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As the global population continues to age, there is an increasing demand for ways
to accurately quantify the biological processes underlying aging. Biological age,
unlike chronological age, reflects an individual's physiological state, offering a
more accurate measure of health-span and age-related decline. This review
focuses on four key biochemical markers - C-Reactive Protein (CRP), Insulin like
Growth Factor-1 (IGF-1), Interleukin-6 (IL-6), and Growth Differentiation Factor-
15 (GDF-15) — and explores how Artificial Intelligence (Al) and biosensor
technologies enhance their measurement and interpretation. Al-driven
methods including machine learning, deep learning, and generative models
facilitate the interpretation of high dimensional datasets and support the
development of widely accessible, data-informed tools for health monitoring
and disease risk assessment. This paves the way for a future medical system,
enabling more personalized and accessible care, offering deeper, data-driven
insights into individual health trajectories, risk profiles, and treatment response.
The review additionally highlights the key challenges and future directions for the
implementation of Al-driven methods in precision aging frameworks.

KEYWORDS
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1 Introduction

While average life expectancy has steadily increased over recent decades, average
health-span has remained relatively unchanged, with many individuals experiencing
significant health challenges later in life (Garmany and Terzic, 2024; Orrall, 2025). This
growing disparity has shifted the focus of the biomedical community towards not only
increasing lifespan, but also maximizing the years spent in good health. Biological age,
unlike chronological age, reflects the underlying state of the body’s systems and has shown
greater utility in predicting disease risk, functional ability, and overall health outcomes
(Levine, 2013).

Biological aging is a complex, multi-system process driven by changes at molecular,
cellular, and tissue levels. Twelve major categories have been identified as the “hallmarks of
aging” which include genomic instability, telomere attrition, epigenetic alterations, loss of
proteostasis, disabled macro autophagy, deregulated nutrient sensing, mitochondrial
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dysfunction, stem cell exhaustion, altered intercellular
communication, dysbiosis, and chronic inflammation (Lopez-
Otin et al,, 2023). Even though the hallmarks of aging represent
conceptual frameworks, they reflect underlying disruptions in key
biological pathways. These physiological changes, while complex,
can be quantified through measurable biomarkers that capture the
molecular signatures of age-associated processes.

Aging can be assessed through a wide range of physiological,
cognitive, and composite measures that reflect system-level decline.
Physical markers such as grip strength, speed, gait, and balance
control have been consistently associated with mortality, frailty, and
loss of independence (Cesari et al, 2005). Cognitive functions
including reaction time and executive control have also been
used as a proxy for biological aging, particularly in the context of
age-related neurodegeneration (Harada et al., 2013). Cardiovascular
markers such as pulse wave velocity and heart rate variability
provide insight into vascular aging and cardiovascular disease
(CVD) risk (Sessa et al, 2018). Integrated approaches like
epigenetic clocks, frailty indices, and Al-driven composite scores
combine multiple biological signals into predictive models that
estimate biological age and forecast health trajectories (Horvath,
2013; Cole etal., 2017). Together, these diverse biomarker modalities
offer comprehensive insights for monitoring the aging process
across molecular and functional dimensions.

Among the large range of biomarkers, four have received
particular attention due to their reproducibility, accessibility, and
links to core aging pathways. These include C-reactive protein
(CRP), interleukin 6 (IL-6), insulin like growth factor 1 (IGF-1),
and growth differentiation factor 15 (GDF-15). These markers are
all involved in key biological processes like inflammation, metabolic
regulation, cellular stress, and proliferation; and can be used to
estimate biological age related disease risk
(Sprott, 2010).

Despite their clinical value, the analysis of biomarker data is

and predict

often limited by the volume and complexity of information required
to draw meaningful conclusions. Advances in artificial intelligence
(AI), particularly machine learning (ML) and deep learning (DL),
have enabled the efficient analysis of complex, high-dimensional
biological data (Topol, 2019). These techniques are now widely used
to construct biological age clocks, enhance diagnostic accuracy, and
predict health outcomes and disease risk with greater precision.
Some recent examples include hematology-based bioclocks, and
deep learning algorithms trained on multimodal datasets
(Martinez-Romero et al., 2024).

Beyond A, advances in wearable biosensors now allow for
continuous, non-invasive monitoring of physiological signals,
providing real time data feedback for health assessment. When
integrated with Al this continuous data stream enables consistent
and accurate prediction of disease risk and overall biological age,
offering valuable insights into an individual’s current and future
health trajectory (Tu et al., 2023). This convergence of biomarkers,
biosensors, and AT holds promise for a new era of personalized aging
diagnostics and preventative medicine (Topol, 2019; Zhavoronkov
et al., 2019).

This review provides a timely synthesis of recent developments
linking AI driven analytics and biosensor technology with
biochemical biomarkers of aging. While prior reviews have
examined these domains independently, this work uniquely
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integrates them into a unified framework for biological age
their
personalized longevity medicine.

assessment, highlighting translational  potential for

2 Biomarkers of aging

Biomarkers of aging are measurable indicators that reflect the
biological processes underlying aging, offering critical insights into
molecular, cellular, and physiological mechanisms. They provide a
quantification of age-related decline, offering a measurable
distinction between biological age and chronological age. This
distinction is critical for assessing healthspan, predicting disease
risk, and monitoring the efficacy of therapeutic interventions
(Ferrucci et al., 2018).

Age-related biomarkers fall broadly into two categories:
biochemical which include a person’s metabolites and circulating
proteins; or phenotypical such as one’s gait and grip strength.
Biochemical markers are intrinsic to biological processes and are
tightly linked to pathways in chronic inflammation, cellular
senescence, and metabolic regulation (Franceschi et al, 2018);
(Tanaka et al.,, 2018). Phenotypical biomarkers, in contrast, assess
physical function, and serves as a proxy for musculoskeletal integrity
and neuromuscular function (Studenski et al., 2014).

An ideal biomarker of aging should be biologically relevant,
reproducible, and accessible through non-invasive techniques (Bao
et al., 2023).

2.1 Applications of biomarkers in aging

Biomarkers of aging are increasingly applied in research and
clinical settings to estimate biological age, predict health outcomes,
and evaluate intervention efficacy. Composite biomarker-based
indices, such as the Dynamic Organism State Indicator (DOSI)
and the Physiological Frailty Index, have demonstrated improved
performance over chronological age in forecasting all-cause
mortality, hospitalization, and frailty (Pyrkov et al, 2021;
Blinkouskaya et al, 2021). These models integrate routinely
measured blood and physiological variables, providing scalable
tools for population-level aging surveillance and personalized risk
assessment. In clinical trials, biochemical markers such as GDF-15,
IL-6, IGF-1, and CRP are increasingly adopted as surrogate
endpoints to track biological responses to interventions including
dietary restriction, exercise, and pharmacologic agents (Ridker et al.,
2008; Tanaka et al., 2018; Schafer et al., 2020). Longitudinal changes
in these markers can reflect alterations in inflammatory burden,
metabolic stress, or resilience, offering early signs of intervention
effectiveness. As wearable biosensors and remote sampling
technologies improve, continuous biomarker monitoring may
allow dynamic tracking of individual health, enabling adaptive
and precision-based interventions across the aging spectrum.
Furthermore, the alignment of biomarkers with known aging
pathways, such as inflammation, metabolic regulation, and
cellular stress responses, strengthens their utility in assessing the
complex multifactorial nature of aging.

Each of the twelve hallmarks of aging are driven by different
combinations of biological pathways, each with distinctive
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associated biochemical markers. The four biochemical markers
previously mentioned (GDF-15, IL-6, IGF-1, and CRP) form a
strong base for age related diagnostics due to their direct
involvement in aging mechanisms. Collectively, these biomarkers
provide broad coverage across all twelve hallmarks, with each
hallmark intersecting with at least one of the four as seen in
Figure 1. This comprehensive overlap underscores their value as
an integrated panel for monitoring the complex biology of aging.

2.2 Biomarkers in related pathways

Several major biological pathways are involved in the aging
process, offering insight into potential targets for biomarkers and
therapeutics. The insulin/IGF-1 signaling pathway plays a central
role in lifespan modulation and has been extensively linked to
longevity across species (Kenyon, 2010). The MAPK/ERK
pathway regulates cellular proliferation and responses to
oxidative stress, contributing to age-related cellular damage.
Similarly, the PI3K/Akt/mTOR pathway is a major regulator of
nutrient sensing and growth, and its dysregulation has been
associated with age-related metabolic decline and reduced
autophagy (Jia et al., 2022); (Yang et al., 2023). Chronic low-
grade inflammation, “inflammaging”, is another force of aging,
mediated by pro-inflammatory cytokines such as IL-6 and CRP,
which are involved in immune signaling and systemic inflammatory
responses (Franceschi et al., 2000; Alberro et al, 2021). These
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The intersection of the twelve hallmarks of aging with the four key biochemical biomarkers. The Venn diagram illustrates the intersection between
the established hallmarks of aging and the biological processes influenced by the four well-studied biochemical aging biomarkers: CRP, IL-6, IGF-1, and
GDF-15. Each biomarker contributes to distinct and overlapping hallmarks indicated in yellow (underlined hallmarks signify indirect associations).

inflammatory markers reflect the broader phenomenon of
immunosenescence, contributing to increased vulnerability to
infections, cancer, and autoimmune diseases. Table 1 highlights
the pathways and functions related to each of the four key
biochemical markers along with their respective clinical
associations. Together, these pathways form the molecular
foundation for the understanding of aging and identifying
relevant biomarkers.

2.3 The key biochemical markers of aging

2.3.1 C-reactive protein

CRP is a highly conserved member of the pentraxin family
critically involved in innate immunity. In its native conformation,
CRP has a homopentameric structure composed of five identical
non-glycosylated subunits arranged symmetrically around a central
pore (Marnell et al., 2005). In addition to the pentameric isoform
(pCRP), a monomeric form of CRP (mCRP) is generated through
irreversible dissociation at sites of inflammation (Sproston et al.,
2018). These two conformations play respective roles in the body’s
immune system. pCRP is found primarily circulating in blood
(serum) and functions as a pattern recognition molecule
facilitating opsonization and the activation of the complement
pathway (Thiele et al, 2018). On the other hand, mCRP is
typically tissue bound and exhibits potent pro-inflammatory
properties through leukocyte recruitment and enhanced cytokine
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TABLE 1 Summary of key age-associated biomarkers, their molecular binders, associated pathways, biological functions, and clinical relevance.

Biomarker

Pathways

Primary function

Clinical associations

CRP Classical complement activation, FcyR
signaling

IL-6 JAK-STAT, Ras-MAPK, PI3K-Akt

IGF-1 Insulin/IGF-1 signaling, PI3k/Akt, mTOR

Inflammation marker, acute phase reactant

Pro-inflammatory cytokine

Growth Factor, Regulates Metabolism

CVD, Diabetes, Cancer, Autoimmune
Frailty, Chronic Inflammation,
neurodegeneration

Longevity, Sarcopenia metabolic syndrome,
Cancer

GDEF-15 TGF-B, Mitochondrial stress response

Dysfunction

production (Ruiz-Fernandez et al., 2021). In response to foreign
materials or damaged tissues, circulating CRP (pCRP) can bind
phosphocholine on the cell’s surface via calcium-dependent ligand
binding leading to the initiation of the classical complement
pathway (Williams et al., 2020). The activation of this pathway is
mediated through the recruitment of Clq and the direct binding to
the Fc region on IgG and IgM antibodies (immunoglobulin)
(Marnell et al., 2005). Additionally, CRP can engage with FcY
receptors (notably FCYRI and FcYRII), promoting immune cell
activation and cytokine production (Yang et al., 2007). With the use
of high sensitivity assays, circulating CRP levels can be measured for
insights into disease risk and inflammatory status. Given its dual role
in immune surveillance and inflammation, CRP, particularly high-
sensitivity CRP (hsCRP), serves as a robust biomarker of aging.
Elevated levels of hsCRP have been consistently linked with age-
related diseases such as CVD, frailty and cognitive decline (Ridker et
al.,, 2000).

2.3.2 Insulin-like growth Factor-1

IGE-1 plays a central role in anabolic signaling, cellular growth,
and development, making it a key mediator in the aging process.
IGF-1 is a key regulator of the insulin/IGF-1 signaling pathway (IIS),
binding directly to the IGF-1 receptor (IGF-1R), which modulates
lifespan and cellular growth through downstream cascades like the
PI3K/Akt/mTOR and MAPK/ERK pathways (Vitale et al,, 2019).
While IGF-1 has been proven to play a role in lifespan and longevity,
its exact role in aging is still hard to understand. While low IGF-1
signaling is linked to increased longevity in model organisms, its role
in humans is more complex. Both high and low levels of circulating
IGF-1 are associated with increased risk of morbidity and mortality,
suggesting a U-shaped relationship (Klinc et al., 2025). Elevated
levels have been linked to cancer, while low levels are associated with
frailty and CVD (Rahmani et al, 2022). Given IGF-1’s strong
association with key aging pathways and diseases, highlights its
utility as a biomarker of biological age.

2.3.3 Interleukin-6

IL-6 is a multifunctional pro-inflammatory cytokine that plays a
critical role in the body’s immune response and has been
continuously implicated in the biology of aging. Produced mainly
by immune cells and hepatocytes in the liver, IL-6 initiates the acute-
phase response by stimulating the production of CRP (Tanaka et al.,
2014). IL-6 levels increase with age (Rea et al., 2018; Puzianowska-
Kuznicka et al, 2016), contributing to a persistent low-grade
inflammatory state known as “inflammaging”, which is associated
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Stress-responsive Cytokine, Marker of Mitochondrial

Multimorbidity, Mortality, Cachexia, CVD

with numerous age-related diseases such as CVD, frailty, sarcopenia
and neurodegeneration (Said et al., 2021; Jiménez, 2023). Elevated
IL-6 has been consistently linked to physical decline and increased
mortality risk in older adults (Ferrucci et al., 2005). In particular, IL-
6 impairs muscle regeneration with age by disrupting satellite cell
function and promoting catabolic pathways, thereby contributing to
sarcopenia and reduced mobility (Mufioz-Canoves et al., 2013).
Furthermore, chronic IL-6 elevation exacerbates oxidative stress and
mitochondrial dysfunction, reinforcing the cycle of tissue damage
and systemic inflammation (Dai et al., 2014). Given its central role in
mediating age-related inflammatory responses and predicting
adverse health outcomes, IL-6 is considered a key biomarker of
biological aging.

2.3.4 Growth differentiation factor-15

GDF-15 is a stress-responsive cytokine in the transforming
growth factor-beta (TGF-f) family. It is widely recognized as a
biomarker of mitochondrial dysfunction (Arauna et al, 2020),
cellular stress (Schwarz et al, 2023), and tissue injury (Garcia-
Esquinas et al, 2022), with levels increasing in response to
oxidative metabolic stress. GDF-15 has been strongly associated
with aging and age-related pathologies, including CVD, cancer, and
frailty, showing consistently elevated levels in older adults (Pence,
2022). A 2025 study showed significantly higher GDF-15 levels in
sarcopenic individuals, highlighting its role in muscle loss during
aging (Papa et al, 2025). Furthermore, GDF-15 is increasingly
recognized as a biomarker intricately associated with epigenetic
aging. Epigenome-wide association studies have identified specific
CpG methylation sites that are associated with GDF-15 expression,
suggesting a potential regulatory relationship between GDF-15 and
age-related epigenetic alterations (Moore et al., 2022). Additionally,
Recent studies have shown that circulating GDF-15 correlates
strongly with several DNA methylation-based clocks, such as
GrimAge, PhenoAge, Hannum, and Zhang (Torrens-Mas et al,
2025), thus proving its value as a biomarker of aging. While GDF-15
correlates with multiple epigenetic clocks, its specificity remains
questionable due to its elevation in diverse non-age-related acute
stress states including cancer, CVD, and renal disease (Pence, 2022;
Wan and Fu, 2024).

2.4 Additional key biochemical markers
Biological aging is often marked by the dysregulation of cell cycle

and tissue maintenance pathways, where specific protein biomarkers
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TABLE 2 In-depth summary table of known biomarkers of aging with measurement methods and applications (excluding the four key biomarkers).

Marker Category Domain Measurement method(s) Applications

Heart Rate Variability Phenotypic Vascular ECG, Wearable Heart Rate Sensors Shaffer and Ginsberg (2017)
Hair colour (gray) Phenotypic Integumentary Visual inspection Adav and Ng (2023)

Gait Phenotypic musculoskeletal | Motion capture, Wearable Sensors Khera et al. (2023)

Speed Phenotypic musculoskeletal = Time-Based Tests Grande et al. (2019)

Grip strength Phenotypic musculoskeletal |~ Hand Dynamometer Sayer and Kirkwood (2015)
DNA methylation biochemical Genetic Ilumina Arrays, Bisulfite Sequencing Salameh et al. (2020)
Insulin biochemical Endocrine Blood Assay ELISA Akintola et al. (2015)
Tumor necrosis Factor (TNF-alpha) = biochemical Endocrine ELISA, Multiplexed Cytokine Assays Lindbergh et al. (2020)
LDL (oxLDL) Biochemical Vascular Blood Test, ELISA Gradinaru et al. (2015)
Telomere Length Biochemical Genetic qPCR, Southern blot, Flow-FISH Vaiserma et al. (2021)
Leptin Biochemical Endocrine Blood Test, ELISA Balaskd et al. (2014)
Adiponectin Biochemical Endocrine Blood Test, ELISA Li et al. (2021b)
Myeloperoxidase Biochemical Immune Blood Test, Immunoassays Giovannini et al. (2010)
Chair rise time Phenotypic Musculoskeletal = Timed chair stand test, 5-time chair rise test (5CRT) Meyer et al. (2025)

Balance time Phenotypic Musculoskeletal = Timed balance test Xie et al. (2023)

Reaction time Phenotypic Cognitive Computerized cognitive tests, psychometric tools Haynes et al. (2017)

Sleep fragmentation Phenotypic Cognitive Actigraphy, polysomnography, wearable trackers Kaneshwaran et al. (2019)
Pulse wave velocity Phenotypic Vascular Applanation tonometry, oscillometric devices Marshall et al. (2023)
Frailty index Phenotypic Overall Comprehensive geriatric assessment (CGA), clinical scoring = Blodgett et al. (2024)
6-min walk test Phenotypic Musculoskeletal = Timed distance walk Boxer et al. (2010)

VO2 max Phenotypic Vascular Cardiopulmonary exercise testing (CPET) Strasser and Burtscher (2018)
Bone mineral density Phenotypic Musculoskeletal = Dual-energy X-ray absorptiometry (DEXA), QCT Consortium et al. (2023)
Skin elasticity Phenotypic Integumentary Cutometer”, elastography, indentation-based devices Runel et al. (2020)

P16 Biochemical Cell Cycle qPCR, Western blot, immunohistochemistry Muss et al. (2020)

P21 Biochemical Cell Cycle ‘Western blot, ELISA, immunofluorescence Yan et al. (2024)

Klotho Protein Biochemical Endochrine ELISA, immunoblotting, blood/urine assays Hajare et al. (2025)
HbA1C Biochemical Endochrine HPLC, point-of-care devices, immunoassays Tian et al. (2023)

such as p2l, pl6, and Klotho have demonstrated significant
relevance. The proteins p21 and pl6 are cyclin-dependent kinase
inhibitors upregulated during cellular senescence. The accumulation
of these kinase inhibitors reflects DNA damage responses and
irreversible growth arrest in aging tissues (Sharpless and Sherr,
2015). Notably, pl6 is considered one of the most robust
markers of senescent cell burden in wvivo and increases
predictably with age across multiple tissues (Liu et al, 2009).
Similarly, p21 serves as an early senescence mediator and is
closely associated with stress-induced and telomere-dependent
senescence pathways (Tao et al, 2024). In contrast, the Klotho
protein functions as a longevity hormone, primarily through its role
in suppressing oxidative stress and modulating IGF-1 signaling.
Klotho expression declines with age and its deficiency leads to
accelerated aging phenotypes in mice, whereas its overexpression
extends lifespan (Kuro-o et al., 1997; Kurosu et al., 2005). These
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proteins not only act as mechanistic biomarkers of cellular aging but
also represent therapeutic targets in regenerative medicine and
senescence-modulating interventions.

There are hundreds of biomarkers to choose from when trying
to estimate one’s biological age. For a broader set of aging
biomarkers, including their detection methods and applications,
see Table 2.

3 Bioclocks

Biological clocks are computational models that estimate an
individual’s biological age by analyzing patterns in molecular,
physiological, and functional biomarkers. These clocks integrate
input from multiple data sources, including DNA methylation
profiles, blood-based biomarkers such as CRP, IGF-1, IL-6, and
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TABLE 3 Summary of available biological age estimation tools and platforms.

10.3389/fragi.2025.1703698

Name Type Dataset Description References

DNAmAge Code Base DNA Methylation First generation epigenetic clock Horvath (2013)

TruAge Webtool DNA Methylation Commercial epigenetic age testing webtool TruDiagnostic. (2025)

ClockBase Webtool/ DNA Methylation, blood  Interactive platform for comparing biological clocks across datasets Ying et al. (2023)

Database chemistry

BioAge Code base Clinical Biomarkers Mortality-based biological age estimator using clinical biomarkers Kwon and Belsky (2021)

AltumAge Code base DNA Methylation Deep learning-based pan-tissue epigenetic clock implemented in TensorFlow and | de Lima Camillo et al.
PyTorch (2022)

DeepMAge Code base DNA Methylation Deep neural network model for predicting biological age from DNA methylation | Galkin et al. (2021)
data

MethylNet Code base DNA Methylation Modular deep learning framework for methylation data analysis, including age | Levy et al. (2019)
prediction

DnaMethyAge | Code base DNA Methylation R package supporting multiple DNA methylation clocks for age prediction Wang et al. (2024)

Methylclock Code base DNA Methylation Bioconductor package to estimate DNA methylation age using various Pelegi-Siso et al. (2021)
established clocks

Epigeneticclock | Code base DNA Methylation Calculates DNA methylation age using Horvath’s method GitHub, (2013)

Meffonym Code base DNA Methylation R package for DNA methylation-based indices of exposure and phenotype, GitHub, (2025)
including age estimation

TallyAge Webtool DNA Methylation Commercial service for biological age estimation based on DNA methylation Shokhir et al. (2024)
patterns obtained from cheek swab samples

GDF-15, as well as physical and cognitive performance 4 Wearable biosensors and real-time

measures. The resulting age estimates often outperform
chronological age in predicting morbidity, mortality, and
overall health outcomes (Marioni et al., 2015; Hillary et al,
2020). Epigenetic clocks (e.g., Horvath, GrimAge, PhenoAge)
have pioneered this field, using machine learning models trained
on large datasets of methylation signatures (Horvath, 2013; Lu
et al,, 2019). A selection of currently available biological age
estimation tools, along with their features and data modalities, is
summarized in Table 3. Recent approaches to biological clocks
incorporate multimodal data sources. These include real-time
signals from wearable biosensors such as heart rate variability,
physical activity levels, and sweat-based biomarkers. This
integration improves both the granularity and temporal
resolution of age estimation models.

Al plays a critical role in refining these models, especially
through deep learning and ensemble techniques that can learn
nonlinear relationships between inputs and outcomes. Advanced
models can continuously update biological age estimates as new data
are collected, enabling adaptive biological clocks that reflect acute
changes (e.g., during illness or recovery) and chronic trends (e.g.,
aging
infrastructure for continuous data acquisition, allowing biological
clocks to function in real time and outside of clinical settings. This

long-term rate). Biosensors provide the necessary

convergence enables dynamic health risk stratification, early
warning systems for age-related diseases, and longitudinal
monitoring of therapeutic interventions, all within a personalized
framework (Zhavoronkov et al., 2019; Pierleoni et al., 2021; Wilczok,
2025). Overall, the combination of Al, biosensors, and biomarker
data has the

longevity research.

potential to revolutionize healthcare and
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monitoring

Recent advances in biosensing technologies have enabled
continuous, real-time monitoring of age-related biomarkers,
marking a significant shift from static measurements to dynamic
health tracking. This shift paves the way for personalized healthcare,
providing real-time feedback for disease progression and overall
health trajectory. Wearable biosensors, especially those capable of
non-invasive data collection, are now a critical tool in aging research
and personalized health management. Traditional biosensors rely on
biochemical detection methods such as electrochemical, optical, or
piezoelectric sensing to quantify circulating analytes. These analytes
can include a large range of biomarkers; however, this review is
focused solely on age-related biomarkers.

Developments in biosensing have expanded the capabilities,
allowing for the detection of biomarkers in a wide range of
biological mediums such as sweat, saliva, and interstitial fluid. An
innovation in biosensing is now able to monitor hsCRP levels in
sweat via a wearable wireless patch, therefore bypassing the blood-
based assays typically used for inflammatory markers (Tu et al,
2023). Additionally, wearable microneedle patches hold significant
promise for the real-time monitoring of biomarkers related to
chronic disease and aging by enabling the non-invasive sampling
of interstitial fluid (Bao et al., 2024). These patches utilize
microneedle arrays that penetrate the stratum corneum without
reaching nerve-rich regions, minimizing pain while allowing for
sustained sampling (Wang et al., 2021). Other studies have validated
the feasibility of using wearable patches to monitor cytokines and
protein biomarkers in interstitial fluid or sweat, supporting their
application in aging research and chronic disease surveillance (Cha
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etal, 2025; Wu et al., 2024; Kim et al., 2024). The potential clinical
utility of such patches is significant, particularly in early disease
detection and management of chronic disease, inflammation,
and aging.

5 Modeling biological aging with
machine learning

ML methods especially with the recent advancements in

generative modeling have opened new directions for
understanding and forecasting biological aging. Generative
models simulate future physiological states, capture latent
biological signatures, and enable hypothetical counterfactual
analysis. In parallel, predictive ML methods have made
significant advances in developing accessible, interpretable, and
often clinically actionable biomarkers of aging. Grouping these
advances by their application domains provides a clearer picture

of how diverse modeling approaches are reshaping aging research.

5.1 Brain aging and neurodegeneration

One key frontier is modeling brain aging, particularly using
neuroimaging. Conditional generative models trained on cross-
sectional 18F-FDG PET scans have been shown to simulate
future metabolic topographies in cognitively normal individuals
(Choi et al, 2018). These models reveal genotype-specific
trajectories; for example, APOE4 carriers show early decline in
regions implicated in Alzheimer’s pathology.

Building on this, the SynthBrainGrow model (Zapaishchykova
et al.,, 2025) uses diffusion-based methods to generate realistic MRI
scans showing progressive structural changes like cortical thinning
and ventricular enlargement. These simulations have been validated
against actual follow-up scans, demonstrating their utility in
augmenting datasets for neurodegeneration studies.
approaches
bidirectional mappings between morphology and chronological
age (Wilms et al.,, 2020) through MR images, enabling both brain
age predictions and age-conditioned reconstructions of brain

Conditional normalizing flow-based learn

anatomy to represent aging trends.

5.2 Epigenetic and molecular aging clocks

A second major application is predicting biological age from
high-dimensional omics data. Variational autoencoders trained on
genome-wide DNA methylation (DNAm) profiles can reconstruct
age while discovering biologically interpretable latent features linked
to aging (Steyaert et al, 2023). Chromosome-wise autoencoders
(Katz et al.,, 2023) further enhance compression while identifying
regulatory CpG sites associated with age acceleration. Cytosine-
phosphate-guanine (CpG) sites are regions of DNA where a cytosine
nucleotide is bonded to a guanine through a phosphate bond and
serves as hotspots for DNA methylation.

Similarly, DL methods have outperformed traditional linear
models in age prediction by capturing nonlinear interactions
among CpG sites (de Lima Camillo et al., 2022). Due to the non-
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linear modeling capacity of the neural networks, they offer higher
generalizability across tissues and show heightened sensitivity to
aging-related diseases, including multiple sclerosis and diabetes.

In male-specific epigenetic clock, a support vector machine
trained on Y-chromosome CpG sites created the first sex-specific
methylation clock, achieving strong age correlation (Vidaki et al.,
2021). Similarly, a cardiovascular health study (CHS)-specific
epigenetic clock based on five age-related genes was trained on
targeted CpG data, with random forest regression outperforming
other models (Fan et al., 2022).

A recent study (Asghari et al., 2025) has further shown that even
biomechanical data like upper-extremity function can be used to
classify frailty status. By combining movement velocity and muscle
co-contraction metrics with LSTM networks, the model effectively
distinguished between frail and non-frail older adults.

5.3 Simulating aging trajectories and
forecasting longevity

Simulating the future course of aging is essential for both basic
research and intervention studies. In mice, frailty indices (FIs) have
been used to train two random forest models: one predicts
chronological age (FRIGHT), while the other (AFFRAID)
estimates life expectancy (Schultz et al., 2020). These models
have also proven effective in detecting the benefits of longevity
interventions, such as drugs or gene modifications, well in advance.

On the human side, the DJIN model (Farrell et al., 2022)
represents a stochastic dynamical system that maps how health
variables interact over time. Trained on the English Longitudinal
Study of Aging, DJIN predicts health trajectories and survival

outcomes while uncovering directed relationships among
physiological and functional indicators. Unlike traditional
survival models, it emphasizes interpretability = and

interaction structure.

Meanwhile, Sundial (Wu et al, 2025) offers a generative
diffusion-based framework that models the molecular aging
dynamics (e.g., from transcriptomic, methylation, or other omics
data) using a diffusion field without relying on chronological age. It
reconstructs personal “aging roadmaps” from cross-sectional omics,
enabling the identification of individuals aging faster than average
which is a valuable trait for early intervention trials.

5.4 Aging biomarkers from lifestyle,
microbiome, and Biochemistry

Beyond molecular data, several models have exploited accessible
lifestyle, microbial, and biochemical information to predict aging.

A recent study in cerebrovascular disease patients (Ferndndez-
Pérez et al., 2023) used vascular risk factors, organ damage scores,
and habits to predict age acceleration. Multilayer perceptrons and
elastic net models yielded the best results, showing that such non-
invasive data moderately capture epigenetic aging. The integration
of microbiome and metabolome data offers another promising
avenue. A study on 568 healthy individuals (Seo et al, 2023)
trained XGBoost models using 16S rRNA gene sequencing of
fecal samples and urine metabolite profiles. Richer microbiome
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diversity and specific bacterial genera were associated with age, and
combining omics improved prediction accuracy, highlighting the
utility of non-invasive biomarker fusion.

Another effort built a physiological age model that is
independent of chronological age, with biochemical and
physiological features such as high-density lipoprotein, pulse
wave velocity, and psychological traits (Sun et al, 2021) using
statistical ML algorithms. The resulting physiological aging rate
correlated strongly with real age and mortality risk and showed
~30% heritability, suggesting potential for future genetic studies.

Finally, predictive frameworks that integrate gene expression
and protein-protein interaction networks have shown that
lead to better
identification of aging-associated genes (Li et al., 2021a). These

models outperform static subnetworks and may guide new longevity

modeling dynamic, weighted interactions

drug targets.

5.5 Identity-preserving face aging and
biometric analysis

Generative models also contribute to non-invasive aging
tracking using facial features. One approach uses diffusion
autoencoders with text-guided embeddings to simulate diverse
aging trajectories from a single face image and textual prompts
(e.g., “old scientist”, “90s fashion”) (Li et al., 2023). These can be
used for health assessments, biometric verification, and age
estimation under various lifestyle scenarios. Other methods
leverage invertible neural networks to disentangle age from
identity, preserving demographic features while generating
forward or reverse aged faces (Huang et al,, 2021). These models
offer robustness and realism often missing in GAN-based face
aging methods.

5.6 Al-integrated biosensors

The integration of Al into biosensor platforms allows for high-
throughput data analysis, enabling the identification of health
patterns for biological age estimation. DL models trained on step
count and wearable data have already been able to predict morbidity
risk with accuracy (Pyrkov et al, 2021), demonstrating the
implementation of Al-integrated biosensors. Similarly, Al-
enhanced biosensing platforms are increasingly used at point of
care to process complex bio-signal data quickly and accurately,
enabling personalized interventions (Flynn and Chang, 2024).

Beyond data analysis, AI is now being applied upstream in the
design of the biosensors themselves, particularly in the development
of molecular binders. AI models, including deep generative
architectures and reinforcement learning algorithms, can be used
to design high-affinity protein binders for specific analytes such as
cytokines, metabolites, or other age-related biomarkers. In the case
of CRP, IL-6, GDF-15, and IGF-1, a comprehensive set of validated
and computationally predicted binders, along with their sequences
and structural representations is detailed in Table 4. These
computational approaches enable the de novo design of synthetic
receptors with tailored binding kinetics, selectivity, and stability,
which are critical for the manufacturing of accurate, high precision
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biosensors. Recent studies have demonstrated that deep learning
guided diffusion models and protein design frameworks like
RFdiffusion can successfully generate binders for challenging
targets (Watson et al, 2023). This reduces the dependence on
wet-lab experimental screening and accelerates the creation of
custom binders for biosensor manufacturing.

6 Challenges

Despite the promise of integrating Al, biosensors, and

biomarkers in biological age estimation, several critical
challenges must be addressed to ensure accuracy, equity, and
real-world applicability. One major concern is algorithmic bias,
which arises when training datasets do not represent the diversity
of global populations. AI models built on narrow demographic or
clinical data can produce skewed or inaccurate results,
particularly for underrepresented groups (Char et al.,, 2018).
Developing models that generalize well requires large, diverse
datasets that capture a wide range of physiological, genetic, and
environmental variability.

Privacy and security are central to the ethical implementation of
large-scale data sets containing confidential health information. This
requires robust data protection measures and compliance with
privacy regulations such as HIPAA and GDPR. Without secure
data infrastructures and transparent consent mechanisms, public
trust and clinical adaptation may be compromised (Price and
Cohen, 2019).

The cost of wearable biosensors along with the computational
requirements to run complex Al-based platforms is a potential
limiting factor for widespread adoption. Ensuring that the
technology is user friendly, accessible, and non-invasive is

essential for its utilization in both clinical and everyday settings.

7 Future directions

Emerging developments in AI and biosensor integration are
poised to further advance the field of aging research. First, the
implementation of multimodal aging clocks that synthesize data
from molecular, physiological, and behavioral domains is expected
to improve the accuracy of biological age estimates. These models
such as

could incorporate additional data streams, sleep

architecture, microbiome composition, or metabolomics,
increasing their diagnostic utility.

Integrated AI biosensor frameworks can support real-time
monitoring of aging interventions. Lifestyle factors such as
exercise, diet, and sleep, along with pharmacological approaches
including metformin, rapamycin analogs, or NAD + boosters, can be
tracked through changes in the four key biochemical markers.
Furthermore, this framework can be implemented directly into
healthcare systems allowing physicians to monitor and analyze
their patients diagnostics without requiring an in-person
appointment.

Biosensors must account for individual variability, including
differences in skin pigmentation, hydration levels, and other
conditions. consistent

physiological
performance requires multi-layer calibration. At the device

Achieving analytical
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TABLE 4 Catalogue of experimental and in silico binders for the detection and targeting of key aging biomarkers: CRP, IL-6, IGF-1, GDF-15.

Binder

Type

Structure

Affinity

Pros & Cons

C-Rective Protein

Phosphocholine | Small molecule

CRP DNA
Aptamer

DNA Aptamer

4-C25122-DQ Peptide -small

molecule

PubChem CID: 1014
PDB: 1B09 (Complex)

5"-CtAGTTCtGCCtTAATATGGtCGGtTAAGC
... (48 nt; t = 5-(guanidino)-dU modification)

4-C25L22-2-0x0-1,2-dihydroquinoline-8-
carboxylic acid (DQ)

Kd ~ 4.8 uM

Kd = 6.2pM

Kd = 760 nM

Christopeit et al.
(2009)

Minagawa et al.
(2020)

Yang et al. (2017)

High specificity for CRP, small size;
not ideal for high-throughput
sensing due to low signal
generation alone

Pros: Ultra-high affinity
(picomolar) CRP binder, even
higher than original aptamer

(53 pM); useful for ultrasensitive
CRP detection

Cons: Requires modified bases for
affinity; potential structural
complexity and stability issues in
vivo; selected in vitro, not yet
clinically tested

Pros: High affinity, calcium-
independent, serum-selective,
tunable scaffold, noncanonical
CRP site

Cons: Undisclosed sequence,
complex synthesis, untested in vivo,
unknown stability

P3 Peptide

4-C10L17PCé6 Peptide-small

molecule

VHWDFRQWWQPS

4-C10L17-PChé

Kd =35+12nM

Kd<10 nM

Szot-Karpinska
et al. (2023)

Tegler etal. (2011)

Pros: Strong docking, easy to
synthesize

Cons: No SPR binding, lacks
calcium site, unproven in serum

Pros: Strong affinity, irreversible
binding, highly specific, tunable
synthetic design

Cons: calcium-dependent, complex
synthesis, no in vivo or structural
data

3-D10L17-PC6 Peptide-small

molecule

Insulin-like Growth Factor-1

3- D10L17 (sequence Ac-
NAADJEARIKHLAERJKARGPVD
CAQJAEQLARAFEAFARAG-CONH2)

Low nanomolar

dissociation constant

Fromell et al.
(2012)

Pros: Strong ELISA binding,
selective for CRP, multivalent, fully
synthetic

Cons: No KD reported, calcium-
dependent, no structural/in vivo
data

IGF-1R Glycoprotein PDB 7YRR Kd = 0.16 nM Zhang et al. Pros: Natural receptor, very high
(2020) specificity, can be used in
competitive assays
Cons: Large size makes it difficult
to immobilize on sensors,
Expensive to produce
IGFBP-1 Protein UniProt ID: P08833 K(a) range Wongetal. (1999) = Pros: High affinity, smaller size
1x10" - 9x10° M s enables immobilization, extends
K(d) range IGF-1 half-life
1.5x10° - 2x10™* s Cons: Requires reducing agents to
avoid disulfide aggregation, Binds
IGF-2 with similar affinity
IGFBP-2 Protein UniProt ID: P18065 K(a) range Wongetal. (1999) = Pros: High affinity, smaller size
1x10* = 9x10° M s7! enables immobilization, extends
K(d) range IGF-1 half-life
1.5x10° - 2x10™* s Cons: Requires reducing agents to
avoid disulfide aggregation, Binds
IGF-2 with similar affinity
IGFBP-3 Protein UniProt ID: P17936 K(a) range Wongetal. (1999) = Pros: Most abundant IGF binder in

1x10* - 9x10° M s!

serum, high affinity
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TABLE 4 (Continued) Catalogue of experimental and in silico binders for the detection and targeting of key aging biomarkers: CRP, IL-6, IGF-1, GDF-15.

Binder Type

Structure

Affinity

K(d) range
1.5x10° - 2x10* s

Source

Pros & Cons

Cons: Large size, heavily
glycosylated, equal affinity to IGF-2

IGFBP-4 Protein

UniProt ID: P22692

K(a) range

1x10* - 9x10° M s!
K(d) range

1.5x107 - 2x10™* s™

Wong et al. (1999)

Pros: high affinity, smaller
functional fragments exist, blocks
IGF-1R binding site

Cons: low serum abundance, binds
to IGF-2 with similar affinity

IGFBP-5 Protein

PDB 1H59 (Complex)
PDB 1BOE (Domain)

K(a) range

1x10* - 9x10° M*' 5!
K(d) range

1.5x107 - 2x10™* s™

Wong et al. (1999)

Pros: high affinity, mini-IGFBP-
5 domain retains full binding site
Resistant to proteolysis in serum
Cons: moderately binds to IGF-2,
multiple disulfides

IGF1-25R DNA Aptamer

ATCCGTCACACCTGCTCTGCAAGCATTCAT
ATTGGTTGGTGGAAGTGGGGGGGGTGGT
GTTGGCTCCCGTAT

High affinity; low nM
range

Assay LOD:

~16 ng/mL

Bruno et al. (2016)

Pros: high specificity, small size,
rapid binding, reversible
denaturation

Cons: Kd not explicitly measured,
sensitive to nuclease degredation

IGF-1-F1-1 Peptide

PDB 1LB7

IC50 = 7.2 + 3.4 uM

Desha et al. (2002)

Pros: small size suitable for
biosensor, competitively inhibits
IGF-1’s interactions, easy to
synthesize

Cons: potential cross-reactivity
with IGF-2, moderate affinity may
require high concentrations for
detection

Interleukin-6

Siltuxi-mab Antibody

Siruku-mab Antibody

Olokizu-mab Antibody

SOMA -mer-
SL1025

DNA Aptamer

DrugBank ID: DB09036

KEGG Entry: D10080

KEGG Entry: D12487

PDB 4N19

high-affinity ~
nM-pM

Kd =~ 0.175 pM

Kd = 10 pM

Kd = 0.20

Marech et al.
(2016)

Masjedi et al.
(2018)

Shaw et al. (2014)

Gelinas et al.
(2014)

Pros: FDA-approved for
Castleman’s disease; neutralizes IL-
6 potently

Cons: Large biologic (IV infusion);
risk of immunogenicity and
infections due to immune
suppression

Pros: High specificity IL-6
neutralization; showed efficacy in
rheumatoid arthritis trials

Cons: Not approved (development
halted); potential safety concerns
(infections, neutropenia)

Pros: high affinity, blocks IL-6 at
site 3 preventing receptor complex
formation

Cons: Not yet approved, high cost

Pros: high affinity, stable
chemically modified DNA with
slow off-rate

Cons: Requires chemical synthesis
with modified nucleotides,
susceptible to nuclease
degradation, not yet used clinically

Clazaki-zumab Antibody

ZINC2997430 Small molecule

KEGG Entry: D10312

ZINC ID
ZINC2997430

Kd ~ 4 pM

Binding energy:
-19.15 £
4.04 kecal/mol

Nickerson et al.
(2022)

Tran et al. (2022)

Pros: High affinity, showed efficacy
in clinical trials

Cons: Development ongoing, safety
concerns (as therapeutic)

Pros: Small molecule, stable in
100 ns MD

Cons: No experimental Kd, only in
silico evidence, off-target specificity
untested, not commercially
available
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TABLE 4 (Continued) Catalogue of experimental and in silico binders for the detection and targeting of key aging biomarkers: CRP, IL-6, IGF-1, GDF-15.
Binder Type Structure Affinity Source Pros & Cons

Growth Differentiation Factor-15

GFRAL Protein PDB 6WMW (GFRAL receptor w/antibodies) Kd = 8 nM Hsu et al. (2017) Pros: natural high specificity, low
PDB 6Q2J (Complex w/RET) immunogenicity
Cons: larger size, complex folding,
not ideal for biosensors

APT2 Aptamer 5'-AGCAGCACAGAGGTCAGATG-N40- KD = 1.12 nM Gao et al. (2023)  Pros: Small DNA aptamer, high
CCTATGCGTGCTACCGTGAA-3', wherein N is affinity, chemically stable,
any A, T, Gor C modifiable, G-quadruplex fold

supports specificity
Cons: no peer-reviewed validation,
3D structure unknown

level, calibration can be done using internal reference signals  steadily toward personalized, data-driven health management,
(such as water and pH) and baseline normalization; at the model-  supporting longer and healthier lives through precision aging
level, calibration is done through algorithms and data selection.  diagnostics and targeted interventions.
Algorithmic bias can be addressed by incorporating diverse
cohorts and explicitly reporting subgroup performance metrics.

Al-guided biosensor design is expected to become more Author contributions
sophisticated,  incorporating  reinforcement learning and
structure-aware generative models to design highly specific JK: Writing - original draft, Writing - review and editing. MP:
protein binders for age-related targets. Recent work has already =~ Writing - original draft, Writing - review and editing. SK:
demonstrated the feasibility of using language-based generative  Writing — original draft, Writing — review and editing.
models to design protein structures that bind previously
undruggable targets (Madani et al, 2023). Additionally, the )
adoption of federated learning could facilitate model training Fu ndlng
across decentralized datasets, enabling robust and generalizable
predictions while preserving user privacy (Teo et al, 2024). In The author(s) declare that no financial support was received for
the commercial sphere, integration into existing consumer health  the research and/or publication of this article.
devices could democratize access, providing individuals with
feedback on aging trajectories and enabling personalized, non-
invasive health interventions. Conflict of interest

As these systems mature, interdisciplinary collaborations across
geroscience, biomedical engineering, and clinical practice will be JK and MP are employed by Diagen, while SK holds an advisory
critical to validating models, improving interpretability, and  position and is on the board of Diagen.
ensuring regulatory compliance. These efforts will ultimately
shape the development of scalable, ethical, and clinically relevant

tools for biological aging assessment. Generative Al statement

The author(s) declare that no Generative AI was used in the
8 Conclusion creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

Biomarkers such as CRP, IL-6, IGF-1, and GDF-15 provide article has been generated by Frontiers with the support of artificial

critical insight into the physiological underpinnings of aging, intelligence and reasonable efforts have been made to ensure
especially when measured dynamically with modern biosensors  accuracy, including review by the authors wherever possible. If
and interpreted through AI models. When used in combination,  you identify any issues, please contact us.
these technologies enable a more refined understanding of health
trajectories, allowing researchers and clinicians to track aging in real
time and adapt interventions accordingly. However, meaningful Publisher’s note
application of these tools must address persistent limitations.
These include algorithmic bias, limited data diversity, high All claims expressed in this article are solely those of the authors
development costs, and accessibility ~barriers. Moreover, and do not necessarily represent those of their affiliated
standardization of methods, cross-disciplinary validation, and  organizations, or those of the publisher, the editors and the
patient compliance remain key obstacles to clinical integration.  reviewers. Any product that may be evaluated in this article, or
Despite these hurdles, the convergence of biomarkers, biosensors,  claim that may be made by its manufacturer, is not guaranteed or
and AI continues to hold substantial promise. The field is moving  endorsed by the publisher.
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