:' frontiers ‘ Frontiers in Aging

’ @ Check for updates

OPEN ACCESS

Calogero Caruso,
University of Palermo, Italy

Luca Pangrazzi,

University of Innsbruck, Austria
Anna Calabro,

University of Palermo, Italy

Aarav M. Bhasin,
aarav.bhasin08@gmail.com

Ishaan K. Marwaha,
ishaanmarwahaOl@gmail.com

Lahiri S. Nooka,
lahirinooka@gmail.com

These authors share first authorship

12 August 2025
05 October 2025
13 October 2025
20 November 2025

Bhasin AM, Marwaha IK and Nooka LS (2025)
Estimation of biological aging based on T-cell
differentiation trajectories: emerging and
future avenues.

Front. Aging 6:1684051.

doi: 10.3389/fragi.2025.1684051

© 2025 Bhasin, Marwaha and Nooka. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Aging

Hypothesis and Theory
20 November 2025
10.3389/fragi.2025.1684051

Estimation of biological aging
based on T-cell differentiation
trajectories: emerging and future
avenues

Aarav M. Bhasin'*', Ishaan K. Marwaha?*' and Lahiri S. Nooka3*!

*Johns Creek High School, Johns Creek, GA, United States, 2Pope High School, Marietta, GA,
United States, *The Westminster Schools, Buckhead, GA, United States

The relationship between disease onset and chronological age varies between
individuals, driving the need for a more accurate, universal biomarker of biological
aging. Among the emerging alternatives, the immune system represents a
universally shared, complex system that consistently shows aging-related
decline across diverse individuals. Specifically, T-cell dynamics, capturing both
thymic involution and lifelong antigenic exposure, provide insights into immune
system aging. Although existing aging clocks, such as those based on DNA
methylation (i.e., Horvath’'s and GrimAge), offer valuable predictions of
biological age and disease risk, these methods are often limited in ability and
cost to reflect real-time immune function. We also explore cutting-edge
techniques to measure T-cell states, such as flow cytometry, single-cell
omics, cytometry by time-of-flight (CyTOF), and the potential of non-invasive
retinal imaging, but these techniques also face these limitations. To account for
the challenges with the above-mentioned methods, we propose the naive-to-
exhausted T-cell ratio as a promising, quantifiable metric of immune aging. The
conceptual framework benchmarks the naive-to-exhausted T-cell ratio against
established epigenetic clocks, generating an “immune age curve” that offers
clinicians and researchers a practical approach to integrate immune aging
assessments into clinical and preventative care. To test our hypothesis, we
conducted survival association analysis based on naive-to-exhausted T-cell
levels across all major cancers (including adrenal carcinoma (HR = 0.19 (Cl
[0.082, 0.44]), p = 1.92e-5), low-grade glioma (HR = 0.47 (CI [0.33, 0.67]), p =
2.4e-5), and sarcoma (HR = 0.52 (CI [0.35, 0.77], p = 0.000984)). The survival
analysis shows that a higher ratio of naive to exhausted T cells is associated with
significantly better overall survival rates, with hazard ratios (HRs) ranging from
2.7e-9 to 0.7. These preliminary results support the predictive value of naive-to-
exhausted T-cell levels for biological aging and disease progression prediction
across multiple organ systems.

T-cell aging, immunosenescence, aging clock, T-cell dynamics, immune aging, aging
biomarker, biological aging, aging and cancer
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1 Introduction

The global demographic pyramid is inverting, with a growing
proportion of older individuals compared to younger populations.
In the United States, for example, the number of adults aged >
65 years is expected to increase from 58 million to 82 million
between 2022 and 2050—a 47% increase (Mather and Paola, 2024).
Globally, during the same period, this specific population is expected
to grow from 17% to 23% (Mather and Paola, 2024). This rise in the
aging population is accompanied by physiological changes,
including a decline in muscle mass, loss of strength, and a
reduction in physical activity, increasing the risk of chronic
diseases such as diabetes, cardio- and cerebrovascular disease,
2020). Neurological and
Alzheimer’s, Parkinson’s,

and cancer
psychological
depression, and other psychiatric disorders also show an

(Suryadinata et al,

diseases such as
increased incidence in the aging population (Steverson, 2024).
These trends impose a substantial burden on healthcare systems
and national economies, necessitating immediate solutions to
accurately forecast individuals’ risk for various aging-
related diseases.

Over the past 2 decades, biological age estimation has emerged
as a promising surrogate biomarker to assess biological aging and
disease risk. Among the various biological systems, the immune
system, particularly T-cell dynamics, has gained traction for its
potential to measure immunological aging. While chronological
aging is easily quantified based on numerical age, biological age
reflects the physiological state, including immune system decline.
However, quantifying immunosenescence and immune exhaustion
remains a major gap in aging research, and more accurate measures
of quantified biological age could enable earlier, targeted
interventions to decelerate or reverse immune aging.

To address this, researchers have developed quantitative
biomarkers based on physical, molecular, and cellular
characteristics, commonly referred to as “aging clocks.” These
clocks integrate clinical, genetic, and molecular data, such as
telomere length, DNA methylation patterns, and transcriptomic,
proteomic, and metabolite profiles (Hillary et al., 2020). These clocks
can predict biological age with an error ranging from 3 (Lu et al,
2019) to 23 years (Karlsson et al.,, 2008), and can assess chronic
disease risk. First-generation aging clocks primarily estimate the
biological age, while subsequent generations, such as GrimAge, also
predict disease onset and mortality risk by incorporating CpG
methylation, smoking history, and circulating protein levels.
GrimAge has demonstrated predictive value for chronic
obstructive pulmonary disease, type 2 diabetes, and ischemic
heart disease (Hillary et al., 2020).

The capacity of aging clocks to move beyond simple biological
age estimation toward forecasting disease onset represents a major
advance, offering new opportunities for preventative healthcare
strategies. However, it is important to recognize their limitations.
Issues such as variability across populations, reduced predictive
accuracy in old age, challenges in clinical applicability, and the
high cost or complexity of molecular profiling remain barriers to
widespread adoption (Bell et al., 2019). Moreover, the biological
mechanisms linking these biomarkers to aging processes are not yet
fully understood, raising concerns about interpretability and long-

term clinical implementation (Moqri et al., 2023).
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Beyond these molecular approaches, the immune system itself
offers a dynamic readout of biological age as immune cells
constantly interact with both internal and external stressors and
serve as a living record of cumulative wear and tear (Goronzy and
Weyand, 2019). Specifically, T-cell subset distributions, proliferative
capacity, and exhaustion markers mirror the balance between
immune resilience and decline (Akbar and Henson, 2011).
Immune profiling differs from organ-specific biomarkers related
to aging in that it reflects systemic aging processes, thereby offering
insights into the body’s ability to mount protective responses against
diseases. The state of the immune system links cellular-level changes
to aging processes, providing new facets to the existing aging clocks.

Recent research has focused on immune cell dynamics for more
precise estimations of biological age and disease risk compared to
the initial analysis of organ-based disease/aging marker

identification.  Circulating  immune  cells—including T

of all
cumulative exposure to stress, inflammation, and cellular damage

lymphocytes—represent the state organs, reflecting
(Dhodapkar, 2024). The concept of immunosenescence links age-
related immune decline to increased disease susceptibility, including
higher cancer risk in biologically older individuals (Berben et al,
2021). Oxidative stress and cellular damage due to environmental
and lifestyle factors further accelerate immune aging, creating a
permissive environment for oncogenesis.

Within the adaptive immune system, T lymphocytes play a
pivotal role in defense against infection and chronic diseases. With
age, the thymus—the site of T-cell production—involutes, reducing
the output of new T cells (i.e., naive T cells). Meanwhile, the
population of antigen-experienced and differentiated T cells
expands, exhibiting signs of exhaustion and progressive
functional decline (Salam et al., 2013). This shift in T-cell
composition contributes to reduced immune responsiveness,
frailty, and impaired vaccine responsiveness in older adults.

On the intervention or treatment side, growing evidence
suggests that biological age is modifiable, leading to the
development of interventional studies directed toward slowing or
reversing the aging process. Trials on caloric restriction, plant-based
diets, regular exercise, metformin, and vitamin D3 supplementation
have shown the potential to slow or reverse biological aging
2022). CALERIE trial
demonstrated deceleration of biological aging through caloric

(Johnson et al, For example, the
restriction, while the ongoing TAME trial is evaluating the
impact of metformin on aging markers using methylation and
2022). While the data
demonstrate that biological age can be influenced by lifestyle and

proteomic clocks (Johnson et al,
therapeutic interventions, further research is needed to confirm the
long-term clinical efficacy of these approaches (Johnson et al., 2022).

To optimize the translational potential of these interventions, we
delve into a comprehensive understanding of the cellular and
molecular hallmarks of biological aging. This article discusses
various approaches to measuring aging and synthesizes evidence
on hallmarks of immune aging, with a focus on T-cell subset
redistribution. We discuss emerging methodologies for biological
age estimation, including flow cytometry, single-cell omics, mass
cytometry (cytometry by time-of-flight, CyTOF), and retinal
imaging. By integrating these approaches, we aim to provide
researchers and clinicians with a blueprint to quantify and
ultimately slow human biological aging.

frontiersin.org


https://www.frontiersin.org/journals/aging
https://www.frontiersin.org
https://doi.org/10.3389/fragi.2025.1684051

Bhasin et al.

10.3389/fragi.2025.1684051

a

Physical
Measures

Grip Strength

Gait Speed

h —Q—@

Macroscopic Retinal Age n
Measures
1* Gen
Telomere and
Telomerase Based

Horvath's

DNA Based / Hannum’s

Methylation 2nd Gen

Based

Molecular
Measures

PhenoAge

Metaboloml MetaboAge i

Based

B — @

Protein Based

FIGURE 1

Currently established measures of biological aging. i. Physical measures of aging: grip strength and gait speed. ii. Macroscopic measures, such as
retinal imaging-based age estimation. iii Molecular measures of aging, including DNA-, metabolite-, and protein-based methods.

2 Currently established measures
of aging

The emerging research field of gerontology focuses on
identifying and understanding the aspects and drivers of the
aging process based on the physical, mental, and cultural factors
(Harris, 1988). Over the years, numerous approaches based on these
factors have been developed to quantify aging beyond chronological
age, aiming to track the physiological, molecular, and cognitive
variables that evolve as individuals age, with varying degrees of
precision and success. These approaches vary in accuracy and
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clinical utility, and this section summarizes them by reviewing
the main classes of aging biomarkers and evaluating their
contributions and limitations.

2.1 Physical aging markers

Some of the earliest factors examined as biomarkers of aging
centered on physical measures, such as gait speed and grip
strength These assessments are considered
valuable, noninvasive indicators of muscle strength and

(Figure 1).
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functional decline. For example, decreased grip strength is
associated with cognitive decline, diabetes, and early mortality
(Peterson et al., 2023). Similarly, a lower gait speed is associated
with a higher risk of mortality from certain conditions, such as
chronic kidney disease (Zhang et al., 2025) and cardiovascular
disease (Busch et al., 2015). Furthermore, links between declines
in grip strength and gait speed have been observed to accelerate
aging (Peterson et al., 2023; Rasmussen et al., 2019). While there
are clear trends and associations between grip strength and
chronic disease risk, grip strength has not yet been validated
as a direct predictor of biological age (Kemala et al., 2025; Martin
et al., 2015). Gait speed has been explored as a predictor of
biological age, but its accuracy remains limited, with an average
error margin of 10 years (Kuroda et al., 2025).

Beyond these measures, clinical gerontology often
(ADLs)
instrumental activities of daily living (IADLs) to assess an
These

quantify how age-related physical decline translates into

incorporates activities of daily living and

individual’s functional independence. assessments
limitations in everyday activities, such as personal hygiene
and managing finances, and they are widely utilized in aging
studies and clinical settings (Edemekong et al., 2025). Unlike
isolated physical metrics, ADLs and IADLs provide a more
holistic assessment of functional aging, especially when
correlated with molecular parameters of aging. Recent
studies show that markers of muscle function and activity
can align with epigenetic clocks, which track biological age
2023).

Emerging tools such as DNAmFitAge integrate physical

using DNA methylation signatures (Jokai et al,

fitness parameters (e.g., VO, max, gait speed, and grip
strength) into DNA methylation models, providing more
accurate biological age predictions that link lifestyle factors
to molecular decline.

2.2 Telomere-based aging measures

Molecular measures have also been considered biomarkers of
aging. One of the earliest is telomere length, which is an indicator of
chromosomal integrity (Figure 1). Telomeres are protective DNA-
protein structures at the ends of chromosomes that shorten due to
DNA replication (McHugh and Gil, 2018; Sfeir, 2012). This
shortening, called telomere attrition, can be linked to the number
of times a cell has divided, providing a proxy for biological age
(Lundblad, 2012). However, telomere attrition is inconsistent across
similarly aged individuals and tissues from the same individual
(Pepke, 2024). This makes telomere attrition a relatively coarse
measure of biological age, with notably large error margins, which
can range from approximately +10 to 23 years (Alhusseini et al.,
2016; Karlsson et al., 2008).

Related to the telomere, another molecular biomarker of
aging is telomerase activity (Figure 1). Telomerase is an
enzyme that performs maintenance on telomeres (He and
Feigon, 2022), and its activity declines with age in the
majority of cells (Iwama et al, 1998), making it a potential
marker of biological aging. However, its predictive accuracy is
limited due to large variations in the telomerase activity across
cell types and states (Lin et al., 2010).
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2.3 DNA methylation clocks

Molecular markers of biological aging then advanced to
DNA methylation, which has emerged as one of the most
promising methods for estimating biological age (Figure 1).
DNA methylation, as a process, involves the addition of a
methyl group (CHj;) to specific cytosine nucleotides near
promoter regions in the DNA sequence (called CpG sites)
(Moore et al., 2013). This methylation prevents transcription
factors from binding to transcription start sites and transcribing
genes (Moore et al., 2013), resulting in suppressed gene
expression. Methylation analysis has shown that different
genomic sites exhibit alterations in methylation patterns with
age, regulating various biological processes and pathways
(Salameh et al., 2020). DNA methylation, over time, can be
measured through methylation arrays or bisulfite sequencing
that track gene-specific methylation and correlate these
profiles with age.

DNA methylation was utilized in the so-called Horvath’s
clock to predict biological age based on the methylation patterns
of 353 CpG sites, 193 of which gain methylation and 160 of
which lose methylation with age (Horvath, 2013). Horvath’s
clock can predict the age of multiple tissues and has shown that
it can measure the accelerated aging that occurs in diseases such
as cancer (Horvath, 2013), with a margin of approximately
3 years. Similarly, Hannum’s clock was also developed based
on the DNA methylation of 71 CpG sites in whole blood and
accounts for individual gender and genetic variability (Hannum
et al, 2013). However, these first-generation clocks, such as
Horvath’s and Hannum’s clocks, have limited utility for chronic
disease prediction and do not provide assessments that correlate
with clinical outcomes, such as mortality and disease
progression.

To further enhance the significance of these aging clocks,
second-generation clocks have been developed that provide
information on biological aging and the risk of onset and
progression of chronic diseases. PhenoAge and GrimAge are
two highly popular second-generation biological aging clocks.
PhenoAge estimates biological age and disease risk by analyzing
the DNA methylation patterns of 513 CpG sites in blood samples,
which are associated with biological age and the onset of chronic
diseases, such as cancer and Alzheimer’s disease (Levine et al.,
2018). It can also provide insights into immunosenescence, which
refers to the age-related decline in immune system effectiveness
driven by chronic inflammation and thymic involution (Liu
et al., 2023).

On the other hand, the GrimAge epigenetic clock was
specifically developed to detail mortality and morbidity by
measuring 1,030 CpG sites that are surrogates for various
plasma proteins related to aging (Lu et al., 2019). This clock
can predict biological age with an error margin of 3 to 5 years,
allowing the estimation of the onset of certain diseases and
events, such as death, coronary heart disease, and cancer (Lu
etal,, 2019). To further improve its accuracy, GrimAge 2.0 was
developed by including two additional plasma proteins,
allowing for accurate age prediction in younger individuals
and robust performance across diverse ethnic groups (Lu
et al., 2022).
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2.4 Metabolomic and proteomic
aging measures

While DNA methylation-based clocks provide valuable insights
into biological age, chronic diseases, and clinical outcomes, they fall
short in capturing the direct mechanistic and functional drivers of
aging biology. To achieve more precise and informative predictions,
it is necessary to move beyond the epigenomic layer and develop
predictors rooted in the functional and mechanistic processes, which
are often directly related to the physical and biological changes
observed in aging. Keeping this in mind, researchers have explored
the proteomic (Argentieri et al., 2024) and metabolomic (Van Den
Akker et al, 2020) (Figure 1) layers of the genome to predict
biological age and disease-specific risk with greater accuracy. As
a step in this direction, Van Den Akker et al. (2020) developed
MetaboAge, a biological aging model based on the levels of
56 metabolites measured in 18,716 samples. The MetaboAge
model calculates the difference between the predicted biological
age and chronological age (i.e., AMetaboAge) (Van Den Akker et al.,
2020), with a higher difference indicating a higher biological age and
poorer cardiometabolic health (Van Den Akker et al, 2020).
Conversely, a lower AMetaboAge value indicates a low biological
age associated with better cardiometabolic health (Van Den Akker
et al., 2020).

Similarly, investigators developed ProtAge, a model that
estimates biological age based on the expression of 204 proteins
(Argentieri et al., 2024). This model predicts biological age with an
average error of +5.7 years and calculates the ProtAge gap, which is
defined as the difference between an individual’s proteomic and
chronological age (Argentieri et al., 2024). Beyond estimating the
biological age, ProtAge also provides insights into chronic disease
risk. Increases in proteomic age, or a larger ProtAge gap, are
associated with a higher incidence of cardiovascular, hepatic,
diabetes,
conditions, and cancer (Argentieri et al., 2024).

renal, and pulmonary diseases, neurodegenerative

2.5 Imaging-based non-invasive biomarkers

All of the former modern molecular predictors provide valuable
data regarding biological age and age-related chronic disease risk
and onset, but they require invasive tests. Thus, non-invasive
measures such as retinal imaging have emerged as accessible
tools for assessing an individual’s biological age without invasive
sampling (Figure 1). Retinal imaging achieves this by capturing
subtle age-related changes in the microvascular and neural
structures of the eye that can then be related to biological age.
The viability of retinal age as a biomarker stems from the retina’s
shared origin with the central nervous system and from its
microvascular structure, which is closely related to that of the
kidneys and the brain (Grimbly et al., 2024). This structure can
reflect systemic aging processes, including vascular stiffness,
inflammation, and neurodegeneration. Recent advances in deep
learning have enabled the development of algorithms trained on
fundus photographs, which can predict biological age with high
degrees of accuracy. The discrepancy between the predicted retinal
age and chronological age, which is referred to as the “retinal age
gap,” has been associated with an increased risk of cognitive decline,
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cardiovascular disease, and all-cause mortality (Zhu et al., 2023). As
a quick and low-cost approach, retinal imaging holds promise for
integrating biological age screening into routine clinical checkups,
particularly in populations where genomic assays are less accessible
(Yu et al., 2025).

2.6 Organ-specific aging trajectories

Although the above-described approaches have been able to
predict biological age with varying degrees of accuracy, they have all
relied on singular factors and organ systems when developing
prediction models. However, this may not be the best approach,
as it assumes that all organs age linearly at the same rate. Thus, we
propose enhancing approaches focused on a single biological
element by integrating health metrics across multiple organ
systems, which may provide a more accurate assessment of
biological age. This concept has been demonstrated in a mouse
model, where RNA and proteomics analyses of 17 organs at
10 distinct life-cycle stages revealed that aging induces organ-
specific alterations in both gene expression and protein
abundance (Schaum et al, 2020). It can, therefore, be gleaned
that protein and gene sets related to aging behave differently
(with accelerated/decelerated rates of change) across different
organs, indicating that a one-size-fits-all test may not be optimal
(Schaum et al., 2020), at least in mice. These organ-specific
trajectories suggest that current human clocks based on a single
factor may not be as accurate as an organ-by-organ approach.

3 Novel cellular- and immune-based
measures of aging

3.1 Introduction to immune aging

In recent years, the immune system has been studied as a
promising avenue for assessing aging because the immune system
is influenced by alterations in diverse cell types across all organ
systems. Functioning as the body’s primary defense mechanism, the
immune system undergoes rapid changes across multiple body
systems. Unlike static molecular markers, immune aging can
capture these dynamic, cumulative changes, which are shaped by
both intrinsic decline and external exposures, thus offering a broader
window into whole-body aging.

Age-related shifts occur across the multicomponent immune
system, which comprises the various immune cell types, including
monocytes, macrophages, B cells, and T cells. Monocytes and
macrophages play a critical role in modulating the immune
clearance of pathogens and cancer cells, undergo transcriptional
reprogramming via epigenetic modifications, and show a decrease in
phagocytic capacity with age (De Maeyer and Chambers, 2021).
Similarly, B cells, which are responsible for antibody production,
appear in lower concentrations and exhibit decreased antibody
diversity with age (De Mol et al,, 2021). However, T cells are key
to adaptive immunity, and develop and mount cytotoxic responses
against pathogenic and self-altered antigens to eliminate them, while
also generating long-lasting memory for sustained immune defense.
Additionally, the balance between T-cell populations (i.e., naive,
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Conceptual view of changes in T-cell populations with age. (a) Infants exhibit an abundance of naive T cells that have not yet encountered antigens.
(b) In adults, the T-cell compartment typically maintains a balanced composition of naive and antigen-committed effector T cells, enabling robust
immune responses. (c) Elderly individuals experience a marked decline in naive T cells and an accumulation of exhausted and late effector T cells.

effector, and exhausted) in the immune system stands out as one of
the most robust and quantifiable measures of system-level immune
aging. However, it is important to note that T-cell differentiation
states follow a spectrum and cannot be merely categorized as naive,
effector, or exhausted subtypes. Effector cells are all antigen-
experienced: some are activated, some are in resting memory
states, The
spectrum of states and their implications for aging are important

and some are exhausted or immunosenescent.

considerations for future research.

3.2 T-cell dynamics as biomarkers of aging

T cells are central to adaptive immunity and immune memory,
and their dynamics are increasingly being studied as biomarkers of
biological aging. They exist in three main functional states, each of
which aligns with a different stage of their lifespan: naive, effector,
and exhausted (Tough and Sprent, 1995). Naive T cells are generated
in the thymus and represent a blank slate that is capable of
responding to novel antigens. Upon encountering a pathogen,
naive T cells differentiate into effector T cells, which mediate
immune responses such as pathogen and infected cell clearance.

Frontiers in Aging

After completing their cytotoxic function, some effector T cells
transition to an exhausted state, which is characterized by functional
decline and reduced proliferative capacity.

The exhausted T-cell phenotype typically arises in settings of
chronic antigenic stimulation, such as persistent viral infections or
the tumor microenvironment, where sustained TCR signaling drives
the upregulation of inhibitory receptors, including PD-1, TIM-3,
and LAG-3 (Baessler and Vignali, 2024). This chronic activation
promotes epigenetic and transcriptional reprogramming that
diminishes cytokine secretion, proliferation, and cytotoxicity
(https://pmc.ncbi.nlm.nih.gov/articles/PMC8005453/2utm).
Exhausted T cells contribute to disease progression by impairing
immune surveillance and causing inflammation that promotes the
aggressiveness of chronic diseases (Chow et al., 2022).

The proportions of T cells in these distinct stages shift with age.
For example, infants and young children possess a large pool of
naive T cells, but individuals over 80 years of age exhibit a smaller
proportion of naive T cells and higher concentrations of terminally
exhausted T cells (Li et al, 2019) than
individuals (Figure 2).

As an example of the clinical implications of naive and
exhausted T-cell distributions, we performed a novel survival

younger
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FIGURE 3

Survival analysis based on the estimated levels of naive and exhausted T cells across major cancers. The Kaplan—Meier curves depict the survival
association of naive/exhausted T-cell levels across the following cancers: (A) TCGA-ACC (adrenocortical carcinoma), (B) TCGA-LGG (low-grade glioma),
(C) TCGA-SARC (sarcoma), (D) TCGA-LIHC (liver hepatocellular carcinoma), (E) TCGA-HNSC (head and neck cancer), (F) TCGA THYM (thymic tumors),
(G) TCGA-LAML (acute myeloid leukemia), and (H) HCMI-CMDC (pan-cancer samples) (Unal, 2017).
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analysis using publicly available cancer datasets from The Cancer
Genome Atlas (TCGA) and the Human Cancer Models Initiative
(HCMI) Cancer Model Development Center (CMDC). Using the
gene contrast module within the Survival Genie platform (Dwivedi
et al., 2022), we compared the survival outcomes of patient samples
that were stratified based on the relative expression of gene markers
associated with naive T cells (PTPRC [CD45], CCR7, and SELL
[CD62L]) and exhausted T «cells (HAVCR2 [TIM-3],
CD279 [PDCD1], and LAG3). The cumulative enrichment scores
for naive and exhausted T-cell signatures were computed using the
gene set variation analysis (GSVA) algorithm (Hinzelmann et al.,
2013). Based on these GSVA-derived scores, the samples were
stratified into high and low groups using an optimal cut-point
(Unal, 2017). The
calculated  using the

selection approach significance of the

association  was log-rank  p-value.
Additionally, for each dataset, we evaluated survival associations
by applying a Cox proportional hazards model (Abd ElHafeez et al.,
2021), which estimates hazard ratios (HRs) while accounting for
time-to-event and censored survival data. In this analysis, an HR <
1 indicates that a higher naive-to-exhausted T-cell ratio is associated
with improved patient survival, whereas an HR > 1 suggests that a
higher ratio is associated with worse survival outcomes (Figure 3).

Across multiple cancer types, a higher ratio of naive-to-
exhausted T cells exhibited an association with significantly
better survival, including adrenal carcinoma (HR = 0.19 (CI
[0.082, 0.44]), p = 1.92e-5, Figure 3A), low-grade glioma (HR =
0.47 (CI[0.33,0.67]), p = 2.4e-5, Figure 3B), sarcoma (HR = 0.52 (CI
[0.35,0.77], p = 0.000984, Figure 3C), liver hepatocellular carcinoma
(HR = 0.46 (CI [0.32, 0.65]), p = 1.14e-5, Figure 3D), head and neck
cancer (HR = 0.52 (CI [0.37, 0.74], 0.000182, Figure 3E), thymic
tumors (HR = 0.15 (CI [0.038,0.64]), p = 0.00337, Figure 3F), acute
myeloid leukemia (HR = 0.44 (CI [0.28, 0.7]), p = 0.000397,
Figure 3G), and multiple cancers (HR = 0.56 (CI [0.35, 0.91]),
p =

consistently demonstrated that patients with a higher ratio of

0.0173, Figure 3H). The Kaplan-Meier survival curves

naive-to-exhausted T-cell markers had significantly improved
overall survival. On the other hand, a lower naive-to-exhausted
T-cell ratio, indicating higher levels of exhausted T cells, is
associated with poorer overall survival. This supports the
hypothesis that the naive-to-exhausted T-cell ratio is a prognostic
factor for survival across cancers and might represent cancer-
associated accelerated aging. Therefore, we hypothesize that the
above-mentioned ratio could be a promising biomarker of biological
aging and the immune system’s competence in the context of cancer.
Individuals with higher proportions of exhausted T cells may be at
greater risk of chronic disease incidence and progression, whereas
those with higher proportions of naive T cells can generate diverse
T-cell pools directed against aging processes and disease-causing
cellular alterations (see Supplementary Figures S1 and S2 for
additional analyses).

Furthermore, survival analysis was performed on the diverse
pan-cancer dataset HCMI-CMDC, which contains data from
tumors, neoplasms, gliomas, carcinomas, and other cancers in
32 different body areas. This provided a benchmark for survival
outcomes based on the naive-to-exhausted T-cell ratio in a single
dataset encompassing multiple cancers from diverse tissues of the
human body. The results of the survival analysis indicated a strong
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association between the naive-to-exhausted T-cell ratio and patient
survival (Figure 3H).

As patients age, thymic involution leads to diminished naive
T-cell output, while chronic antigenic exposure contributes to the
accumulation of exhausted T cells. These exhausted cells, through
impaired effector functions and sustained inhibitory signaling,
weaken tumor and pathogen control while also driving chronic
inflammation. A low naive-to-exhausted T-cell ratio, therefore,
reflects systemic immune decline, diminishing the body’s capacity
to control malignancies and increasing vulnerability to cancer
progression. These findings strongly support recent technological
advancements that have made it possible to measure T-cell
proportions more accurately and characterize T-cell dynamics at
the single-cell level.

Although the study evaluates T-cell proportions as an indicator
of immune aging, immunosenescence extends to other immune
compartments. With increasing age, B cells exhibit reduced diversity
and impaired antibody responses (Li et al, 2023), NK cells
demonstrate altered cytotoxicity (Fu et al., 2025), and monocytes/
macrophages show “inflammaging” (Wrona et al., 2024). Together,
these changes contribute to immune aging and may be integrated
into composite immune clocks. Future frameworks could combine
T-cell ratios with these other immune signatures mentioned above
to generate more comprehensive predictors of biological age and
disease risk.

3.3 Techniques for measuring T-cell states

In order to understand the field of immune aging, technologies
must be able to capture the diversity of T-cell states, specifically
naive, effector, and exhausted T-cell phenotypes. These techniques
work to offer avenues into clinical translation, each with advantages
in resolution, throughput, and feasibility. This section details
techniques to identify and quantify T-cell states, which, in
combination, could form a framework for creating an immune
age curve to determine biological age.

3.3.1 Flow cytometry and fluorescence-activated
cell sorting

Flow cytometry—specifically, fluorescence-activated cell sorting
(FACS), which uses fluorescently conjugated antibodies to quantify
surface protein expression across cell populations—has long served
as the gold standard for identifying immune cell subtypes based on
surface or intracellular protein expression (Flow Cytometry, 2014)
(Supplementary Figure S3). This technique is the most common
method for immune cell phenotyping that is clinically adopted. By
labeling cells with fluorescently conjugated antibodies and passing
them through a flow cytometer, researchers can sort and quantify
populations of naive, effector, and exhausted T cells (Lugli et al.,
2017). Modern high-parameter flow cytometers equipped with
multiple lasers enable simultaneous detection of 12+ markers,
allowing for complex phenotyping in a single assay (Kwok et al.,
2023). For example, Lugli et al. (2017) used multicolor FACS panels
to identify T-cell subsets based on CD45RA, CCR7, CD27, and PD-1
expression. However, despite its sensitivity and speed, flow
cytometry has limited multiplexing capabilities and requires
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substantial operator expertise to correctly quantify T-cell subsets
(Flow Cytometry, 2014).

3.3.2 Single-cell omics

To capture transcriptional signatures beyond targeted marker
expression, single-cell RNA sequencing (scRNA-seq) has emerged
as a promising approach (Supplementary Figure S4). scRNA-seq
allows measurement of the expression of 2,000-3,000 genes in
individual cells to identify T cells and their subsets and assess
associations with accelerated aging (Abondio et al,, 2022). Over
the past two decades, single-cell profiling has been extensively
implemented to understand the mechanisms of accelerated aging,
but the technology is still far from clinical implementation due to
high cost, data sparsity, and complex analytical requirements. Multi-
omics single-cell approaches can simultaneously measure
transcriptomic, epigenomic, and proteomic profiles, providing a
holistic picture of how T-cell phenotypes evolve with age (Lee
et al.,, 2020).

3.3.3 Cytometry by time-of-flight

CyTOF bridges the gap between surface phenotyping and high-
dimensional data integration by overcoming the limitations of flow
cytometry and offering

improved multiplexing capabilities

(Supplementary  Figure S5). Using metal isotope-tagged
antibodies, CyTOF can simultaneously quantify over 40 markers
per cell (Tirosh et al, 2016), allowing for an in-depth
characterization of T-cell states, including exhaustion and
activation. Lin et al. (2018) demonstrated the utility of CyTOF
using a novel magnetic enrichment technique coupled with
traditional CyTOF to profile T-cell populations. Nonetheless,
CyTOF’s high instrumentation cost and complex data analysis

requirements currently limit its clinical implementation.

3.4 Retinal imaging as a non-invasive proxy
for immune aging

While the technologies described above rely on blood-based

sampling, retinal imaging offers a promising, noninvasive
alternative to assess immune aging. The eye, particularly the
retinal vasculature, is sensitive to age-related microvascular and
immune changes, so retinal research can be applied to age-related
damage observed in other comorbidities such as diabetes,
cardiovascular  disease, and neurodegeneration. Clinically,
ophthalmic imaging is already used to assess vascular integrity
through tools such as adaptive optics scanning laser
ophthalmoscopy (AOSLO). AOSLO enables direct visualization
of single immune cells moving through retinal capillaries in vivo,
providing readouts of cell density, motility, and vessel wall
2020).

particularly relevant to immunosenescence because, in healthy

interactions  (Joseph et al, These parameters are
young individuals, naive T cells and other circulating leukocytes
typically show high motility and transient vascular interactions,
reflecting a dynamic surveillance state (Torres et al,, 2023). With
increasing age, however, thymic involution and cumulative antigen
exposure reduce the naive pool and expand the proportion of
exhausted immune cells. These cells often display reduced

motility, altered adhesion to vascular endothelium, and impaired
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clearance from tissues (Xu et al., 2024). AOSLO can capture these
hallmarks of immune aging in real time by quantifying changes in
immune cell transit speed and clustering patterns within the retinal
microvasculature (Joseph et al., 2020). Given its shared embryologic
origin and structural similarities with cerebral vessels, the retinal
vasculature could provide insights into systemic microvascular and
immune health (Tao et al, 2022). This suggests that longitudinal
AOSLO imaging could serve as a surrogate marker for broader age-
related changes throughout the body. Since these datasets can be
acquired repeatedly without invasive sampling, they offer a clinically
feasible way to monitor immunosenescence in vivo, particularly in
clinical settings, where frequent blood draws may be impractical.

When paired with Al-driven analysis, such as deep learning
models trained on fundus photographs (Zhu et al., 2023) to predict
all-cause mortality, retinal imaging could contribute to a composite
aging clock that integrates immune, vascular, and neurodegenerative
signals. By training algorithms to recognize changes in immune cell
dynamics that correlate with T-cell exhaustion or decreased naive
output, AOSLO could bridge the gap between molecular
immunology and non-invasive screening. However, retinal
scanning-based aging detection remains a developing field,
requiring further validation before it can reliably serve as a
standalone proxy for immune age in clinical practice. Together,
the technologies listed above represent a spectrum of approaches to
mapping the immune architecture of aging, and taking advantage of
these methods could contribute to an immune age curve that
accurately estimates biological age.

All the techniques mentioned above, including flow cytometry,
single-cell RNA sequencing, and CyTOF, classify immune cell states
based on the expression of selected markers. Although these marker-
based approaches provide a useful, albeit indirect, measure of cell
states, they are subject to certain limitations and errors. Definitive
confirmation of T-cell exhaustion requires functional assays
involving antigen stimulation followed by the measurement of
cytokine or chemokine secretion. However, implementing these
assays on a large scale is not feasible, and minimal data are
available to support the development of a biological aging clock
using these approaches. Therefore, in this preliminary study, we
focused on developing a predictive biological clock by correlating the
immune state, measured based on gene/protein expression, with
biological age, rather than delving deeper into functional/metabolic
T-cell exhaustion.

4 Immune-derived estimation of
biological age

4.1 Rationale for immune-based
aging metrics

Traditional biological age estimation methods, such as DNA
methylation-based clocks (i.e., Horvath’s clock or GrimAge), have
contributed significant results for future aging research. However,
these current approaches are often hindered by limitations such as
cost, complexity, tissue specificity, and machinery, which limit their
broader applicability. Furthermore, many of these clocks capture
static snapshots, which may fail to reflect real-time changes in the
immune composition.
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The immune system emerges as an alternative to capture the
interactions between intrinsic aging processes and environmental
exposures. The composition of the immune system undergoes
relatively quantifiable transformations with age across individuals
through immunosenescence, such as thymic involution, chronic
antigenic stimulation, and the shift from naive to exhausted T-cell
phenotypes due to low-level chronic inflammation. As this ratio
with
immunosenescence—the ratio of naive to exhausted T cells holds

changes immune system variability—referred to as

promise as a universal biomarker of biological aging.

4.2 T-cell ratio as an aging indicator

As discussed earlier, the naive-to-exhausted T-cell ratio is
prognostic for survival in the majority of the cancers tested in
the TCGA and HCMI-CDMC datasets. We posit the naive-to-
exhausted T-cell ratio as a quantitative metric for immune aging.

Naive T cells can express CD4 or CD8, distinguishing them as
helper or cytotoxic T cells, but they are further defined by the presence
or absence of specific markers. In particular, CD27, CD45RA, CCR7,
and CD62L serve as markers that separate naive cells from effector
and exhausted subtypes. Intracellular transcription factors such as
FOXP1, ZEB2, and TBX21 (Tao et al., 2022) can also mark naive and
T-cell
differentiation, T cells lose CD27 expression, thus identifying cells

effector differentiation ~ states. For example, during
with a high expression of CD27 as a positive marker of naive T cells.
Similarly, combinations such as CD45RA", CCR7*, and CD62L" mark
naive T cells (Tirosh et al,, 2016). With age, thymic involution reduces
the output of these naive populations, and T cells subjected to chronic
stimulation can enter a state of exhaustion characterized by sustained
expression of inhibitory receptors, including PD-L1*, TIM3", and
LAG3"*, which are connected to impaired immune responses and
chronic inflammation (Qi et al., 2025). This phenotype is typically
triggered by persistent immune activation and the cumulative burden
of lifetime immune challenges (immunobiography). The expansion of
exhausted T cells is linked to increased infection risk, poor chronic
disease outcomes, including cancer, diabetes, and vascular diseases,
and frailty in older adults. This age-related shift in T-cell dynamics
represents a bottleneck in immune responses to pathogens, linking
exhaustion to biological aging. By calculating the ratio of these two
populations, we obtain a single metric that reflects both the decline in
thymic regenerative potential and the increase in immune
dysfunction. Importantly, this metric is not limited to oncology; its
trajectory may differ in infectious diseases and autoimmune disorders,
highlighting its potential as a generalizable biomarker of immune
aging. Since this ratio accounts for the two mechanistic hallmarks of
biological aging (the loss of naive T-cell output and the gain of
exhausted T cells), it may outperform other biomarkers in predicting

immune decline and mortality risk.

4.3 Conceptual framework for the immune
age curve

To construct an immune age curve, we will collect and integrate

publicly available gene and protein expression datasets spanning a
wide range of ages, including infants, toddlers, adults, and elderly
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individuals. Within each dataset, we will identify and quantify
markers associated with naive and exhausted T-cell populations.
Using these markers, we will compute the average expression values
or module scores (Tirosh et al., 2016) to estimate the relative
abundance of each cell state. These quantitative measures will
serve as the foundation for developing an immune aging curve.
As an initial approach, we will fit a regression curve between the
estimated ratio of naive to exhausted T cells and chronological age.
This baseline model will provide a simple predictor of biological age,
enabling estimation when the relative levels of these T-cell subsets
are known (i.e., naive and exhausted T cells). However, to achieve
greater accuracy and capture nonlinear patterns, we will also develop
machine learning-based predictors (Qi et al., 2025). These models
will be trained using the same immune features, with the datasets
divided into training and wvalidation cohorts to
generalizability. Model performance will be rigorously evaluated

ensure

using metrics such as the mean absolute error (MAE) and
correlation with chronological age (Schneider and Xhafa, 2022).
If the machine learning model outperforms the linear regression
predictor, this will be adopted as the preferred framework.
Ultimately, this approach will allow us to build an accurate
immune age clock that not only estimates biological age more
precisely but also provides immune

insights into system

dynamics across the human lifespan.

4.4 Benchmarking against methylation-
based clocks

To validate the immune-based biological age model, it should be
benchmarked against established DNA methylation clocks,
particularly GrimAge, which is a second-generation epigenetic
clock trained to predict morbidity and mortality risk by
incorporating CpG methylation sites (Moore et al., 2013). Since
GrimAge is strongly correlated with systemic inflammation,
immunosenescence, and time to disease onset, it serves as an
ideal comparator for immune-derived metrics of biological age.
Correlating immune biological age with GrimAge and measuring
the gap between the two would allow researchers to assess whether T
cell-based markers reflect or diverge from epigenetic markers of
systemic aging.

5 Conclusion

As global life expectancy increases, the proportion of individuals
over the age of 65 is growing rapidly. This demographic shift has
brought age-related diseases to the forefront of public health
concerns, burdening healthcare systems and economies. In this
context, there is a growing need for accurate, individualized
biomarkers of biological aging that can predict disease onset,
monitor treatment outcomes, and identify health risks beyond
chronological age.

Existing aging clocks, such as those based on methylation and
metabolic profiles, offer deeper insights into individual aging, but
they often fail to reflect dynamic physiological changes. Many are
tissue-specific, costly, or lag behind real-time immune shifts.
However, the immune system, particularly the composition of
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T-cell populations, stands out as an effective marker of biological
aging. The immune system provides a unique perspective on aging
across organ systems due to the circulation of immune cells
throughout the body. Over time, predictable changes in T-cell
proportions lead to a decline in naive T cells and the
accumulation of exhausted T cells. These cells are sensitive to
internal and external exposures, which can accelerate an
individual’s biological age.

Multiple high-resolution technologies, such as flow cytometry,
mass cytometry (CyTOF), and single-cell multi-omics, already
enable the quantification of T-cell phenotypes at the single-cell
level. These platforms allow researchers to profile surface
markers associated with naive (CD45RA* and CCR7*), effector,
and exhausted (PD-1%, TIM-3*, and LAG-3") T cells. At the same
time, the development of non-invasive imaging technologies, such as
AOSLO, coupled with Al-driven computational modeling, offers a
translational path for bringing immune aging metrics into clinical
practice. These tools could enable outpatient-friendly, real-time
monitoring of immune age without invasive sampling, thus
broadening access to preventative screening.

To validate the clinical relevance of T cells as predictors of
mortality, we conducted a survival analysis using publicly available
datasets from TCGA and HCMI-CMDC. Through the Survival Genie
platform, we stratified patients by gene expression signatures
associated with naive and exhausted T cells, confirming that higher
expression of naive T-cell markers correlated with improved survival
across multiple cancers. In contrast, increased exhausted T-cell
markers were associated with poorer outcomes. These findings
support the potential of the naive-to-exhausted T-cell ratio as a
predictor of immune aging and disease vulnerability.

As a result of this analysis, we recommend future studies to
refine and standardize immune aging clocks based on T-cell ratios.
This indicator shows promise due to its ability to integrate multiple
important features of immunosenescence, including thymic
involution and lifetime antigenic load. Future research should
focus on the development of machine learning models to
generate immune age curves, benchmarked against validated
epigenetic clocks such as GrimAge. Other established parameters,
such as memory subsets and senescent T cells, will be taken into
consideration in future studies after the development of the immune
age curve. If this comparative analysis enhances our study, we will
combine these parameters into the final algorithm.

When combined with non-invasive imaging and Al-based
predictive models, these immune clocks could provide clinicians
with powerful tools for early disease detection, individualized risk
stratification, and preventative interventions. Ultimately, combining
immune-based tools revolutionize

and non-invasive may

gerontology and preventative medicine.
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SUPPLEMENTARY FIGURE S1

Survival analysis by deconvoluting the proportions of naive and exhausted
T cells across major cancers. The analysis was performed by calculating
the levels of naive T cells based on a positive gene signature (PTPRC,
CCR7,and SELL). Similarly, exhausted T-cell levels were calculated based
on a negative gene signature (HAVCR2, LAG3, and CD279). The net level
of naive and exhausted T cells was calculated by simple subtraction of
the enrichment score. This analysis was performed using the contrast
gene set function in the Survival Genie 2.0 platform. The Kaplan—Meier
curves depict the survival association of naive/exhausted T-cell levels
across the following cancers: (A) TCGA-BRCA (breast invasive
carcinoma), (B) TCGA-LUAD (lung adenocarcinoma), (C) TCGA-PCPG
(paraganglioma and pheochromocytoma), (D) TCGA-COAD (colon
cancer), (E) TCGA-KIRC (kidney renal clear-cell carcinoma), (F) TCGA-
PAAD (pancreatic adenocarcinoma), (G) TCGA-PRAD (prostate
adenocarcinoma), and (H) TCGA-UVM (uveal melanoma). Each dataset
was stratified into high and low groups via the optimal cut-point method
(https://pubmed.ncbi.nlm.nih.gov/28642804/) to perform survival
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SUPPLEMENTARY FIGURE S2

Survival analysis hazard ratio plots. K. The analysis provided 95% confidence
intervals for the hazard ratio of naive and exhausted T cells. In this analysis, a
hazard ratio between 0 and 1 indicated that a higher ratio of naive T cells to
exhausted T cells was associated with improved patient survival; a hazard
ratio of Lindicated no effect on survival, and a hazard ratio >1 indicated that a
higher ratio of naive T cells to exhausted T cells was associated with worse
patient survival.

SUPPLEMENTARY FIGURE S3

Schematic of T-cell antigen labeling and flow cytometry analysis. This
diagram details the process of identifying and sorting T cells based on
antigen expression using flow cytometry. First, blood is collected to isolate
PBMCs, followed by staining with fluorophore-labeled antibodies directed
against specific T-cell antigens. This stained cell suspension will be loaded
into the flow cytometer for sorting and counting the cells based on
fluorescent-labeled antibodies.

SUPPLEMENTARY FIGURE S4

Schematic overview of single-cell RNA sequencing (scRNA-seq) for
characterizing immune cells. In scRNA-seq, individual cells are
encapsulated into oil-based droplets along with unique barcoded beads,
which allow for tagging of transcripts from each cell. The barcoded RNA after
library preparation is sequenced and analyzed to quantify the proportions of
various cell populations and reveal their transcriptional profiles and
functional states, such as naive T cells, effector T cells, and exhausted T cells.

SUPPLEMENTARY FIGURE S5

Schematic of CyTOF. This diagram details the process of identifying and
sorting T cells based on antigen expression using CyTOF in a simple scenario
with only one protein of interest. First, PBMCs are collected through a
blood sample, and then specific antigens on T cells are labeled with
antibodies bonded to heavy metals. This cell suspension is then passed
through a mass cytometer, where the isotopes attached to each antibody
are detected, allowing for the proportion of tagged (gray) cells and untagged
(orange) cells to be analyzed.
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