site (Samphire et al., 2023). The effect
is large, given the relatively small changes in mean soil moisture and
temperature. However, the relative stability of soil moisture may
also be a factor affecting SOM turnover. It is commonly observed
that PFM increases soil microbial activity with consequent increases
in mineralisation and soil DOC (Bandopadhyay et al., 2018; Han
et al., 2020; Kim et al, 2017; Zhang et al., 2023). This may be
relevant to our soil mineral N and N,O emissions findings.

4.4 Soil mineral N

PEM increased both soil NO;  and NH," content. However, we
are not able to attribute this to increased mineralisation or N losses
(e.g. NO;  leaching and gaseous N, from denitrification), as these
were not measured in this experiment. Overall, the content of soil
NH," were low, indicating a high soil nitrification rate, which is
commonly found in cultivated soils with high C and N content
when temperature and pH are not limiting (Elrys et al., 2021). The
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highest content was found in the initial period following poultry
manure amendments, indicating rapid hydrolysis of readily
available N compounds such as urea. PFM also had the largest
effect at this time, probably partly by reducing N
volatilisation losses.

Soil NO;™ content was higher in the first month for all
treatments but became very low in the unmulched plots towards
the end of the experiment. This pattern was also present in the
mulched cabbages but to a lesser extent, although it was still twice
that of the unmulched plots by the end of the experiment. Soil NO;
content in mulched plots with leeks were several times higher than
in other treatments. Crop uptake was the largest measured factor
affecting soil mineral N in this experiment; as it significantly exceeds
the total N in inputs from the organic amendments, there must have
also been significant mineralisation of SOM. The soil in the
mulched leek plots increased in soil mineral N content; all other
treatments resulted in losses. The greater crop N uptake can explain
the difference between this and mulched cabbages; the difference
between this and unmulched leeks is consistent with biodegradable
PFM causing increased mineralisation and reducing unmeasured
losses. We only measured mineral N content in the top 10 cm of
soil, and it is likely that the crops took up N from deeper soil
profiles. This may have been a bigger factor in cabbages than leeks
as they are significantly deeper-rooting (Thorup-Kristensen and
Sorensen, 1999). Nevertheless, as there is no obvious reason to
believe that more N was mineralised in the cabbage plots, it looks
like there were substantially higher losses in leek plots, particularly
those that were unmulched.

The small differences in soil temperature and moisture suggest
that mineralisation is unlikely to account for the very low NO;
content in unmulched plots with both crops. Considering the lower
N uptake caused by lower yield, it must be concluded that there
were substantially higher losses in unmulched crops. The measured
losses of N,O and NHj; cannot explain these losses. Given the high
rainfall events at various times in the experiment, it is likely that
leaching was responsible for substantial N loss (Chen et al., 2020;
Schonbeck and Evanylo, 1998b).

Excess soil mineral N in leeks grown with PEM could be lost by
leaching or denitrification. Steps could also be taken to mitigate
these losses after harvest, such as growing a green manure or
incorporating a high C: N ratio organic material (Constantin
et al., 2010; Kang et al., 2022; Xie and Kristensen, 2017).
However, it is likely that mineral N, equivalent to a significant
portion of this, was lost from unmulched leeks through the growing
period. This loss cannot be mitigated without reducing N input with
a probable consequential reduction in yield, and is likely to
contribute to environmental impacts elsewhere, for example,
eutrophication in aquatic environments (Nixon et al., 1996) and
N,O emissions from aquatic systems (Pitsch and Kithn, 2008),
negating the lower on-farm emissions. Thus, the lower on-farm
emissions may not represent the overall environmental impact. It
should be noted that leeks would often be grown later in an organic
horticultural rotation than cabbages when there is less available N in
the soil (Thorup-Kristensen, 1999).
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Other than initially higher soil NH," content with poultry
manure, there was little difference in soil mineral N content
between the two organic amendments despite total N inputs from
the compost being nearly four times as much as that from poultry
manure. Up to 50% of N from poultry manure is estimated to be
available to the crop in the same season, but the N supply from
compost is deemed negligible (A DB, 2021); however, this does not
take into account any possible effect of PEM (Han et al., 2020). The
total amount of mineral N in the top 10 cm of soil and crop was
significantly greater than the total added by either amendment,
suggesting that the contribution of N accumulated from the
previous ley was an important source. The ploughing-in of a two-
year-old grass and red clover ley may have an N fertiliser
replacement value of about 100 kg N ha™ (Eriksen et al., 2006).

4.5 Gaseous emissions

4.5.1 Methane emissions

Net CH, flux did not appear to be affected by the treatments. In
all treatments, there was a small peak in CH, fluxes one week after
the start of the experiment; however, this was balanced by net
consumption at other times. It is likely that our results are due to the
relatively small difference in soil microclimate between the
treatments. Cuello et al. (2015) found that PEM significantly
increased CH, production in maize cultivation, reflecting the
higher soil moisture in their study. Our study found no difference
between different organic amendments, but this may be because
native SOM and inputs from the ley were much larger. Similarly, the
crop grown had no significant effect, which is more unexpected
given the significant differences this caused to soil moisture.

4.5.2 Carbon dioxide emissions

Unfortunately, equipment failure resulted in no CO, emissions
data from the soil. Hence, we can only provide a partial GHG
intensity of production (N,O + CHy, expressed as CO, equivalent).
However, soil emissions would reveal little about the net global
warming contribution because, while they give us useful
information about respiration of soil organisms, they miss the
effects of changes in crop photosynthesis, return of crop residues
and rhizodeposition. Future experiments to calculate Net
Ecosystem Exchange could quantify these (Oertel et al., 2016).

4.5.3 Nitrous oxide emissions

N,O emissions were increased by PEM when the crop was leeks
but decreased when the crop was cabbages. The higher emissions in
mulched leeks are likely partly due to higher soil NH," and NO;
content. Soil microclimate could also have contributed as the
differences between cabbages and leeks were greater than those
between mulched and unmulched treatment, particularly later in
the growing season.

The only research on PFM mulch and N,O emissions in a
related climate examined the establishment of Miscanthus for
biofuel production (Holder et al, 2019). They found that PFM
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caused no significant difference in N,O emissions over two years
compared to the other establishment methods. PFM resulted in
greater soil NO3™ content and drier soil, and these two factors may
have had opposite effects of a similar magnitude, resulting in no
significant overall effect on N,O fluxes. In our study, the differences
in mean soil moisture were minor. Two studies in South Korea
(which has a similar but warmer climate) were conducted using
organic inputs (Cuello et al., 2015; Kim et al., 2017; Lee et al., 2019).
Both found that PFM significantly increased N,O emissions and
emission factors for organic amendments. These studies found a
positive correlation between emissions and soil NO;™ and soil NH,*
content. In their experiments, differences in soil mineral N were
smaller than ours. However, differences in soil microclimate (that
were more significant than in our experiment) and significantly
higher DOC likely played an important role. We did not measure
DOC, although indications of increased SOM breakdown rate from
the TBI assay suggested it might also have been greater.

Our finding that PFM had a positive interaction with soil NH,*
content at WFPS<60% and a negative interaction with soil NO;
content at WFPS > 60% indicates that PEM positively affects the
nitrification rate and the denitrification process when soil moisture
conditions are favourable. It is known that nitrification is the
dominant process where the average WFPS is<60%, and
denitrification is the dominant process where the average WFPS
is > 60-70% (Wang et al., 2023). Nitrification is favoured by higher
temperatures (Sahrawat, 2008). The difference in mean soil
temperature in our study was only 0.6°C, but this may be a
factor. On the other hand, when the % WFPS suggests that
denitrification is dominant, higher emissions from unmulched
soils could be due to higher peaks and increased amplitude of the
fluctuations in soil moisture during heavy rainfall, reducing
saturation and ‘hot moments’ not represented in the averaged
figures (Barrat et al,, 2021, 2022; Dobbie et al., 1999; Song et al.,
2022). Our results tend to confirm the speculation of Berger et al.
(2013) that the rainfall-shedding effect of PFM can reduce N,O
emissions by reducing micro-sites with conditions that favour
denitrification in the covered bed areas. Another study showed that
biodegradable PFM increased the abundance and diversity of genes
associated with ammonia-oxidising bacteria while simultaneously
reducing emissions of N,O (Wang et al., 2021b). As we made no
observations to discriminate between these microbial pathways,
further research would be needed to confirm this effect.

The different organic amendments did not significantly affect
N,O emissions. This is unsurprising as the effects on mineral N
content were small and not significant for NOj;". Other
characteristics of organic fertilisers, such as the C: N ratio, can be
significant in determining the N,O emission factor (Charles et al.,
2017). Soil C content and the probable larger contribution to soil
mineral N from residues from the ley may have obscured
any differences.

4.5.4 Potential ammonia emissions

Although we did measure a reduction in potential NH; emissions
from the PFM treatments, this was not significant, and the reduction
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was smaller than reported in other studies (Chae et al., 2022; Li et al,,
2021). However, the reduction was more significant when expressed
on a yield-scaled basis due to the higher yield. We ascribe the
relatively low rates of NHj loss to the slightly acidic and relatively
moist soil (Whitehead and Raistrick, 1990; Hargrove, 1988).

Poultry manure was expected to have higher potential NH;
emissions than compost because it contains ammoniacal
compounds, uric acid and urea, which are readily hydrolysed
(Sommer and Hutchings, 2001). However, this response was only
observed in the plots with cabbages. The reason for this is not
apparent. Peaks of emissions occurred in the first few days, during a
warm, dry period in mid-July and immediately after harvest in early
September. The potential NH; emission results should be viewed
with some caution. Whilst useful for comparative purposes between
treatments, the emissions measured should not be considered
absolute fluxes for comparison with other studies that have used
flow-through chamber methods, as the lack of air movement would
have limited emissions (Wang et al., 2004). Also, the extra step in
our method for measuring NH; emissions may have introduced
additional uncertainty. Condensation on the walls of the collection
chamber and the crop leaves, caused by high humidity in the closed
chamber, may have absorbed ammonia; higher measurements post-
harvest could be because the crop leaves were no longer present
(Chae et al., 2022).

5 Conclusions

As we hypothesised, PFM increased crop yield and resulted in
higher soil NH," and NO;™ content. However, this did not result in
higher gaseous losses of NHj;. Although N,O losses were higher in
mulched leeks than unmulched, this was not the case in mulched
cabbages despite higher soil NH," and NO;™ content. Our results also
revealed that biodegradable PFM can reduce the yield-scaled
emissions of both N,O and NH; without a negative impact on CH,4
emissions. N,O fluxes were positively related to soil NH," and NO3~
content, but without knowing the relative contributions of
mineralisation and leaching to the differences observed, it is not
possible to fully understand the wider environmental impacts of
PFM use. These results indicate that the use of PEM to moderate
soil moisture fluctuations may be beneficial in reducing GHG
emissions in climates with extreme rainfall events that are predicted
to become more frequent and widespread with climate change.
Developing a static chamber method that allows the chamber to be
removed between sampling occasions and allows PFM to shed rainfall
away from the mulched area could be an important development.
Adopting micrometeorological GHG measurement approaches, e.g.
eddy covariance, would allow fluxes to be measured at a larger scale
without interfering with the integrity of the mulch film, although
measurements from replicated treatments would be limited. However,
these methods would have the additional advantage of taking into
account the effect of PFM not just on the beds but also on the
unmulched areas between beds, where it has very different effects on
soil moisture. also PEM may reduce denitrification associated with
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high rainfall, which is an encouraging observation that deserves
further investigation.
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