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Introduction

B cells are central players in adaptive immunity, orchestrating humoral responses
through antibody production, antigen presentation, and cytokine secretion. During aging,
cumulative immunological changes reshape the B-cell compartment in a process termed
immunosenescence, which has profound consequences for infection control, vaccine
efficacy, and susceptibility to autoimmunity (Frasca and Blomberg, 2011; Cancro, 2020).
Among the most striking features of B-cell remodeling is the expansion of atypical B cell
subsets, such as age-associated B cells (ABCs) and double-negative (DN) B cells. Both
subsets have become focal points of intense research, because of their enrichment in elderly
individuals, their expansion in autoimmune diseases, and their presence in chronic
infections (Riley et al., 2017; Sachinidis et al., 2020; Hao et al., 2011; Sachinidis and
Garyfallos, 2021). Yet, their precise lineage relationships remain controversial. Some
evidence suggests that DN2 cells, which refer to an extrafollicular DN sub-population
(Jenks et al., 2018), may overlap functionally and transcriptionally with ABCs, raising the
central question: are ABCs and DN B cells two sides of the same coin, or distinct entities?
Clarifying their identity is complicated further by nomenclature inconsistencies across
species, tissues, and disease contexts (Jenks et al., 2018; Colonna-Romano et al., 2009; Wang
et al,, 2018). This manuscript synthesizes current knowledge on ABCs and DN subsets,
examining their biology in aging, autoimmunity, and infection, with a focus on their
transcriptomic signatures and therapeutic relevance. Taking into account these data, we
provide an opinion on whether ABCs and DN B cells should be considered identical
populations or two distinct B cell subsets.

Age-associated B cells (ABCs)

ABCs were first identified in aged mice, as CD19"CD21 " CD23" B cells expressing the
transcription factor T-bet and the integrin CD11c (Hao et al., 2011). Their percentages in
young healthy individuals are low but steadily increase with age (Hao et al., 2011). In healthy
aging, a subset of ABCs exhibits reduced BCR-mediated antibody production, consistent
with aspects of immunosenescence, though these cells retain other immune functions
(Cancro, 2020). However, their exact role is not yet completely understood.
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ABC populations were also reported to expand in autoimmune
diseases, as well as in chronic-infections (Wang et al., 2018; Portugal
et al,, 2017). In the context of autoimmunity, T-bet expression in
B cells is elevated, leading to increased antibody production,
enhanced antigen presentation to T cells and also formation of
germinal centers (GCs), all drivers of immunological reaction
(Rubtsov et al., 2017). In the context of infectious diseases, on
the other hand, ABCs’ role is less clear. It seems that these cells
contribute to pathogen clearance, thus display a protective role
(Rubtsova et al., 2015).

Up to this day, the origin of ABCs remains a mystery. It has been
shown, though, that these cells express a diverse Ig repertoire,
portrayed by somatic hypermutations and
2020). these features, a

GC-experienced origin for at least a subset of ABCs has been

antigen-driven
activation  (Cancro, Based on
proposed, although alternative hypotheses cannot be excluded.
For instance, formation through homeostatic proliferation is also
a potential route leading to the generation of ABCs (Cancro, 2020).
Moreover, it’s worth mentioning that B cell activation involves, not
only GC reactions, but also extrafollicular and other GC-
independent pathways (Sachinidis and Garyfallos, 2021).

ABC:s exhibit heightened responsiveness to endosomal Toll-like
receptor (TLR) signals, particularly TLR7 and TLR9, and can be
driven to differentiate by TLR stimulation in combination with IFN-
y and/or IL-21, depending on the experimental context (Cancro,
2020; Wang et al, 2018; Rubtsov et al., 2011; Liu et al, 2024;
2016). IL-21 CDl11c
expression, contributing to the ABC phenotype, whereas IFN-y
T-bet
dependent effects reported in primary studies (Cancro, 2020; Liu
et al, 2024; Naradikian et al, 2016). BCR signaling can also
contribute to ABC activation, in conjunction with TLR, IFN-y,
IL-21, and/or CD40 signals, although it is insufficient to drive
differentiation on its own (Rubtsov et al., 2017; Imabayashi et al.,

Naradikian et al., robustly induces

primarily  promotes expression, reflecting context-

2025). Of note, TLR7 is an X linked transmembrane receptor, closely
related to ABC activation, clarifying the higher rate of autoimmunity
onset in female patients (Sachinidis et al., 2020).

As far as transcriptomic profiling of ABCs is concerned, data
derived from mice has shown that ABCs are a unique sub-
population of B cells, discrete from Bl and FO B cells. In detail,
ABCs highly express CD11c and T-bet, along with transcripts of
immunoglobulin heavy chain and CD138 (Rubtsov et al, 2011).
Intermediate expression of transcription factors involved in plasma
cell differentiation has also been reported, thus indicating that ABCs
are probably plasma cell precursors (Rubtsov et al., 2011). In the
context of autoimmunity, transcriptomic analyses of ABCs have
revealed that IL-21 inducible genes, as well as genes associated with
cell adhesion, are strongly upregulated (Wang et al., 2018).

In systemic autoimmune diseases, such as systemic lupus
(SLE), (RA),
syndrome (SS) and systemic sclerosis (SSc), ABCs expand

erythematosus rheumatoid arthritis Sjogren’s
prematurely and-in some cases - correlate with disease activity,
autoantibody titers, and organ involvement (Sachinidis et al., 2020;
Bagavant et al,, 2024; Kourkouni et al., 2024). More specifically,
T-bet + B cells (which are considered as ABCs) are expanded in SLE
patients and correlate with disease activity index and lupus nephritis,
indicating that these cells can be used as potential biomarkers for the

disease (Sachinidis et al., 2025). In SS¢, ABC-like cells were found to
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be expanded and contribute to vascular complications of the disease
(Kourkouni et al., 2024). In addition, in the case of multiple sclerosis
(MS), ABCs expand and exhibit a significantly upregulated
inflammatory cytokine profile, in terms of mRNA expression
(SoRelle et al., 2025). Beyond autoimmunity, chronic infections
such as HIV, hepatitis C and malaria, induce similar ABC
expansions, linking persistent immune activation to their
emergence (Portugal et al., 2017; Knox et al., 2017).

Regarding ABCs, it is important to mention that specific
targeting of this population of B cells can alleviate symptoms in
various autoimmune diseases, including SLE, RA and MS
(Sachinidis et al, 2024). Currently therapeutic interventions
targeting BAFF (e.g., belimumab) and/or CD20 (e.g., rituximab)
reduce ABC frequencies in the human blood of SLE patients,
indicating their implementation in autoimmunity pathogenesis
(Sachinidis et al, 2020; Ramskold et al., 2019). Additional
important ABC reducing therapies include an extended portfolio
of IRF5 inhibitors (genetic and/or chemical inhibition), JAK
inhibitors (such as baricitinib), triggering of adenosine receptor
2a (A2a) via A2a agonists, TNF inhibitors, administration of
tocilizumab (antagonist of IL-6 receptor) and ROCK-kinase
inhibitors (such as fasudil) (Sachinidis et al., 2025; Sachinidis
et al., 2024).

Double negative B cells (DN)

Double negative (DN) B cells are a heterogeneous population,
defined by the absence of IgD and CD27 markers (Sachinidis and
Garyfallos, 2021). These cells are expanded in the elderly and,
moreover, seem to showcase different immune functions in
different pathological conditions (refers to infectious diseases and
autoimmunity) (Sachinidis and Garyfallos, 2021). For instance, in
case of HIV infection and/or malaria, a proportion of DN B cells
displays an exhausted phenotype, while in SLE cases these cells are
considered as the main source of autoantibody secretion (Sachinidis
and Garyfallos, 2021; Jenks et al., 2018; Beckers et al., 2023).

DN B cells are comprised of at least four subsets and are
categorized based on the
CXCR5 chemokine, CDllc integrin and transcription factor
T-bet: DNI1 (CXCR5"CD11c¢ T-bet),
DN2(CXCR5°CD11c*T-bet"), DN3 (CXCR5 CDI11c T-bet"),
and DN4 (CXCR5'CDI1lc¢ T-bet”) (Sachinidis and Garyfallos,
2021; Somers et al., 2022; Castleman et al., 2022). DNI1 cells are
enriched in healthy elderly individuals and are primarily associated

into subgroups, expression of

with immunosenescence (Colonna-Romano et al., 2009). Of note,
DN1 appear relatively non-pathogenic and lack a strong
T-bet-driven phenotype 2021;
Colonna-Romano et al., 2009; Somers et al., 2022; Castleman

(Sachinidis and Garyfallos,
et al,, 2022). DN2 cells, on the other hand, are highly responsive
to TLR7 and have been strongly associated with extrafollicular
plasmablast differentiation, particularly in inflammatory settings,
and are strongly linked to active SLE, especially in African American
women with lupus nephritis (Jenks et al, 2018). Interestingly,
DN2 is considered to be the only DN subset highly expressing
T-bet (Sachinidis and Garyfallos, 2021; Jenks et al., 2018; Somers
et al., 2022; Castleman et al,, 2022). Initially, it was presumed that
these cells were lupus specific (Jenks et al, 2018). Subsequently,
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however, their presence was also confirmed in other rheumatic
conditions, including rheumatoid arthritis (Wing et al., 2023). As far
as DN3 cells are concerned, this subset constitutes a newly
recognized DN subset that has been linked to extrafollicular
immune activation and has been associated with severe COVID-
19 and hypoxic conditions (Sachinidis and Garyfallos, 2021;
Castleman et al, 2022). In addition, the population has also
recently been implicated in autoimmune fibrosis in the context of
IgG4-related disease, where it infiltrates inflamed tissues (Allard-
Chamard et al,, 2023), as well as in SLE, where it shows a significant
correlation with disease activity (Chizzolini et al., 2024). Lastly,
DN4 cells remain a poorly defined population. According to some
studies, though, the aforementioned DN cells are closely related to
allergic reactions (Sachinidis and Garyfallos, 2021; Somers et al.,
20225 Castleman et al, 2022). Overall, although DN subsets -
particularly DN2 and DN3 - are strongly associated with
extrafollicular immune responses, their developmental trajectories
are likely context-dependent and may vary across disease settings
(Sachinidis and Garyfallos, 2021; Jenks et al., 2018; Somers et al.,
2022; Castleman et al., 2022).

Transcriptomic analyses confirm that DN2 cells share
common features with ABCs, including T-bet and CDllc
expression (Jenks et al., 2018), although these similarities may
vary depending on the inflammatory or pathological context. In
contrast, DN3 cells display a distinctive signature, characterized
by a strong signature of proliferation and unfolded protein
response, along with lowest - among DN subsets - levels of
CD22, CD72, CD69 and BAFFR expressions (Castleman et al.,
2022; Allard-Chamard et al., 2023). DN1 are found in healthy
elderly individuals, while DN4 seem to be strongly associated with
allergies (Colonna-Romano et al,, 2009; Somers et al., 2022;
Castleman et al., 2022). The former have been shown to
transcriptomically resemble memory B cells, while the latter
express genes linked to the Notch signaling pathway and
protein ubiquitination, and thus are distinguished from DN1
(Allard-Chamard et al., 2023). However, both two sub-types
express CXCR5" chemokine, in contrast to DN2 and DN3 cells
(Sachinidis and Garyfallos, 2021). Interestingly, DN2 and
DN3 those
autoimmune diseases (Jenks et al., 2018; Allard-Chamard et al.,
2023; Chizzolini et al., 2024). In total, these differences in function
and transcriptomic characterization suggest that every DN sub-

cells are that are mostly associated with

population is a complete discrete entity (Chung et al., 2023).
Regarding disease involvement, DN B cells, similar to ABCs,
expand in systemic autoimmune diseases and infections (Sachinidis
and Garyfallos, 2021; Jenks et al., 2018; Portugal et al., 2017; SoRelle
etal., 2025; Beckers et al., 2023). For instance, in MS, both ABCs and
DN have been reported to expand and exhibit some pro-
(Claes et al, 2016). In SLE,
furthermore, both populations increase in numbers and seem to

inflammatory characteristics

drive disease pathogenesis via differentiating into plasma cells and
producing autoantibodies (Jenks et al., 2018; Wang et al., 2018). In
infectious diseases, such as COVID-19 and malaria, DN expansion
has also been reported and linked to poor clinical outcomes
(Woodruff et al, 2020; Sutton et al, 2021). Importantly, these
observations suggest that the functional relationship between
ABCs and DN B cells may depend on the specific inflammatory
or pathological context.
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Relationship of ABCs to DN B cells

ABCs and DN B cells share many similarities, and are therefore
often considered related populations (Sachinidis et al., 2020). Both
subsets have been reported to expand in elderly individuals (Hao
et al, 2011; Colonna-Romano et al, 2009), during infections
(Portugal et al., 2017; Beckers et al, 2023), and in autoimmune
diseases (Jenks et al, 2018 Wang et al, 2018). Regarding
immunophenotype, they exhibit overlapping features, including
expression of CDI1lc and/or T-bet (Sachinidis and Garyfallos,
20215 Jenks et al, 2018 Wang et al, 2018). Moreover, both
populations display similar activation requirements, which
involve IFN-y, IL-21, and TLR7 or TLRY signaling (Jenks et al.,
2018; Wang et al., 2018; Rubtsov et al., 2011; Naradikian et al., 2016).
Supporting this parallel, pharmacological agents that reduce ABC
frequencies in human blood also appear to decrease DN B cell
percentages (Sachinidis et al, 2024). Notably, in both healthy
individuals and patients with lupus, ABC frequencies correlate
with DN B cell frequencies (Sachinidis et al.,, 2025; Chizzolini
et al., 2024). Collectively, these findings indicate that ABCs and
DN B cells are highly similar at first glance. However, the extent of
these similarities may vary depending on the inflammatory or
pathological context, highlighting that their functional and
transcriptomic relationship is not absolute.

Beyond antibody secretion, ABCs have been shown to produce
pro-inflammatory cytokines and/or release chemokines, serve as
antigen-presenting cells with strong phagocytic capacity, and also
contribute to T-cell activation (Xie et al., 2025). Similarly, DN
B cells - particularly the DN2 subset - exhibit comparable effector
functions: upon stimulation, they produce pro-inflammatory
cytokines, express antigen-presentation markers such as HLA-
DR and CDS86, and can activate T cells (Li et al, 2021;
Moysidou et al.,, 2023). These findings indicate that both ABCs
and DN B cells are not merely antibody precursors, but can
perform broader immune functions, with their activity often
depending on the inflammatory or pathological context.

Despite their similarities, ABCs differ from DN B cells in several
key aspects. Some ABCs highly express the memory marker CD27
(Rubtsov et al., 2011), which is absent from DN B cells (Jenks et al.,
2018; Colonna-Romano et al., 2009). Although the majority of ABCs
are class-switched B cells, predominantly expressing IgG or IgA,
single-cell RNA-seq analyses reveal that this population also
contains unswitched IgD + cells (Ambegaonkar et al, 2022).
Furthermore, DN1, DN3 and DN4 subsets (which are less well-
characterized than DN2) lack expression of CDllc and T-bet
(Somers et al., 2022; Castleman et al., 2022; Chung et al., 2023),
two defining features of ABCs (Wang et al., 2018). With respect to
autoantibody production, a hallmark of ABC function (Cancro,
2020; Rubtsov et al., 2011), only DN2 cells among DN B cell subsets
efficiently differentiate into plasma cells (Jenks et al, 2018).
Regarding their origins, ABCs are commonly thought to include
GC-experienced cells, although alternative developmental pathways
have been proposed (Cancro, 2020; Hao et al., 2011; Li et al., 2023),
whereas DN B cells have been strongly associated with
extrafollicular differentiation, particularly under inflammatory or
autoimmune settings (Jenks et al., 2018; Chizzolini et al., 2024;
Woodruff et al., 2020), suggesting that their relationship with ABCs
may be context-dependent. Lastly, according to a comparative
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TABLE 1 Phenotypic and functional characteristics of age-associated B cells and double-negative B cells.

Feature

Surface markers

Atypical B cells

Age-associated B cells (ABCs)

CD19", CD11c", T-bet", often CD21~

Double-negative B cells (DN B cells,
CD27-1gD")

CD19", CD27, IgD", sometimes CD11c" and T-bet"
(especially DN2 subset)

10.3389/fragi.2026.1752452

Notes on similarities/
Differences

DN2 subset shares marker profile
with ABCs; other DN subsets do not

Transcription T-bet (key driver of ABC differentiation) DN2 subset expresses T-bet; DN1, DN3 and ABCs defined by T-bet; DN B cells are
factors DN4 subsets do not heterogeneous
Origin/ Arise during aging, chronic viral infections, or Can arise from naive B cells or atypical activation; Both expand with age and chronic
Development autoimmune responses; often derived from naive or expanded in aging, SLE, chronic infections immune stimulation
memory B cells under inflammatory conditions
Functional Strong antigen-presenting capacity, pro-inflammatory DN2 subset: hyper-responsive to TLR7 stimulation, Functional overlap mainly with
properties cytokine production, can differentiate into autoantibody production; DN1: less active, DN3 and DN2 subset; both contribute to
autoantibody-producing plasma cells DN4: less well characterized autoimmunity
Tissue Spleen, peripheral blood, lymph nodes Peripheral blood, sometimes inflamed tissues ABCs more prominent in secondary
distribution lymphoid organs

Role in disease

Autoimmune diseases (SLE, RA, etc.), chronic
infections, aging

Autoimmunity (SLE, RA, etc.), chronic infections, aging

Overlapping pathological roles

Cytokine Responsive to IFN-y, TLR7/9, IL-21 DN2: responsive to TLR7, IFN-y, IL-21; DN1 less DN2 and ABCs share cytokine
responsiveness responsive, DN3 and DN4: less well characterized responsiveness
Proliferation/ Low at baseline, activated under inflammatory signals DN2: hyperactive; DN1: more quiescent DN2 subset functionally closest to

Activation DN3 and DN4: less well characterized ABCs

transcriptomic analysis, ABCs are distinct from other CD11c¢* B cell
populations, such as DN2, as they display an elevated expression in
multiple cytokines and chemokines, which are not detected as
increased in the other CD11c* subsets (Maul et al., 2021).

In recent literature, the term “ABCs” refers to murine B cells,
whereas in humans the “DN B cells” - particularly DN2 cells - are
regarded as their corresponding counterparts (Chung et al., 2023;
Ricker et al., 2021; Satterthwaite, 2021). This scenario is plausible,
although ABC cells (or at least ABC-like cells) have also been
reported in humans (Wang et al, 2018; Portugal et al, 2017
Rubtsov et al.,, 2011; Kourkouni et al., 2024; Sachinidis et al.,
2025; Claes et al., 2016). ABCs represent a heterogeneous B-cell
population (Nickerson et al., 2023), and several related circulating
and/or splenic subsets have been described in both mice and
humans (Phalke and Marrack, 2018). Similarly, DN B cells are
heterogeneous, with four discrete subsets identified to date (Somers
et al,, 2022; Castleman et al., 2022). Considering the resemblances
and differences between ABCs and DN B cells (Table 1), we propose
that one ABC subset - lacking IgD and CD27 expression - closely
corresponds to DN2 cells, though this relationship may be
influenced by the specific inflammatory or pathological
environment. Memory (CD27*) and phenotypically naive-like
(IgD+) ABCs cannot be classified as DN cells (Jenks et al., 2018;
Colonna-Romano et al., 2009; Rubtsov et al., 2011; Ambegaonkar
et al.,, 2022), and conversely, DN B cells lacking CD11c and T-bet
cannot be classified as ABCs (Wang et al., 2018; Somers et al., 2022;
Castleman et al., 2022; Chung et al., 2023). Notably, IgD+ ABCs are
not considered naive cells, as their population carries somatic
hypermutations and is clonally related to IgD-cells, indicating
prior antigen experience (Maul et al., 2021). As consensus has
not yet been reached regarding the optimal immunophenotypic
markers defining ABCs, we suggest that this specific B-cell
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population should be regarded not only as murine, but also as
human, being closely related to DN2 cells (Jenks et al., 2018).

Interestingly, while Knox et al. (2025) represent an important
refinement of murine ABC definitions (Knox et al., 2025), further
observations across studies highlight ongoing heterogeneity of ABCs.
In more detail, Knox et al. report relative resistance of ABCs to anti-
BLyS and anti-CD20 depletion in murine lupus models (Knox et al.,
2025), whereas Ramskold et al. (2018) and Faustini et al. (2022) found
sensitivity of ABCs to these same interventions, in SLE patients
(Ramskold et al, 2019; Faustini et al, 2022). Clearly, such
observations further highlight the continuing need for ABC
characterization in both human and murine systems.

Similar to the case of ABCs, the optimal characterization of DN
B cells is of utmost importance. This need is reflected, for example,
in the observation that a DN B cell population with cytoplasmic
FOXOL1 has been identified in patients with SLE (Hritzo Ahye and
Golding, 2018). However, it is still unknown whether this
population corresponds to any known DN subset observed in
SLE patients - such as DN2 or DN3 - or whether it represents
another distinct population (Sachinidis and Garyfallos, 2021; Jenks
et al,, 2018; Chizzolini et al., 2024; Hritzo Ahye and Golding, 2018).
Of note, FOXOL is a transcription factor that plays a key role in
B cell development (Sander et al., 2015).

Conclusion

ABCs constitute a heterogeneous population of B cells,
comprising CD27* B cells, IgD+ B cells and—predominantly-IgD-
CD27 (DN) B cells (Tangye, 2023). Compelling evidence from
immunophenotypic, functional, and transcriptomic analyses
indicates that ABCs with an IgD"CD27~ phenotype are closely
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related to the DN2 B cell subset, which has been well-characterized
in lupus (Jenks et al., 2018; Sachinidis et al., 2023). Notably, the
extent of this relationship may vary depending on the inflammatory
or pathological context.
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