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Time shapes life both through its steady progression, as seen in aging, and
through its eternal return, reflected in biological rhythms. These two temporal
forces have sculpted organisms from their evolutionary beginnings, intertwining
the processes of circadian regulation and senescence into the emerging concept
of circadian aging. From the earliest prokaryotic lifeforms, the ability to sense and
anticipate environmental cycles conferred evolutionary advantages, leading to
the emergence of endogenous circadian clocks that regulate nearly every aspect
of physiology. Themammalian circadian system is far more complex than a single
master clock, comprising multiple tissue-specific oscillators entrained by diverse
zeitgebers such as light, food, and activity. Importantly, circadian function
deteriorates with age, contributing to hallmarks of aging including metabolic
dysfunction, cognitive decline, immunosenescence, and disrupted sleep. Yet
species with negligible senescence, such as naked mole-rats, tend to retain
robust circadian rhythms throughout life, suggesting that temporal homeostasis
may serve as both a marker and a modulator of healthy aging. This review
explores the dynamic interplay between circadian time and chronological
time, highlighting their shared regulatory pathways. We examine how
circadian rhythms change naturally with age and in pathological conditions,
the molecular crosstalk between clock genes and aging-related pathways and
emerging evidence that circadian interventions can restore rhythmicity and
promote healthspan. By unraveling the mechanisms of circadian aging, we
aim to illuminate novel chrono-geroprotective strategies to enhance
resilience and improve quality of life across the lifespan.
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1 Introduction

Time is a fundamental variable in life. Everything unfolds along a timeline, making
biological processes either linear and irreversible, as in the case of aging, or repetitive and
cyclical, as seen in virtually all biological functions regulated by the circadian system. Since
the earliest stages of life on Earth, these two dimensions of time have coexisted in a finely
tuned homeostasis, giving rise to what we now recognize as circadian aging.

Since the earliest prokaryotic life, the ability to sense external time has provided a
biological advantage. Anticipating the day/night cycle by activating appropriate molecular
pathways or behaviors improved adaptation and protection against the exposome, the full
range of environmental factors that affect human health. As a result, an inner mechanism
has appeared that regulates nearly all aspects of our biology, including behavior (sleepiness,
hunger, and other physiological perceptions), hormone secretion, gene expression,
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molecular localization, metabolism, epigenetic marks, the immune
system, cell proliferation, or, even more, the efficacy of therapy
administration, according to time. This is the circadian system: a
complex network that orchestrates that everything occurs cyclically,
rhythmically, at the proper time to preserve our homeostasis.

At the molecular level, in mammals, circadian rhythms are
regulated by transcriptional, post-translational and methylation
feedback loops generated by a set of interplaying clock proteins
(Orozco-Solis and Aguilar-Arnal, 2020). At the core of the
mammalian molecular circadian clock, the transcription factors
CLOCK and BMAL1/NPAS form a heterodimer that activates
the expression of clock-controlled genes by binding to E-box
elements, initiating the cycle. Among these target genes are Per
and Cry families. Period proteins PER1–3 and Cryptochrome ones
CRY1–2 form complexes, and translocate to the nucleus to inhibit
CLOCK-BMAL1 activity, thus closing the negative feedback
loop. To start a new cycle, PER and CRY proteins must be
degraded via proteasomal degradation (through phosphorylation
by CK1δ/ε, AMPK, and other kinases) relieves their inhibition of
CLOCK-BMAL1 activity to re-start again the cycle (Eide et al., 2005;
Lamia et al., 2009; Yoo et al., 2013; Masuda et al., 2020). Moreover,
BMAL1–CLOCK heterodimer also drives the expression of NR1D1-
2 genes, that encode REV-ERBα-β proteins respectively, and DBP.
DBP binds D-box motifs to drive expression of genes encoding the
transcriptional activators RORα and RORβ which compete with
REV-ERBα and REV-ERBβ for binding to RORE elements as those
located in Bmal1. These regulatory loops not only induce the
expression of their core components but also regulate many
other genes involved in key homeostatic processes, including
metabolism or DNA replication (Cox and Takahashi, 2019;

Mortimer et al., 2024). They also coordinate with epigenetic
regulators and tissue-specific transcription factors to drive
rhythmic gene expression (Mortimer et al., 2025) (Figure 1).

Beyond the molecular perspective, the circadian system
encompasses additional layers of regulation (Figure 2). At the
tissue level, paracrine signals are required to synchronize cell
populations. In this regard, factors such as TGFβ, TNFα, and
neurotransmitters including GABA, VIP, and AVP play crucial
roles in coupling cell-autonomous circadian oscillators (Yoshida
et al., 2018; Finger et al., 2021; Ono et al., 2021). At a higher level,
organisms must also coordinate their rhythms to align physiology in
a time-dependent manner. In this context, hormones such as
melatonin and cortisol, as well as circulating elements in blood
or lymphatic fluid, including immune cells, neuropeptides, and
neurotransmitters like dopamine, noradrenaline, and serotonin,
are key components of the circadian system (Linsell et al., 1985;
Ciarleglio et al., 2011; Freyberg and McCarthy, 2017; Bonmati-
Carrion and Tomas-Loba, 2021). Given the complexity of blood
composition, the existence of yet undiscovered systemic circadian
regulators cannot be ruled out. While both the organismal and tissue
clocks act as endogenous entrainers, they operate at different scales
and through distinct regulatory mechanisms: organismal clocks
integrate and distribute systemic time cues, whereas tissue clocks
require local synchronization, often via paracrine signaling, to
ensure precise timing of specialized functions. Finally, ecosystem
temporal cues, such as natural or artificial light and temperature, as
well as behavioral inputs, including the social agenda and timing of
nutrition, are also critical components of this complex system.

Time also occurs in a linear setting, very well represented by the
irreversible process of aging. All living beings age, with the exception

FIGURE 1
The transcriptional–translational feedback loops of the mammalian circadian clock. This schematic represents the core molecular architecture of
the circadian clock, highlighting the dynamic interplay between transcriptional activation and repression across the 24-hour cycle. The heterodimeric
complex CLOCK:BMAL1 binds to E-box elements in the promoters of clock-controlled genes, promoting the transcription of Period (Per) and
Cryptochrome (Cry) genes, as well as Rev-erbα/β and Rorα/β/γ. The translated PER and CRY proteins accumulate in the cytoplasm and form
complexes that eventually translocate into the nucleus. As its protein concentration progresses (right side), PER/CRY complexes translocate into the
nucleus, where they inhibit CLOCK:BMAL1-mediated transcription, closing the negative feedback loop. PER proteins are phosphorylated by kinases (e.g.,
CK1δ/ε), which targets them for ubiquitination and proteasomal degradation, allowing the cycle to restart. Meanwhile, REV-ERBs and RORs form an
auxiliary loop by rhythmically repressing or activating Bmal1 transcription through binding to RORE elements, thereby reinforcing the oscillatory
robustness of the system.
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of a few organisms, including hydras (Hydra vulgaris) (Suknovic
et al., 2021), jellyfishes (Turritopsis dohrnii) (Pascual-Torner et al.,
2022) that escape this fate. Additionally, there are others in which
aging progresses very slowly, like American lobsters (Homarus
americanus) (Polinski et al., 2021), long-lived turtles (Testudines),
cavefishes (including Phreatobius sanguijuela and Prietella
phreatophila), and naked mole-rats (Heterocephalus glaber)
(Montazid et al., 2023). Interestingly, species that exhibit delayed
aging also tend to preserve solid circadian rhythms across their
lifespan, suggesting that the maintenance of temporal homeostasis
may be a hallmark of healthy aging (López-Otín and Kroemer,
2021). Notably, several aging-related signaling pathways are
interconnected with the molecular clockwork. Among these,
SIRT1, mTOR, AMPK, and insulin signaling present the
strongest experimental support, with mechanistic studies across
multiple species, including mammals. Others, such as FOXO and
NRF2, are increasingly supported but still require deeper
mechanistic resolution (Ramanathan et al., 2018; Acosta-
Rodríguez et al., 2022; Das et al., 2023; Chhunchha et al., 2020).

In aging mammals, these rhythms tend to adapt to the age stage
by modifying its period, phase, and amplitude until later life, when
these rhythms fragment or dampen, contributing to metabolic
dysfunction, cognitive decline, immunosenescence, and sleep

disruption (Liu et al., 2024). However, long-lived span organisms
maintain stable internal rhythms over decades, highlighting the
possibility that resilience of circadian oscillations, at molecular,
cellular, and systemic levels, might underlie their sustained
homeostasis. Indeed, recent studies show that age-related
circadian decline may not be inevitable, but modifiable by
enhancing circadian amplitude via light, feeding schedules, or
genetic interventions. These interventions improve metabolic and
cognitive function in aged mice, reinforcing the idea that the
preservation of biological timing could be as critical to longevity
and suggesting that negligible aging may, in part, reflect the capacity
to maintain circadian synchrony in the face of time (Welz and
Benitah, 2020; Belancio et al., 2015; Acosta-Rodríguez et al., 2022;
Altamirano et al., 2024; Whittaker et al., 2023; Acosta-Rodríguez
et al., 2021).

Circadian aging describes the convergence of linear time,
associated with aging, and cyclical time, governed by circadian
rhythms. At this intersection, circadian robustness declines, and
aging phenotypes emerge in a mutually reinforcing process.
Evidence indicates that restoring circadian function can improve
health span, offering opportunities for chrono-geroprotective
strategies. This review explores how circadian and aging
processes interact in mice, humans and long-lived species, aiming

FIGURE 2
Multilayered architecture of the circadian system and its interplay with environmental, physiological, andmolecular rhythms across the human body.
At the core (purple gear), the molecular circadian clock. These intrinsic oscillations are modulated by external cues (blue gear), including artificial light at
night, all of which contribute to entrainment and synchronization. The intermediate layer (orange gear) consists of organismal signals such as hormones,
cytokines, and neuropeptides, which coordinate systemic outputs. Finally, tissue-specific and cellular-level clocks (red gear) govern local physiology
and niche-specific functions, including stem cell behavior, neuropeptide secretion, and intercellular signaling.
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to uncover mechanisms of chrono-aging and their implications for
healthy longevity.

2 When the circadian system meets
aging in the natural timeline

Most physiological and molecular processes in the organism are
governed by the circadian system, which generates rhythmic
oscillations throughout the lifespan. These rhythms adapt across
different stages of life, fulfilling age-specific physiological
requirements. At birth, neonates lack a fully matured central
circadian clock, resulting in fragmented sleep-wake cycles. As the
suprachiasmatic nuclei, in the brain, progressively synchronize with
environmental cues, key circadian outputs, such as core body
temperature, cortisol, and melatonin secretion, begin to exhibit
defined periods, phases, and amplitudes. However, in advanced
age, these rhythms often become dampened or desynchronized,
leading to reduced circadian robustness and greater physiological
variability (Figure 3).

Among the circadian changes across the lifespan described in
Figure 3, there are several critical windows in which circadian
control shifts and aging-associated phenotypes become more
pronounced. Between the ages of 45–64, defined as middle age,
disruptions in sleep architecture and circadian regulation begin to
undergo significant transformations, with a remarkable change-
point at the age of 60, that signals the early decline of the
circadian system (Landolt et al., 1996; Carrier et al., 1997; Carrier
et al., 2001; Carrier et al., 2005; Dijk and Duffy, 1999). Studies show
that by their 40s and 50s, individuals already experience more
fragmented sleep and reduced capacity to recover after extended
wakefulness that drives a diminished ability to cope with stressors
affecting sleep (Gaudreau et al., 2001). Comparative analyses reveal
that middle-aged adults display a phase advance in both sleep timing
and core body temperature rhythms, waking and sleeping earlier
than younger adults, consistent with a reorientation of the circadian
phase, even if the overall rhythmic amplitude remains stable (Carrier
et al., 2002; Duffy et al., 2015). Moreover, melatonin rhythms also
show early signs of decline. Starting around age 40, melatonin
amplitude diminishes, down to about 60% of that seen in

FIGURE 3
Age-related changes in physiological circadian variables across the lifespan. Circadian rhythms in core physiological variables evolve dynamically
from infancy through later life. From top to bottom: core body temperature, cortisol, melatonin, and sleep timing across five life stages: infancy (orange),
childhood (blue), adolescence (magenta), adulthood (green), and later life (black). Core body temperature exhibits a progressive shift in phase and
amplitude, with adolescence marked by a delayed nadir and later life showing a dampened rhythm. Cortisol peaks in the early morning across all
stages, but its amplitude is highest during adolescence and adulthood, declining significantly in older age. Melatonin secretion also follows a robust
circadian pattern that matures in childhood, peaks in adolescence with a delayed phase, and gradually loses amplitude and rhythmic precision in aging.
Sleep timing (bottom panel) transitions from polyphasic and fragmented sleep in infancy to consolidated nocturnal sleep in adulthood, with delayed sleep
onset in adolescence and a tendency for phase advance and fragmentation in later life (Logan and McClung, 2019).
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younger individuals, accompanied by lower daytime levels and
prolonged nighttime peaks (Zhou et al., 2003). Notably, these
changes occur independently of shifts in light exposure,
indicating that the aging of the circadian system itself may drive
this early erosion in temporal organization (Kawinska et al., 2005).

Studies in middle-aged female rats have shown that there are
significant differences in the pattern of glucose utilization in the
suprachiasmatic nucleus compared to young rats. The authors
suggest that alterations in the synchronization and amplitude of
luteinizing hormone peaks induced by estradiol during the
transition to infertility in middle age could be triggering these
changes (Wise et al., 1988). Menopause debut with a decline in
estrogen levels, which has been linked to increased oxidative stress,
an aging-driving agent (Rangel-Zuñiga et al., 2017). Moreover,
postmenopausal women show reduced circadian robustness
compared to premenopausal women, with lower amplitude in
wrist temperature rhythms, lower average core body temperature
during the sleep midopoint, earlier chronotype with a phase advance
of approximately 1 hour, and blunted cortisol fluctuations (Gómez-
Santos et al., 2016). In addition, they experienced greater sleep
fragmentation and a higher frequency of sleep-related breathing
abnormalities, such as apnea (Gómez-Santos et al., 2016). The loss of
estrogen disrupts circadian rhythms, altering Per2 and Per3 gene
expression in visceral and subcutaneous adipose tissue, respectively
(Hernandez-Morante et al., 2012), which may contribute to fat
redistribution and a higher risk of metabolic syndrome
(Hernandez-Morante et al., 2012; Gómez-Santos et al., 2016;
Verde et al., 2022), an aging-like phenotype. In fact, granulosa
cells in women over 40 show a significant decrease in the
expression of molecular clock genes, which negatively correlates
with age (Jiang Z. et al., 2021). Additionally, apart from the Rev-erbα
gene, all clock genes show also low expression levels in serum, which
positively correlate with anti-Müllerian hormone levels (Jiang Z.
et al., 2021). Overall, disrupted circadian rhythms in menopausal
women are linked to increased multimorbidity and premature
mortality (Ren et al., 2025) and coincide with other aging-like
phenotypes that emerge profoundly, including bone
demineralization, sarcopenia, skin and connective tissue decay or
inflammaging.

At the peripheral level, in middle-aged individuals, and given the
importance of circadian rhythms in lipid regulation and in their
changing profile associated with metabolic problems (Dallmann
et al., 2012; Gooley and Chua, 2014; Gooley, 2016; Rahman et al.,
2023), it has been shown that the prevalence of endogenous
circadian rhythms in the human plasma lipidome is maintained
with healthy aging in middle age. Specifically, studies confirm that
both young individuals and middle-aged individuals exhibit robust
circadian regulation of the lipidome. However, in middle age, there
is a reduction in the amplitude of lipid rhythmicity, a greater impact
of factors such as sleep deprivation, a phase advance in the
acrophase, and an alteration in the synchronization between
central and lipid rhythms (Rahman et al., 2023).

Another step of time-fragility comes around age 70, when features
such as sarcopenia rise steeply, causing accelerated loss of muscle mass
and functionality, that are associated with an increased risk of falls,
frailty, and mortality (Cruz-Jentoft and Sayer, 2019; Fernández-
Martínez et al., 2023). Aging is one of the primary risk factors for
the development of sarcopenia (López-Otín et al., 2023a), and age-

related chronodisruptionmay initiate these pathways in skeletal muscle,
preceding its onset (Fernández-Martínez et al., 2023). Notably, the core
component of the circadian clock, Bmal1, regulates muscle homeostasis
by controlling reactive oxygen species levels (ROS), so its decline with
age promotes a pro-inflammatory environment (Kondratov et al.,
2009). Over time, this situation leads to a chronic inflammatory
state known as inflammaging (Franceschi and Campisi, 2014)
characterized by the activation of the NF-κB pathway and an
increase in the production of pro-inflammatory cytokines such as
IL-6 and TNF-α (Fernández-Martínez et al., 2023). Sustained
inflammation and the loss of circadian regulation interfere with
muscle protein degradation and synthesis, also producing
mitochondrial damage and thereby compromising energy
production in muscle cells. These circadian metabolic changes
contribute to the development and progression of sarcopenia.
Indeed, Bmal1 deficiency in preclinical models impairs circadian
behavior and accelerates aging, leading to muscle atrophy, reduced
strength, disrupted sarcomere organization, and decreased
mitochondrial content, all key features of sarcopenia (Kondratov
et al., 2006; Christian and Benian, 2020; Gao et al., 2020).
Consistent with these observations, Yang et al. (2016) reported that
the absence of BMAL1 in mice not only disrupts circadian rhythms but
also increases oxidative stress, impairs mitochondrial function, and
perturbs metabolic pathways, pointing to a clock-independent role for
BMAL1 inmaintaining redox balance, proteostasis, and tissue integrity.
Strikingly, brain-specific restoration of Bmal1 failed to rescue normal
lifespan, underscoring the essential contribution of peripheral Bmal1 to
longevity (Yang et al., 2016). While this finding was discussed in the
context of peripheral clock function, we speculate that it may also
suggest that the central pacemaker’s role is less dominant than
traditionally assumed, and that peripheral clocks can, under certain
conditions, exert substantial autonomous control over specific
physiological functions or even over organismal homeostasis.

This pronounced vulnerability around the seventh decade of life
highlights the transition into a phase of systemic time-fragility,
where the decline in circadian robustness intersects with the
acceleration of aging phenotypes. As the circadian system
becomes increasingly desynchronized, both centrally and
peripherally, the organism’s capacity to adapt to environmental
and physiological stressors is diminished. This vulnerability is not
merely the result of internal degeneration, but is also shaped by
lifelong interactions with the external environment. Indeed, the
aging circadian system becomes more susceptible to exogenous
influences, suggesting that exposures accumulated across a
lifetime may converge with intrinsic molecular changes to further
destabilize temporal homeostasis. This interplay sets the stage for
understanding aging not only as a biological process but also as an
environmentally modulated trajectory, one that unfolds under the
constant influence of time-bound cues and stressors. Within this
framework, we propose a new concept called the chrono-exposome,
in which external cues play a particularly relevant role in the
biology of time.

3 Chrono-Exposome and aging

The concept of the chrono-exposome encompasses the
cumulative impact of environmental stressors on homeostatic
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TABLE 1 Chrono-exposome factors affecting the circadian system and associated with age-related outcomes.

Life stage Chrono-exposome
factors

Circadian impact Aging-like related
outcome

References

Perinatal and Early
Childhood

Maternal circadian disruption Alters fetal clock development
Impaired circadian gene expression
rhythms

Reduced adult body mass
Social avoidance
Impaired metabolic gene expression
rhythms

Smarr et al. (2017)
Varcoe et al. (2013)

Artificial lighting in neonatal
units

Disruption of light-dark entrainment Abnormal circadian behavior
Irregular sleep-wake patterns
Reduced weight gain
Neurologic complications

Kok et al. (2024)
Miller et al. (1995)
Van Gilst et al. (2023)

Feeding schedule
misalignment

Impairs metabolic clock entrainment Increase in body mass index and
adiposity

Cheng et al. (2016), Van Gilst
et al. (2023)

Erratic sleep routines, screen
exposure

Weakens circadian consolidation Staples et al. (2021)

Inadequate temperature
regulation

Disrupts core body temperature
rhythm entrainment

Poor sleep quality
Less memory consolidation

Berger et al. (2023)

Noise exposition Circadian rhythm disruption
Poor sleep quality

Cognitive impairment Li et al. (2023)

Childhood &
Adolescence

Early school start times Induces chronic sleep deprivation and
misalignment

Higher risk of risk of obesity and type
2 diabetes
Elevated blood pressure and weakened
immune function

Minges and Redeker (2016)

Evening screen exposure Delays melatonin secretion
Inconsistent sleep patterns

Brain development, potentially
influencing cognitive aging later in life

Telzer et al. (2015)

Social jetlag Leads to circadian misalignment Mood and sleep disorders
Increased body mass index
Insulin resistance
Elevated triglyceride levels

Magnusdottir et al. (2024)
Pompeia et al. (2023)

Indoor lifestyle Reduces exposure to synchronizing
morning light (reduce melatonin)

Westwood et al. (2023)

Irregular dietary patterns Disrupts peripheral clocks Metabolic imbalances
DNA methylation of metabolic
circadian genes
Insulin resistance

Asher and Sassone-Corsi (2015)
Jansen et al. (2021)
Garaulet et al. (2022)

Physical inactivity Weakens activity-related circadian cues
Impaired muscle-Brain Crosstalk via
Irisin and BDNF

Metabolic and hormonal imbalance Zsuga et al. (2018)

Adulthood Night/rotating shift work
Jet lag (frequent travel)

Major disruption of central and
peripheral clocks
Attenuated Amplitude of Rhythms
Melatonin suppression

Type 2 diabetes/metabolic syndrome
Cardiovascular Dysfunction
Disrupted DNA repair
Desynchronized cell-cycle clock genes
Disrupted NAD+ biosynthesis
Cognitive decline
Immune dysregulation
Cancer risk
Premature cellular and organismal
aging (+1.3 years biological age
acceleration)
Sleep disturbances
Reproductive aging

Shen et al. (2024)
Caravia et al. (2022)
Allada and Bass (2021)
Yang et al. (2024)
Ashimori et al. (2021)

Chronic social jetlag Recurrent misalignment of biological
and social time

Type 2 diabetes/Obesity Roenneberg et al. (2012)
Roenneberg (2023)

Artificial light at night Suppresses melatonin and blunts
circadian amplitude

Cancer risk (hormone-dependent) Palomar-Cros et al. (2024)

Nocturnal noise pollution Disrupts sleep quality and circadian
stability
High cortisol
Circadian clock genes dysregulation

Inflammation and oxidative stress
DNA methylation changes

Daiber et al. (2022)
Arregi et al. (2024)
Hahad et al. (2025)
Thacher et al. (2024)

(Continued on following page)
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processes throughout an individual’s life, particularly through their
effects on the circadian system and, consequently, on the
physiological functions it regulates. Across the entire lifespan,
global exposures such as seasonal photoperiod changes,
urbanicity, noise, social jetlag, sedentary indoor lifestyles, erratic
feeding schedules, poor sleep routines, artificial light, psychosocial
stress, and endocrine-disrupting chemicals pose chronic threats to
circadian stability, potentially accelerating aging and disease
Nahmod et al., 2019; Huang et al., 2024) (Table 1). It has been
observed that the exposure to circadian entrainers, such as light,
food, stress and exercise at the inappropriate time, i.e., during the
rest phase, can shape the circadian system at the molecular level
(Wolff and Esser, 2012; Bolsius et al., 2021), altering molecular clock
expression in the suprachiasmatic nucleus and peripheral organs,
and affecting metabolic processes. Among the different effects, it can
increase oxidative stress and contribute to tissue damage (Li et al.,
2023; Makris et al., 2023; Ruan et al., 2021). Through this
interaction, circadian entrainers, although essential for life, have
the potential to shape different signatures of aging depending on
their timing and the life stage.

In modern human societies, irregular exposure to circadian
entrainers, as happens in shift work, is a common practice. This
practice has been linked to the disruption of internal circadian clocks
with external time cues, leading to a phenomenon known as chronic
jetlag (Makris et al., 2023). This misalignment affects nearly half of
the population and is associated with increased risks of
cardiovascular disease, obesity, diabetes, and cancer; conditions
commonly linked to aging (Covassin et al., 2016; Laermans and
Depoortere, 2016; Albrecht, 2017). The disruption of circadian
rhythms can induce oxidative stress in cells via Clock and Bmal1,
important regulators of cellular senescence in vivo, a state in which
the balance between ROS and antioxidants is disturbed (Yuan et al.,
2017; Makris et al., 2023). At baseline levels, ROS support normal
cellular functions, but when in excess, they can damage
macromolecules such as lipids, DNA, and proteins (Sies, 2018),
triggering cellular senescence. In this state, cells cease to proliferate
and adopt a senescence-associated secretory phenotype, releasing
inflammatory factors, including IL-6, TNF-α, CCL2, CXCL1, and
matrix metalloproteinases (Ahmed et al., 2022; Zhang et al., 2022;

Basisty et al., 2020). This phenomenon, alongside cellular
senescence, contributes to inflammaging, a broader concept
referring to the chronic, low-grade inflammation that arises with
aging. Inflammaging plays a causal role in the aging process by
promoting immunosenescence, mitochondrial dysfunction, and
microbiome alterations (Liguori et al., 2018). However, other
mechanisms, such as the dampening of the rhythmic expression
of circadian genes in immune cells, may also contribute to the aging-
associated inflammation (Blacher et al., 2022).

Artificial light at night (ALAN) has become pervasive in modern
societies disrupting natural circadian rhythms. One well-known
mechanism is its suppression of melatonin production (Lewy
et al., 1980). Melatonin suppression leads to increased oxidative
stress and DNA damage, mediated by pathways involving the
p53 tumor suppressor and the NF-kB signaling cascade, which
are implicated in cancer and metabolic disorders (Stevens and
Zhu, 2015; Wang et al., 2015; Jiang et al., 2016; Stephenson et al.,
2021). However, melatonin plays additional roles, acting as a
scavenger of free radicals and as a chelating agent for heavy
metals (Limson et al., 1998). For example, in human placental
mitochondria, melatonin suppresses iron-dependent production
of ROS (Milczarek et al., 2010). In addition, in a recent study,
melatonin has been found to exert protective effects against hepatic
fibrosis through melatonin receptor 2 activation, leading to the
upregulation of Bmal1 and antioxidant enzyme pathways (Kim and
Cheon, 2024). The repetitive suppression of melatonin cycles by
ALAN thus has the potential to accelerate aging through DNA
damage, while melatonin supplementation has repeatedly been
found to attenuate oxidative stress damage in age-related diseases
like diabetes (Mohammadpour Fard et al., 2024). Interestingly, new
avenues are emerging in our understanding of how ALAN
contributes to other pathophysiological scenarios, including
obesity, type 2 diabetes, and broader metabolic disturbances.
These effects are likely mediated through alterations in appetite-
regulating hormones, leading to increased food intake, a preference
for energy-dense foods, and even gut dysbiosis (Vujović et al., 2022;
Thaiss et al., 2014). When it comes to food preferences, eating
behavior is orchestrated by metabolic, hedonic, and circadian
pathways, which together regulate not only how much and what

TABLE 1 (Continued) Chrono-exposome factors affecting the circadian system and associated with age-related outcomes.

Life stage Chrono-exposome
factors

Circadian impact Aging-like related
outcome

References

Alcohol/caffeine at late hours Alters sleep timing (reduced REM)
Circadian misalignment
Circadian hormone profiles
Melatonin suppression

Hormonal imbalance
Cognitive dysfunction

Song and Walker (2023)

Older Adults/Aging Reduced morning light
exposure

Dampens SCN-driven rhythms
Phase-shift
Impact on hormone regulation
Disrupted sleep-wake cycles

Lok et al. (2023)
Barroggi Constantino et al.
(2025)

Increased sedentarism Reduces physical Zeitgeber input Short telomeres
Cardiometabolic risk

Stenbäck et al. (2019)
Leskinen et al. (2021)

Polypharmacy/medication
timing

Alters rhythmic physiology and
pharmacodynamics

Chronotherapy effects altered Pazan and Wehling (2021)

Social isolation/retirement Loss of social Zeitgebers Impact the regulation of the described
13 hallmarks of aging

Kroemer et al. (2025)
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we eat, but also when we eat. Alterations in the expression of clock
genes within these brain regions result in heightened dopamine
release in response to high-calorie foods, thereby enhancing their
rewarding properties and driving a preference for energy-dense
foods during periods of circadian disruption (Bainier et al., 2017).

On the other hand, the timing of food intake is a critical factor
influencing circadian rhythms. Research on time-restricted feeding
(TRF) indicates that aligning eating patterns with natural circadian
cycles can improve metabolic health and potentially slow age-related
decline (Longo and Panda, 2016; Ezpeleta et al., 2024). In older
humans (Lages et al., 2024; Ezzati et al., 2025) and rodents (Milan
et al., 2024), restricting food intake to the active phase of the
photoperiod improved markers of oxidative stress, suggesting
that eating during the rest phase can result in increased oxidative
stress damage compared to eating during the active phase. In a
rodent model of liver ischemia-reperfusion, TRF for 8–10 h during
the active phase, compared to 24 h food access, improved tissue
regeneration, reduced pro-inflammatory (like IL-6) and augmented
anti-inflammatory (like IL-10) markers, prevented ROS production
and increased systemic β-hydroxybutyrate (BHB) (Ren et al., 2019).
Fasting decreases glycogen stores in the liver, and cells shift from
carbohydrate to lipid and ketone metabolism, increasing BHB levels
and blocking the NLRP3 inflammasome (Youm et al., 2015), which
is implicated in age-related functional decline (Youm et al., 2013).
Conversely, TRF during the rest phase in rodents (Ye et al., 2024),
and eating during the late active phase in humans (Allison et al.,
2021) exacerbated systemic insulin resistance, a common feature in
aged populations. Regarding the long-term effects, a study in a
rodent model found that restricting feeding to the rest phase
promoted hepatic lipid accumulation by suppressing hepatic
miR-27b-3p, thereby enhancing PPARγ activity and upregulating
CD36-mediated lipid transport into the liver (Tsurudome et al.,
2022). These results suggest that lifelong exposure to misaligned
eating patterns might potentially accelerate aging, but long-term
experimental approaches are required to assess these changes.

Finally, the benefits of physical exercise in slowing the aging
process have been extensively studied (Garatachea et al., 2015).
However, exercise also elicits distinct effects depending on the time
of the day, with morning exercise benefiting lipolysis, and evening
exercise muscle mass (Gabriel and Zierath, 2019; Kim et al., 2023).
At the molecular level in rodent models, exercise entrains the core
clock by shifting expression patterns of Per2 (Kemler et al., 2020),
and can prevent oxidative damage derived frommelatonin deficit or
circadian disruption (Jana et al., 2020; Gu et al., 2024). In humans, it
is challenging to determine the effects of exercise during normal
sleep time. Rodent models of exercise during the rest phase are also
limited. It has been reported that exercise during the rest phase,
compared to the active phase, increases systemic energy expenditure
without enhancing lipid oxidation according to the muscle
transcriptome, an effect mediated by the fed status (Sato et al.,
2019; Sato et al., 2022; Pendergrast et al., 2024). However, the effects
of exercise during the rest phase on oxidative stress and tissue
damage require further exploration.

Lifelong environmental exposures, such as light pollution,
nutrition timing, and shift work, play crucial roles in shaping
circadian health. Understanding the circadian molecular and
physiological impacts of these factors can offer valuable insights
into the mechanisms of aging. While targeting lifestyle and chrono-

exposome factors holds promise for promoting healthy aging, the
bidirectional relationship between circadian disruption and aging
remains incompletely understood. To bridge this gap, there is an
urgent need for both preclinical and clinical studies that clarify how
environmental timing influences age-related decline.
Complementing this environmental perspective, insights from
biological extremes, such as premature aging syndromes and
exceptionally long-lived species, offer powerful models to dissect
the resilience or vulnerability of the circadian system in aging.

Themolecular architecture of the circadian clock is a deep-rooted
legacy of life’s earliest adaptation to Earth’s rotation. Organisms
began developing intrinsic timekeeping mechanisms over 2.5 billion
years ago, with cyanobacteria evolving the KaiABC protein clock
system, that regulated global gene expression in alignment with day/
night cycles (Swan et al., 2018; Jabbur and Johnson, 2022). In
animals, this ancestral timekeeping framework evolved into
transcription–translation feedback loops involving core genes like
Clock, Bmal1, Per, and Cry, which share homology with ancient
microbial photoreceptors and transcription factors (Stanton et al.,
2022). This remarkable evolutionary continuity underscores the
fundamental role of circadian timing in coordinating whole body
physiology including metabolic homeostasis, DNA repair, and
protein quality control, key processes implicated in aging (López-
Otín et al., 2023a). By situating premature aging syndromes and long-
lived species within this evolutionary framework, we highlight how
these extreme models can reveal whether circadian resilience or
vulnerability meaningfully influences longevity. However, it is
remarkable how little primary evidence exists regarding circadian
system regulation in these species and, consequently, about its
potential relationship with their long or short lifespan. In the
following sections, we summarize the limited literature available
on their circadian systems and propose possible correlations
between circadian regulatory pathways and aging, with the aim of
opening new avenues for future research.

4 Progeroid syndromes and circadian
system interactions

Aging studies have explored the major regulatory pathways
involved in this complex process. The Hallmarks of Aging,
published in 2013 by López-Otín and colleagues, and
subsequently updated into their “expanding universe” a decade
later, has ended on 14 hallmarks of aging providing an overview
of the key biological features that influence aging (López-Otín et al.,
2013; López-Otín et al., 2023b; Kroemer et al., 2025). Further
attempts to understand the intricate connections between aging
and the circadian system were reviewed in Impact of the Circadian
Clock on the Aging Process by Fonseca Costa and Ripperger in
2015 and later by Welz and Aznar-Benitah (Fonseca Costa and
Ripperger, 2015; Welz and Benitah, 2020). Premature aging
syndromes, such as Hutchinson-Gilford progeria syndrome
(HGPS), or other progeroid syndromes including Werner
syndrome or Néstor-Guillermo progeria syndrome, offer unique
windows into the mechanisms of accelerated aging. They serve as
valuable models for exploring the interplay between aging and
circadian regulation, precisely at the moment when both times
meets, out of time.
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Hutchinson-Gilford progeria syndrome is a premature aging
disorder caused by mutations in the LMNA gene, that produce a
defective protein called progerin leading to a disorganized nuclear
architecture (Eriksson et al., 2003). This syndrome is characterized
by accelerated aging, with affected individuals displaying features
such as hair loss, joint abnormalities and cardiovascular disease,
with a reduced lifespan. Research into HGPS hallmarks could help
explore the potential role of circadian dysfunction in its pathology
and identify crosstalk between both biological time systems.
Genomic instability, a hallmark of HGPS, may be worsened by
circadian disruption of DNA repair pathways involving Sirt6 and
Bmal1 through nicotinamide adenine dinucleotide (NAD+), a
seminal metabolite in aging and circadian system regulation
(Kolinjivadi et al., 2021; Toiber et al., 2013; Nakahata et al.,
2009). Similarly, the epigenetic alterations observed in HGPS,
including loss of heterochromatin and aberrant histone
modifications, likely impair the circadian regulation of chromatin
accessibility and gene expression (Oh et al., 2019). The disorganized
nuclear architecture in HGPS, driven by progerin, may interfere
with the spatial organization of circadian gene loci, compromising
rhythmic transcription. Studies revealed that CLOCK formed
complexes with nuclear lamina proteins and KAP1, thus
maintaining heterochromatin architecture and stabilizing
repetitive genomic sequences (Liang et al., 2021). Mitochondrial
dysfunction and oxidative stress, common in HGPS cells, could be
exacerbated by disruption of circadian control over mitochondrial
dynamics and metabolism via NAD + -dependent pathways. Loss of
proteostasis, due to impaired autophagy and accumulation of
misfolded proteins, may also reflect a breakdown in circadian
regulation of cellular quality control systems. Proteostasis, under
the regulation of the circadian system (via mTOR, and proteasome
activity) (Juste et al., 2021) reciprocally induces the degradation of
core circadian proteins like BMAL1, contributing to age-associated
circadian disruptions and accelerated aging phenotypes (Lipton
et al., 2017; Khapre et al., 2014a). Additionally, stem cell
exhaustion and premature cellular senescence in HGPS resemble
age-associated decline in circadian coordination of stem cell renewal
and senescence-associated gene expression. Vascular dysfunction, a
critical cause of morbidity in HGPS, is linked to circadian regulation
of endothelial tone and inflammation (Kunieda et al., 2008).
Together, these features underscore a possible bidirectional
relationship between nuclear envelope defects and circadian
misalignment in the pathogenesis of HGPS.

Other progeroid syndromes, while mechanistically distinct from
HGPS, may also involve circadian alterations. In Néstor–Guillermo
Progeria Syndrome (NGPS), caused by mutations in BANF1
(encoding BAF1), loss of BAF disrupts nuclear architecture and
chromatin organization without progerin accumulation (Cabanillas
et al., 2011). Although circadian rhythms have not been directly
studied in NGPS, BAF’s interaction with MAN1, a nuclear envelope
protein that binds the BMAL1 promoter, and its role in chromatin
tethering suggest potential circadian disruption (Zhang et al., 2015;
Brunet et al., 2019). Similar gaps exist in Werner syndrome, a
segmental progeria caused by mutations in WRN, a gene
involved in DNA repair, telomere maintenance, and epigenetic
stability (Milosic et al., 2024). While direct links between WRN
and core circadian genes remain elusive, overlapping pathways such
as chromatin remodeling, metabolic regulation, and epigenetic

modifications, all influenced by circadian clocks, indicate possible
crosstalk (Bellet and Sassone-Corsi, 2010; Koike et al., 2012; Chang
and Guarente, 2013; Pacheco-Bernal et al., 2019; Acosta-Rodríguez
et al., 2022).

Collectively, these observations point to a potential bidirectional
relationship among nuclear envelope defects, circadian
misalignment, and the accelerated aging phenotypes observed in
progeroid syndromes, highlighting the need for direct studies on
circadian system integrity in these conditions.

5 Circadian rhythms and long-
lived animals

The evolutionary strategies that long-lived species have
developed to couple aging with circadian clock homeostasis could
shed light on the interaction between biological processes. Although
this remains a complex and somewhat controversial area of study,
many aged animal tissues exhibit dampened rhythms characterized
by reduced amplitude, increased fragmentation, and impaired
stability. Consequently, the expression of genes under circadian
control, including those involved in metabolism, is also affected
(Nakamura et al., 2016; Wallace et al., 2020; Cai et al., 2023; Masuda
et al., 2023; Wolff et al., 2023; Buijink et al., 2024). Understanding
whether rhythms in long-lived animals maintain their amplitude
and acrophase, and how they achieve this, could help unravel the
relationship between aging and the temporal dynamics of various
biological pathways. Also, species adapted to extreme photoperiods
demonstrate a high degree of behavioral plasticity and not only
reveal how circadian rhythms adjust to challenging environments
but also provide insights into the resilience of the biological clock
under environmental stress, identifying mechanisms that promote
greater circadian stability and, consequently, help delay aging. Since
the circadian system can be entrained and stabilized by external
cues, this field offers a valuable opportunity to explore new avenues
for understanding the aging process. In this section, we will explore
the strategies and evolutionary insights of long-lived animals such as
the naked mole-rat, cavefish, and whales, to open new perspectives
in the chrono-aging process.

5.1 The naked mole-rat

The naked mole-rat (H. glaber), a small rodent that strictly
inhabits subterranean life, is known for its exceptional lifespan of up
to 37 years, making it the longest-lived rodent species (Jarvis, 1981;
Bennett and Faulkes, 2000; Buffenstein, 2005). This extraordinary
animal with no age-related increase in mortality risk and negligible
senescence, exhibits high fertility while maintaining proteostasis,
genomic stability, resistance to cancer, and good cardiovascular,
neuronal, and metabolic health, even in old age (Buffenstein, 2008;
Park et al., 2008; Liang et al., 2010; Edrey et al., 2011; Ruby et al.,
2018; Seluanov et al., 2018; Shepard and Kissil, 2020; Hadi et al.,
2021; Oka et al., 2023).

This rodent has developed several morphological and
physiological adaptations to live in complete darkness, including
insensible eyes to light, small pupils with no pupillary response, and
a thin optic tract, making it independent of the external light (Peichl

Frontiers in Aging frontiersin.org09

García Cobarro et al. 10.3389/fragi.2025.1646794

https://www.frontiersin.org/journals/aging
https://www.frontiersin.org
https://doi.org/10.3389/fragi.2025.1646794


et al., 2004; Buffenstein, 2005; Crish et al., 2006). This fact is
consistent with the low expression of the c-fos gene in the SCN,
in contrast to what is observed in animals with light-sensitive eyes
and well-developed retinas. In addition, the melatonin pathway is
impaired due to pineal atrophy, low or undetectable expression of
genes involved in melatonin synthesis, and the presence of non-
functional melatonin receptors (Kim et al., 2011; Moqrich, 2014).

Nonetheless, due to the high evolutionary conservation of the
molecular clock, comparative analyses between the naked mole-rat
and mice revealed that all major clock genes (Bmal1, Clock, Per1/2,
Cry1/2, Rev-Erbα/β, and Ror-s) are present in the naked mole-rat’s
reference genome (http://www.naked-mole-rat.org/), and are
expressed in liver tissue, indicating that its circadian clock
remains functional (Ghosh et al., 2021). However, although both
species display rhythmic gene expression, their temporal patterns
are not aligned, suggesting that the regulation of core clock genes
may have evolved under distinct phase rules compared to mice,
possibly due to internal factors or because the primary entrainer is
something other than light.

Mitochondrial dysfunction and deregulated nutrient sensing are
central to aging (López-Otín et al., 2013), with growing evidence of a
bidirectional regulation between the circadian clock and metabolic
pathways, particularly glucose metabolism and mTOR signaling
(Khapre et al., 2014a; Khapre et al., 2014b). Bmal1 influences
insulin signaling and glucose homeostasis (Mauvoisin et al.,
2014) and has been identified among 12 key longevity-associated
genes in long-lived species (Yu et al., 2021). mTOR, in turn,
regulates Bmal1 expression, and disruption of this feedback loop
during aging may impair metabolic control, weaken circadian
robustness, and accelerate aging (Lipton et al., 2017; Cao, 2018;
Ramanathan et al., 2018). Notably, these pathways are differentially
expressed across aging in naked mole-rats. The expression of
glycolytic and gluconeogenic enzymes is highly synchronized
with the circadian molecular clock, whereas in mice, these
rhythms are less coordinated. This supports the idea that naked
mole-rats may have evolved more precise temporal regulation and
more efficient metabolic control mechanisms adapted to their
unique subterranean lifestyle (Ghosh et al., 2021). This
robustness of glucose metabolism coincides with an increase in
mTORC2 activity in nakedmole-rats. Moreover, it has been shown a
reduction in mTORC1 activity, combined with the enhanced
synchronization of enzymes involved in glucose homeostasis. It
has been proposed that the suppression of mTORC1 activity extends
lifespan in multiple species, including mice, and that mTORC1 is
one of the main drivers of aging and age-related diseases (Harrison
et al., 2010; Miller et al., 2011; Ferrara-Romeo et al., 2020). In
contrast, the role of mTORC2 in aging remains less defined, with
studies showing that reduced mTORC2 activity shortens lifespan in
mice (Nojima et al., 2013; Chellappa et al., 2019). When mTORC1 is
suppressed, compensatory mTORC2 upregulation can maintain
glucose homeostasis (Hagiwara et al., 2012) and may contribute
to lifespan extension in rodents (Dominick et al., 2015). Notably, the
elevated mTORC2 activity in naked mole-rats may support both
tightly synchronized glucose metabolism and their exceptional
longevity despite their small body size.

Thus, proper modulation of glucose and mTORC1-2
pathways suggests that it may enhance the robustness of
circadian rhythms, as happens in the naked mole-rat and slow

down the aging process by improving metabolic health and
reducing cellular damage.

5.2 Cavefish

Subterranean environments are unique ecological systems
characterized by the absence of light, high humidity, and
constant temperature, resulting in a highly stable microclimate
(Biswas, 2010; Culver, 2014; Lunghi et al., 2015; Culver and
Pipan, 2019; Mammola, 2019). When surface-dwelling species
colonize these environments, they often undergo phenotypic
changes (Bilandžija et al., 2020; Lunghi and Zhao, 2020) such as
loss of pigmentation and eye degeneration (Howarth andMoldovan,
2018), along with other adaptive traits like slower growth, reduced
metabolic rate, and decreased investment in reproduction, all of
which have been linked to increased lifespan, as in cavefish that live
three times longer than surface fish populations (Poulson, 1963;
Flatt and Schmidt, 2009).

The circadian system in cavefish also displays unique features
that may be related to their increased lifespan (Voituron et al., 2011;
Lunghi and Bilandžija, 2022). In these fishes, circadian rhythms are
suppressed in their natural habitat due to the absence of light, but
they can be restored under artificial light-dark cycles (Carlson and
Gross, 2018) or through other environmental synchronizing factors
(Yoshizawa et al., 2010; Moran et al., 2014; Blin et al., 2020; De Souza
et al., 2024), taking advantage of the enhanced sensitivity of their
mechanosensory and chemosensory systems (Bilandžija et al., 2012;
Jeffery, 2009; Gonzalez et al., 2018). In these species, the
synchronization of circadian rhythms may be influenced by other
external zeitgebers, due to the interaction between the internal
biological clock and associative memory through time–place
learning (Mulder et al., 2013).

In A. mexicanus, one of the most widely used model species in
cave biology, studies during the embryonic stage have shown that
light-induced activation of the molecular clock genes Cry1 and Per2
is delayed in cave-dwelling populations compared to their surface
counterparts (Frøland Steindal et al., 2018). In adults, these genes are
still present but show significantly higher baseline expression levels
than in surface fish, even without light exposure. This suggests that
the core circadian clock mechanism in this species may be
suppressed in response to an overactivation of the light input
pathway and the systems responsible for clock synchronization,
as part of the fish’s adaptation to the absence of light (Beale et al.,
2013). The elevated baseline expression levels of Per2 in cave-
dwelling Astyanax mexicanus may also represent an adaptive
advantage, as they trigger significantly higher expression of genes
such as CPD/PHR and DDB2, which encode DNA repair proteins,
helping to reduce the likelihood of harmful mutations induced by
light. Interestingly, after UV exposure, cavefish show significantly
less DNA damage and therefore greater repair activity compared to
their surface-dwelling counterparts.

The elevated baseline expression of Per2 in cave-dwelling A.
mexicanus may represent an adaptive advantage, as it drives
significantly higher expression of genes such as CPD/PHR and
DDB2, which encode DNA repair proteins (Tamai et al., 2004;
Gavriouchkina et al., 2010; Weger et al., 2011; Beale et al., 2013),
thereby reducing the likelihood of light-induced harmful mutations.

Frontiers in Aging frontiersin.org10

García Cobarro et al. 10.3389/fragi.2025.1646794

http://www.naked-mole-rat.org/
https://www.frontiersin.org/journals/aging
https://www.frontiersin.org
https://doi.org/10.3389/fragi.2025.1646794


Notably, after UV exposure, cavefish exhibit significantly less DNA
damage and greater repair activity than their surface-dwelling
counterparts (Beale et al., 2013), maintaining a higher genome
stability, delaying one of the main hallmarks of aging (López-
Otín et al., 2023a).

5.3 Whales

The bowhead whale (Balaena mysticetus) is notable for its
exceptional longevity, with a lifespan exceeding 200 years (Seim
et al., 2014; Keane et al., 2015). Among the molecular mechanisms
underlying this remarkable lifespan, the circadian system emerges as
a critical component. In fact, Bmal1 gene has been identified as one
of the key genes associated with longevity (Yu et al., 2021). Its
significance lies in its involvement in essential processes such as
DNA repair, immune system regulation, and glucose signaling via
the PI3K-AKT pathway, mechanisms implicated in cancer
prevention and lifespan extension (Zeng et al., 2010; Beker et al.,
2019; Zhang et al., 2023; Wang J. et al., 2025). Moreover, the
evolutionary rate of Bmal1 has been shown to correlate with the
maximum lifespan across species, suggesting that this gene is linked
both to rapid evolutionary processes and to those that promote a
longer life (Yu et al., 2021). In long-lived cetaceans such as the
bowhead whale and the humpback whale, Yin et al. observed that
approximately 50% of the circadian genes analyzed had undergone
accelerated evolution, and more than 60% exhibited species-specific
mutations within their functional domains. This suggests strong
selective pressure on this regulatory network, potentially to support
adaptations such as their characteristic sleep patterns (Yin
et al., 2024).

An example of a circadian adaptation is the FBXL21 gene, which
in cetaceans more efficiently promotes the degradation of the
CRY1 protein. This facilitates whales’ ability to maintain
prolonged wakefulness in one cerebral hemisphere during
unihemispheric sleep, providing them with behavioral flexibility
and sustained alertness in the marine environment (Yin et al., 2024),
factors that directly contribute to their survival and potential for
longevity. Subsequent experiments in zebrafish have validated this
regulation of daytime cytoplasmic accumulation of CRY proteins by
the functional variant of FBXL21 found in cetaceans (Hirano et al.,
2013). Another adaptation that allows for more flexible control of
biological rhythms is a specific mutation identified in the NFIL3
gene. Although NFIL3 normally functions as a transcriptional
repressor of key circadian rhythm genes, in cetaceans its
efficiency in repressing target genes is reduced, and its likelihood
of degradation is increased (Yin et al., 2024). The accumulation of
mutations in other core clock genes such as Clock and DEC2 (Yin
et al., 2024) further suggests an evolutionary convergence in the
reconfiguration of the circadian system. This may reflect an
adaptation toward slower or more controlled aging in these
species by optimizing cellular, endocrine, and metabolic cycles
involved in senescence.

Additionally, genes related to the insulin signaling pathway and
immune response have been shown to be closely linked to longevity
(Yu et al., 2021). In particular, the expression of the insulin receptor
protein, which regulates energy metabolism, has been positively
correlated with mammalian longevity (Ma S. et al., 2016).

Furthermore, insulin pathway-dependent proteinss such as
mTOR, AKT, and PI3K are associated with metabolic
homeostasis, cell cycle regulation, proliferation, cancer, and
longevity (Veilleux et al., 2010; Kenyon, 2011; Xie et al., 2019;
Ramasubbu and Devi Rajeswari, 2023). Moreover, several genes
undergoing accelerated evolution or positive selection in whales and
other long-lived species are involved in the insulin/IGF-1 signaling
pathway, reinforcing the idea that this pathway plays a key role in
lifespan extension.

Behavioral plasticity resulting from these genetic modifications
represents a key adaptive advantage that likely contributes to the
longevity of these marine mammals by enabling more refined
control of their metabolism, neuronal activity, and repair
mechanisms. Thus, the modified circadian system of whales may
function as a central regulator of the aging rate, integrating
environmental, physiological, and behavioral signals.

In summary, studies across highly divergent long-lived species
such as whales, cavefish, and naked mole-rats, have revealed that a
common molecular thread linking the circadian system to extended
lifespan is the regulation of insulin/IGF-1 signaling and glucose
metabolism. This pathway, tightly controlled by core clock
components like Bmal1, appears to be consistently optimized to
enhance metabolic efficiency, preserve energy homeostasis, and
reduce age-related cellular damage. In whales, positive selection
of insulin-related genes and circadian regulators supports metabolic
balance and cancer resistance; in cavefish, adaptations to lightless
environments result in altered circadian gene expression that may
indirectly stabilize energy use and DNA repair; and in naked mole-
rats, precise circadian coordination of glucose metabolism and
distinct mTORC1/2 activity likely contribute to their exceptional
longevity and negligible senescence. Together, these findings suggest
that the evolutionary fine-tuning of circadian control over metabolic
pathways, genome stability, and circadian plasticity by Bmal1 may
be a unifying strategy for lifespan extension across distant
taxa (Figure 4).

6 Chronodisruption and age-
related diseases

Insights from long-lived species offer a valuable evolutionary
perspective on how the circadian system may be optimized to
promote resilience against aging and disease. A recurrent feature
in these organisms is the enhanced coupling between the molecular
clock and key metabolic pathways, including insulin/IGF-
1 signaling, glucose metabolism, and mTOR regulation, which
are centrally involved in human aging and its associated
pathologies, as well as in maintaining DNA integrity. In contrast,
humans exhibit a progressive erosion of circadian robustness with
age, a decline that exacerbates the risk and severity of chronic
diseases by disrupting metabolic, neuronal, and cardiovascular
homeostasis. This reciprocal reinforcement between aging and
chronodisruption establishes a maladaptive cycle. While circadian
rhythms are not defined as a standalone hallmark of aging, their
disruption intersects with multiple established hallmarks, such as
chronic inflammation, mitochondrial dysfunction, epigenetic
alterations, cellular senescence, and particularly psychosocial
isolation, a newly proposed hallmark (Kroemer et al., 2025).
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In this section, we analyze four major aging-related
diseases—neurodegenerative, cardiovascular, metabolic disorders,
and cancer—and explore how the interplay between linear time,
represented by the aging process, and cyclical time, embodied by the
circadian system, shapes their pathophysiology. Our main goal is to
identify the common pathways shared by these two processes, which
could then be studied in depth and targeted in future circadian aging
therapies (Table 2).

6.1 Neurodegenerative diseases

Aging is one of the main risk factors for neurodegenerative
diseases, promoting their onset and progression through reduced
hippocampal neurogenesis, loss of synaptic plasticity, and
inflammaging (Kritsilis et al., 2018; Hou et al., 2019), which is
intensified by age-related increases in astrogliosis and microglial
activation (Iskusnykh et al., 2024). Postmitotic neurons accumulate
signs of senescence, activating pathways that lead to progressive
synaptic dysfunction and neuronal failure. The loss of the
suprachiasmatic nuclei ability to resynchronize in response to
environmental cues adds to these factors, reducing the amplitude

and synchrony of clock genes expression in key regions such as the
prefrontal cortex and hippocampus, which is associated with
cognitive deficits and increased susceptibility to neurological
insults (He et al., 2023).

Circadian misalignment, particularly of the sleep-wake cycle,
has been implicated in the pathophysiology of neurodegenerative
disorders such as Alzheimer’s, Parkinson’s, and Huntington’s
diseases, acting not only as a clinical manifestation but also as an
active driver of disease progression (Videnovic and Zee, 2015; Shen
et al., 2023), by disrupting blood-brain barrier integrity and inducing
neuroinflammation (Lananna and Musiek, 2020; Schurhoff and
Toborek, 2023; Cheng et al., 2024). In Alzheimer’s disease,
prolonged wakefulness promotes β-amyloid (Aβ) production and
the fragmentation of 24 h activity rhythms has proven to be a strong
predictor of Aβ deposition, stronger than total sleep duration (Kang
et al., 2009; Ma Z. et al., 2016; Nguyen Ho et al., 2024), while deep
sleep enhances its glymphatic clearance (Xie et al., 2013). In
Parkinson’s disease, circadian disturbances precede motor
symptoms and are associated with dopaminergic loss and
degeneration of the SCN (Joyce et al., 2018; Stewart et al., 2018),
while in Huntington’s disease, rhythm fragmentation and its
experimental restoration directly modulate the functional and

FIGURE 4
Evolutionary convergence of circadian-aging pathways. Schematic representation of the main interconnected pathways linking aging and the
circadian system in long-lived species. In pink, the naked mole-rat exhibits a robust insulin/glucose signaling pathway, downregulated mTORC1 and
upregulated mTORC2 pathways, and a strong circadian system. In blue, cavefish display enhanced DNA repair activity and dampened circadian rhythms
due to constant external conditions. However, their circadian system remains highly plastic, likely due to an enhanced sensory system. In yellow,
whales exhibit increased DNA repair capacity, robust PI3K/AKT and insulin/IGF-1 signaling pathways, and high behavioral plasticity associated with rapid
Bmal1 evolution. The central gear symbolizes conserved mechanisms potentially involved in lifespan extension and regulated by the circadian system:
insulin/IGF-1 signaling, glucose metabolism, and mTOR pathway modulation.
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TABLE 2 Age-related diseases and their intersection with the circadian system.

Age-related
disease

Circadian disruption
association

Aging-like related
outcomes

Specie References

Neurodegenerative
diseases

Physiological
changes

Sleep fragmentation, reduced
sleep quality and reduced
activation of glymphatic system
SCN desynchronization
Melatonin disturbances
Reduce of clock genes expression

Reduced cortical excitability and
cognitive decline
Loss of GABAergic neurons
Increased Aβ production and
decreased Aβ clearance
White matter reduced volume
and myelin dysfunction
Axonal degeneration, astrocytic
activation, functional disfunction

Mouse and humans Videnovic and Zee
(2015)

Kang et al. (2009)
Ma Z. et al. (2016)

Musiek and
Holtzman (2016)
Lananna and
Musiek (2020)

Saeed and Abbott
(2017)

Genetic alterations BMAL ↓ mean expression in
extra-SCN brain (hippocampus,
cortex); age-dependent
attenuation; loss/dampening of
rhythmicity in some contexts
PER1: epigenetic downregulation
with age in hippocampus and
altered expression
PER2: damped rhythms and
increased fragility ex-vivo in aged
SCN in some studies
REV-ERBα: REV-ERBα deletion/
perturbation modifies daily
microglial function

BMAL1 KO, premature aging:
reduced lifespan, sarcopenia,
cataracts, organ atrophy; aged
↓Bmal1 in hippocampus linked
to impaired neurogenesis and
memory-related decline
Altered PER1/2 linked to
impaired memory and circadian
rhythmicity; SCN PER2 fragility,
reduced robustness of central
clock outputs (behavioral and
physiological rhythm
dampening)
REV-ERBα deletion, increased
microglial phagocytosis and
synaptic loss (hippocampus) and
altered complement expression,
links to synaptic loss/
neuroinflammation relevant to
neurodegeneration/aging

Mouse (KO and aged WT);
hamster; rat; human (reduced
with age reported)
Mouse (SCN, hippocampus),
rat, human post-mortem
(prefrontal cortex)
Mouse (hippocampus,
microglia); human
associations

Kondratov et al.
(2006)

Nakamura et al.
(2015)

Kwapis et al. (2018)
Griffin et al. (2020)
Lee et al. (2023)

Cardiovascular diseases Behavioral
changes by shift
work

Increased cardiovascular risk
profile
Higher prevalence of
hypertension
Dyslipidemia
Central obesity
Acute ischemic events
Elevated inflammatory markers
(IL-6, C reactive protein, TNF-α)
Elevated lood pressure
Shorten lifespan

Higher systolic pressure
Lower diastolic pressure and
widened aortic pulse pressure

Increased collagen and decreased
elastin in the aortic extracellular

matrix

Humans, hamster, mice Hemmer et al.
(2021)

Wong et al. (2015)
Torquati et al.

(2018)
Penev et al. (1998)

Tsioufis et al.
(2008)

Morris et al. (2016)
North and Sinclair

(2012)

Genetic alterations BMAL1 disfunction: impaired
angiogenesis, vascular
remodeling, endothelial
dysfunction, heightened
thrombosis risk, and reduced
eNOS–Akt signaling
Bmal polymorphisms are
associated with hypertension
BMAL1 and REV-ERBα lost of
rhythm: impaired mitochondrial
biogenesis and reduced cardiac
functional reserve, increased risk
of heart failure
Clock gene disfunction impact on
acute myocardial infarction
incidence and extension

Hypertension
Endothelial dysfunction

Higher risk of heart failure

Humans, hamster, mice Lecour et al. (2022)
Takeda and

Maemura (2016)
Costello et al.

(2023)
Crnko et al. (2019)

Lananna and
Musiek (2020)

Anea et al. (2009)
Astone et al. (2023)

Paschos and
FitzGerald (2010)
Alibhai et al. (2014)
Thosar et al. (2018)

Metabolic diseases Behavioral
changes by food
intake

Impaired glycemic control, as
evidenced by elevated HbA1c
levels
Increased risk of T2D
Accumulation of visceral fat
Accelerated β cell failure and
hyperglycemia
Arhythmic secretion of insulin,
incretins, and glucocorticoids

Nakajima et al.
(2017)

Rae et al. (2021)
Xu et al. (2023)
Qian and Scheer

(2016)
Mason et al. (2020)

(Continued on following page)
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behavioral progression of the disease (Fitzgerald et al., 2023; Saade-
Lemus and Videnovic, 2023).

Clock proteins have been directly implicated in neuronal
homeostasis, and their dysfunction has been associated with
synaptic alterations, accumulation of toxic proteins,
inflammation, and neuronal death (Musiek and Holtzman, 2016;
Carter et al., 2021). Aging is accompanied by marked alterations in
the expression and rhythmicity of several core clock genes in the
brain, with consequences that align closely with recognized
hallmarks of brain aging. At the systems level, transcriptomic
profiling in mouse and human brains reveals widespread loss,
phase-shifting, or rewiring of diurnal gene expression programs
with age, changes that correlate with impaired cognition, metabolic
dysregulation, and decreased circadian robustness (Seney et al.,
2019; Wolff et al., 2023; Archer et al., 2024; Ishikawa et al., 2025;
Wang L. et al., 2025). In mice, Bmal1 promotes the expression of
antioxidant enzymes and plays an autonomous role in maintaining
neural integrity, such that its reduction induces oxidative stress,
neuroinflammation, and synaptic dysfunction independently of
behavioral rhythmic changes (Griffin et al., 2020; Barone et al.,
2023; Iweka et al., 2023; Kanan et al., 2024). Its expression declines in
extra-suprachiasmatic- nucleus regions such as the hippocampus
and cortex in aged rodents and humans, a change linked to impaired
neurogenesis, memory deficits, and, when genetically ablated,
premature aging phenotypes including sarcopenia, cataracts, and
reduced lifespan (Kondratov et al., 2006). Per2 rhythms in the SCN
show dampened amplitude and greater fragility ex vivo in aged mice,
while Per1 can be epigenetically downregulated in the aged
hippocampus, both changes associated with reduced robustness
of circadian outputs and cognitive decline (Nakamura et al.,
2015; Kwapis et al., 2018). Rev-erbα has shown neuroprotective
properties in Parkinson’s disease, as the loss of its rhythmicity in the
substantia nigra of affected patients is associated with exacerbated

microglial activation and increased inflammatory markers,
conditions that are attenuated following pharmacological
reactivation of Rev-erbα (Kou et al., 2022). Its dysregulation in
the aged hippocampus and microglia enhances synaptic loss and
microglial phagocytosis through complement pathway
upregulation, linking circadian disruption to neuroinflammation
and neurodegeneration (Griffin et al., 2020; Lee et al., 2023). Rev-
erbα In Alzheimer’s disease, altered expression of clock genes is
accompanied by increased Aβ deposition, tau
hyperphosphorylation, and poorer performance in memory tests
in animal models (Niu et al., 2022). Additionally, the circadian clock
regulates the inflammatory and stress-response systems via the
hormonal axis, promoting increased cortisol secretion, which,
through feedback mechanisms, destabilizes the clock itself. This
cycle has been associated with early phases of neurodegeneration,
preceding overt cognitive symptoms.

Thus, a vicious cycle is established in which aging, while
imposing neurological changes intrinsic to advanced age and
increasing susceptibility to circadian disturbances, also
contributes to the worsening of chronodisruption by impairing
the SCN’s ability to synchronize with environmental stimuli.
Clock gene dysregulation, driven by both aging and circadian
misalignment, exacerbates this scenario by compromising
detoxification processes, immune control, synaptic stability, and
the synchronization between central and peripheral brain structures.

6.2 Cardiovascular diseases

Aging promotes progressive structural and functional
alterations in cardiovascular physiology, leading to increased
arterial stiffness (De La Maza-Bustindui et al., 2025), endothelial
dysfunction (Donato et al., 2018), reduced heart rate variability

TABLE 2 (Continued) Age-related diseases and their intersection with the circadian system.

Age-related
disease

Circadian disruption
association

Aging-like related
outcomes

Specie References

Genetic alterations CLOCK polymorphisms:
associated with obesity,
hyperglycemia and higher
prevalence of T2D
CLOCK mutation: Pancreatic β
cell failure, leading to hypo-
insulinemia and hyperglycemia
Bmal1, PER1/2 mutation: Glucose
intolerance and hyperglycemia
BMAL1 deficiency: β cell failure
via oxidative stress-induced
mitochondrial uncoupling
BMAL1 disfunction: dyslipidemia

Increased glucose intolerance
Altered glucocorticoids secretion
Altered plasma adipokine levels

and consecutive insulin
resistance, due to adipose tissue

dysfunction

Corella et al. (2016)
Rakshit et al. (2014)

Maury (2019)
Shimba et al. (2011)
Elahi et al. (2002)
Lananna and
Musiek (2020)
Zhao and Yue

(2024)
Sen et al. (2023)
Tran et al. (2024)

Shared mechanisms
across diseases

Reduced circadian amplitude and
plasticity

Reduced mitochondrial function
Reduced autophagy
Inflammaging
Increased ROS production

Massudi et al.
(2012)

Imai and Guarente
(2014)

Yamaguchi and
Otsu (2012)

Palmer et al. (2025)
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(Natarajan et al., 2020), and declining ventricular function
(Westhoff et al., 2024), all of which are associated with the loss
of cardiomyocytes, accumulation of fibrosis, and reduced sensitivity
to hemodynamic stress, factors that compromise the heart’s ability
to adapt to physiological demands (North and Sinclair, 2012). As
aforementioned, SCN exhibits a decline in rhythmic robustness with
advancing age, characterized by reduced amplitude, consistency,
and synchronization of biological rhythms, which impairs
synchronization between central and peripheral clocks as well as
between the organism and its environment (Crnko et al., 2019).
Moreover, aging is associated with inflammaging, which chronically
and systemically impairs endothelial function, promotes oxidative
stress, and alters vascular responses to homeostatic stimuli, thereby
increasing susceptibility to cardiovascular events.

The integrity of the cardiovascular system substantially depends
on the proper temporal organization of its hemodynamic, metabolic,
and autonomic processes. This dependence is particularly evident in
the circadian nature of cardiovascular patterns, such as the blood
pressure rhythm, which displays a nocturnal dip, and in the
increased incidence of critical cardiovascular events during the
early morning hours. Among the physiological alterations
frequently described in this context, the non-dipping blood
pressure pattern is associated with increased arterial stiffness,
nocturnal sympathetic overactivity, and the activation of
subclinical inflammatory pathways (Tsioufis et al., 2008). This
pattern represents an independent prognostic marker that
demonstrates potential reversibility through chronobiological
realignment interventions, suggesting a possible causal link (Uzu
et al., 2006).

Echoing these physiological patterns, individuals exposed to
circadian misalignment, such as night-shift workers, exhibit a
significantly increased cardiovascular risk profile, with a higher
prevalence of hypertension, dyslipidemia, central obesity, and
acute ischemic events (Wong et al., 2015; Torquati et al., 2018;
Hemmer et al., 2021). Controlled laboratory studies show that
transient circadian–behavior misalignment elevates inflammatory
markers (IL-6, C reactive protein, TNF-α) and blood pressure, and
impairs glucose regulation, changes linked to cardiovascular risk
(Morris et al., 2016). In animal models, jetlag protocols induced a
shortened lifespan by 11% in cardiomyopathic hamsters and impair
post–myocardial infarction recovery in mice (Penev et al., 1998;
Alibhai et al., 2014; Thosar et al., 2018).

Genetic association studies further suggest that variants in the
Clock gene may modulate cardiovascular risk in elderly individuals
through interactions with behavioral factors such as dietary patterns
and chronotype, underscoring the clinical relevance of the interplay
between aging, circadian rhythm, and cardiometabolic health
(Corella et al., 2016). The circadian machinery rhythmically
regulates the expression of genes involved in cardiovascular
homeostasis, including endothelial, oxidative, and metabolic
functions (Takeda and Maemura, 2015; Crnko et al., 2019).
Bmal1 regulates anti-inflammatory and antioxidant pathways
essential for maintaining vascular tone and preventing
endothelial dysfunction. Its impairment leads to reduced
expression of antioxidant enzymes, accumulation of reactive
oxygen species, and disruption of nitric oxide regulation, thereby
promoting atherogenesis, increasing coronary instability, and
elevating the risk of acute myocardial infarction (Takeda and

Maemura, 2015; Crnko et al., 2019; Costello et al., 2023). In
mouse models, genetic disruption of the core clock gene Bmal1,
global or endothelial-specific knockout, results in impaired
angiogenesis, vascular remodeling, endothelial dysfunction,
heightened thrombosis risk, and reduced eNOS–Akt signaling,
hallmarks of vascular aging (Anea et al., 2009; Paschos and
FitzGerald, 2010; Astone et al., 2023). Clock, Per2, and Cry1/
Cry2 mutant mice lose normal blood pressure rhythms and
develop arrhythmia, indicating the clock’s central control over
cardiac physiology (Costello et al., 2023). Simultaneously, the
coordinated activity of BMAL1 and REV-ERBα also controls
mitochondrial genes, supporting the myocardium energetic
adaptation to environmental fluctuations. Disruption of this
rhythmic regulation impairs mitochondrial biogenesis and
reduces cardiac functional reserve, particularly under
hemodynamic stress, thus increasing the risk of heart failure
(Lecour et al., 2022; Murgo et al., 2023).

At the molecular level, in mice, microRNA-29 (miR-29), which
has been implicated in both aging and the metabolic regulation of
cardiac function (Caravia et al., 2017; Caravia et al., 2018), emerges
as a crucial node linking these processes. Notably, miR-29 has been
shown to regulate the core clock gene Per2 (Zhao et al., 2014),
suggesting a bidirectional relationship between the circadian system
and miR-mediated control of cardiovascular aging. This highlights
an intricate regulatory triad in which circadian rhythms, cardiac
metabolism, and aging processes converge through shared
molecular mediators such as miR-29.

6.3 Metabolic diseases

Aging imposes progressive physiological changes that
compromise metabolic homeostasis and increase susceptibility to
the development of conditions such as insulin resistance, visceral
obesity, and type 2 diabetes (T2D) (Cardinali and Hardeland, 2017;
Poggiogalle et al., 2018). The reduction of metabolic flexibility,
mitochondrial dysfunction, and accumulation of ectopic lipids,
particularly in the liver and adipose tissue, promote a state of
inflammaging, which is further aggravated by the diminished
amplitude and robustness of endogenous rhythms in both the
SCN and peripheral metabolic organs (Cardinali and Hardeland,
2017; Chan et al., 2022). The reduced rhythmicity of melatonin and
cortisol production, combined with the fragmentation of rest-
activity cycles and the decline in deep sleep among the elderly, is
associated with a higher risk of metabolic dysfunction, even in
individuals with protective genetic predispositions (Baron et al.,
2018; Niu et al., 2022; Nguyen Ho et al., 2024).

Chronic exposure to conditions that promote circadian
misalignment weakens the amplitude of circadian rhythms,
disrupts the sleep-wake cycle, and facilitates the onset of the
same conditions mentioned above (Zimmet et al., 2019;
Makarem et al., 2021). Population-based studies conducted in
diverse contexts consistently demonstrate that altered sleep
patterns, both in quality and fragmentation, as well as nighttime
light exposure, are independently associated with impaired glycemic
control, as evidenced by elevated HbA1c levels, increased risk of
T2D, and accumulation of visceral fat (Nakajima et al., 2017; Rae
et al., 2021; Xu et al., 2023). Mechanistically, circadian misalignment
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impairs synchronization between the suprachiasmatic nucleus and
peripheral clocks, thereby compromising the temporal secretion of
insulin, incretins, and glucocorticoids, and negatively affecting both
glycemic and lipid homeostasis (Qian and Scheer, 2016; Mason
et al., 2020).

The CLOCK:BMAL1 complex activates the transcription of
genes encoding proteins involved in glucose uptake and
processing, mitochondrial metabolism, and lipolysis, thus linking
the circadian clock to energy metabolism (Maury, 2019; Petrenko
et al., 2023). In this context, BMAL1 deficiency induces
desynchronized expression of gluconeogenic genes and
suppresses transcriptional rhythms of mitochondrial biogenesis,
resulting in fasting hyperglycemia and insulin resistance. This
resistance is further exacerbated by reduced ATP production,
accumulation of reactive oxygen species (ROS), and activation of
subclinical inflammatory pathways (Rakshit et al., 2014; Qian and
Scheer, 2016; Peek, 2020). In adipose tissue, alterations in
PER2 impair the rhythmic secretion of leptin and adiponectin,
while dysfunction of REV-ERBα compromises the repression of
lipogenic and inflammatory genes, thereby intensifying visceral fat
accumulation and promoting chronic low-grade inflammation
(Szewczyk-Golec et al., 2015; Cardinali and Hardeland, 2017).
Dietary lipids act as epigenetic modulators of core clock genes
through microRNA regulation, altering the temporal regulation
of glycolytic and lipogenic pathways (Altman et al., 2012).
Additionally, hormonal factors such as incretin peptides interact
with peripheral clock genes, modulating, among others, the
expression of BMAL1 and PER2 in tissues such as the liver and
pancreas, thus establishing a bidirectional link between postprandial
metabolism and molecular rhythmicity (Petrenko et al., 2023;
Zilstorff et al., 2024).

Thus, aging, by reducing rhythm robustness and metabolic
flexibility, weakens the organism’s temporal adaptation
mechanisms and increases its vulnerability to external factors
that induce circadian misalignment, while chronodisruption itself
exacerbates this susceptibility, creating a self-reinforcing loop. In
parallel, the dysregulation of clock genes compromises the temporal
expression of metabolic genes, completing the chain of events
leading to a collapse in the temporal organization of
physiological processes and triggering a progressive dysfunctional
metabolic state. Therefore, the integration of aging,
chronodisruption, and molecular clock dysregulation constitutes
a central pathogenic axis in the onset and perpetuation of
metabolic diseases.

6.4 Cancer

Aging is one of the major risk factors for cancer development
(Peterson and Kennedy, 1979; López-Otín et al., 2023b). Moreover,
aging and cancer share features such as genomic instability,
epigenetic alterations, chronic inflammation, and cellular
senescence (López-Otín et al., 2023a; López-Otín et al., 2023b),
which either directly impact circadian rhythm function or are
themselves regulated by these rhythms.

Furthermore, disruption of circadian rhythms contributes to
cancer development and progression, likely due to their regulatory
role in sleep, immune function, metabolism or genome integrity

(Savvidis and Koutsilieris, 2012). In this context, studies in rats have
shown that circadian disruption caused by constant light exposure
leads to accelerated aging, a significant reduction in lifespan, and the
rapid development of spontaneous tumors, including carcinomas,
hematologic malignancies, and tumors of the reproductive organs
(Vinogradova et al., 2007; Vinogradova et al., 2009; Vinogradova
et al., 2010; Anisimov et al., 2013). Also, rodents subjected to jetlag
conditions exhibited accelerated tumor growth, increased
metastasis, and impaired antitumor immune responses (Filipski
and Lévi, 2009; Roberts et al., 2022). One proposed mechanism
involves the decreased levels of two antioxidant enzymes, superoxide
dismutase and catalase (Bartsch, 2010), which exposes cells to
excessive oxidative stress, thereby accelerating aging and
increasing cancer risk. Furthermore, alterations in feeding-fasting
patterns induced by circadian disruption promote carcinogenic
processes by abolishing the temporal expression of genes
involved in metabolic and immune pathways and by amplifying
a pro-inflammatory microenvironment conducive to tumor
progression (Crespo et al., 2025). Mechanistically, irregular meals
reprogram liver and adipose clocks and their output pathways (e.g.,
AMPK–SIRT1-dowregulated-, mTOR–SREBP-upregulated-, also
important pathways in aging), uncoupling peripheral oscillators
from the SCN and abolishing temporal segregation of anabolism,
repair, and immune surveillance (Guan et al., 2020; Weger et al.,
2021; Acosta-Rodríguez et al., 2024). These effects sit on the global,
genome-scale architecture of the clock defined by Takahashi and
colleagues, who showed pervasive circadian control of transcription
factor occupancy, RNAPII recruitment, and chromatin state that
links clock output to metabolism and cell growth (Koike et al., 2012).
Time restricted feeding to the active phase restores rhythmic gene
expression and metabolic flexibility and, in preclinical models, slows
tumor growth and metastasis in breast cancer settings (Das
et al., 2023).

In humans, chronic sleep deprivation, insomnia, and shift work
have been associated with an elevated risk of breast (Salamanca-
Fernández et al., 2018; Wei et al., 2022), prostate (Salamanca-
Fernández et al., 2018), and colorectal cancer (Garcia-Saenz
et al., 2020; Chiang et al., 2023). Moreover, in 2007 the
International Agency for Research on Cancer (IARC) classified
circadian disruption as a probable human carcinogen (Group
2A), based on the increased cancer susceptibility observed in
shift workers (Straif et al., 2007). Accordingly, various studies
have shown that alterations in genes such as Bmal1, Clock, Per1/
2, or Cry1/2 (Hoffman et al., 2010; Yu et al., 2013; Gong et al., 2021;
Jiang H. et al., 2021; Santoni et al., 2023; Zheng et al., 2024) can
increase the likelihood of tumor initiation, proliferation, invasion,
migration, and progression in multiple cancer types (Sulli et al.,
2019; Sancar and Van Gelder, 2021), including breast cancer (Wang
et al., 2019), colorectal cancer (Sakamoto and Takenoshita, 2015),
hepatocellular carcinoma (Yang et al., 2022), melanoma (Zhang
et al., 2024), and ovarian cancer (Sun et al., 2017). Often, these
variations are limited to single nucleotide polymorphisms (SNPs) in
core clock genes (Zienolddiny et al., 2013; Chen et al., 2019).

As we age, the synchronization between the central biological
clock and peripheral clocks shifts (Patke et al., 2020), leading to
impaired bodily functions and the onset of diseases, including
tumors (Roenneberg and Merrow, 2016; Welz and Benitah,
2020). For instance, aging and its associated disruption of
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circadian rhythms can result in altered secretion patterns of
hormones such as melatonin (Karasek, 2004), diminishing its
antitumor effects due to its antioxidant and immunomodulatory
properties (Bonmati-Carrion and Tomas-Loba, 2021), and
potentially facilitating the growth and metastasis of cancer cells
(Jung-Hynes et al., 2010).

At the molecular level, Bmal1 stands out as a central regulator of
genomic surveillance, preventing the replication of DNA-damaged
cells through its transcriptional modulation of repair genes,
activation of p53, and the imposition of rhythmicity on
checkpoint mechanisms (Kiessling et al., 2017; De Assis et al.,
2018). Members of the Per gene family, in turn, negatively
regulate the oncogene MYC and stabilize the checkpoint protein
Chk2 (Collis and Boulton, 2007; Wang C. et al., 2025). Bmal1
deficiency can lead to genomic instability, increased oxidative
stress, and cell cycle imbalance, thereby promoting cancer
development and accelerating aging through its capacity to
enhance mTORC1 activity (Khapre et al., 2014a). Similarly, loss
of Per2 can result in increased cellular proliferation and reduced
inhibitory regulation of the mTORC1 complex (Wu et al., 2019).

Furthermore, with age, the efficiency of the DNA Damage
Response in eukaryotes, which is responsible for preventing the
replication of damaged DNA, also declines (Zhu et al., 2024). This
network includes numerous genes that exhibit circadian rhythms
(Wang et al., 2017) or directly interact with components of the
molecular clock, and their progressive loss of functionality
contributes both to circadian disruptions and to increased
accumulation of genomic damage in cells, thereby elevating the
risk of cancer development (Miller et al., 2021).

Disrupted nutrient sensing is also a common feature of both
aging (López-Otín et al., 2023a) and cancer (Hanahan, 2022), with
its physiological regulation closely linked to circadian functionality
(Cao and Wang, 2017; Verlande and Masri, 2019). This occurs
through enzymes such as SIRT1, which can interact with molecular
clock proteins like CLOCK and PER2, affecting their acetylation
status (Asher et al., 2008; Nakahata et al., 2008), or through the
protein kinase mTOR, whose activity exhibits rhythmicity (Khapre
et al., 2014b) and plays a key role in both aging and tumorigenesis
(Weichhart, 2018; López-Otín et al., 2023a; Mehta et al., 2024).

Circadian disruption emerges, based on current evidence, not
merely as a risk factor, but as a causal agent in the initiation and
progression of various cancers. Aging exacerbates this scenario by
weakening circadian resilience mechanisms and antitumor defenses.

7 Chronotherapy and aging

Pharmacotherapy, traditionally based on standardized dosing
protocols, presents considerable challenges when applied to the
geriatric population. Older adults exhibit specific physiological
changes that increase their vulnerability to adverse drug reactions
and toxicity, forming the foundation of geriatric pharmacology for
decades. However, emerging evidence highlights that circadian
dysregulation with age adds a crucial, often overlooked
dimension to this vulnerability. The progressive deterioration of
the suprachiasmatic nucleus impairs responsiveness to
environmental cues, contributing to internal desynchrony and
promoting a breakdown in physiological homeostasis. This

circadian misalignment impacts key processes, including sleep-
wake cycles, metabolic regulation, immune responses, and
cognitive resilience.

Notably, psychosocial isolation, which increases with age
(Dahlberg et al., 2024), compounds circadian disruption by
weakening social and environmental zeitgebers, activating
neuroendocrine stress responses and sleep disturbances (Stafford
et al., 2013; Meyer et al., 2024; Yeom et al., 2024; Liu and Jiang,
2025). This establishes a vicious cycle in which aging and
chronodisruption reinforce each other, accelerating biological
decline and disease susceptibility (Kroemer et al., 2025). Given
that circadian rhythms modulate both pharmacokinetics and
pharmacodynamics, governing drug absorption, distribution,
metabolism, and elimination, understanding the chronobiological
underpinnings of organ function becomes essential to optimize
pharmacological interventions in aging individuals.

Integrating circadian biology into clinical practice thus adds a
multidirectional perspective: the circadian system influences aging,
is influenced by it, and critically modulates therapeutic efficacy and
safety. As such, preserving circadian integrity emerges as a strategic
target in precision geromedicine, not only to mitigate systemic aging
but also to tailor pharmacological treatments.

On one hand, it is important to know the circadian physiological
detoxification ratio to understand pharmacokinetics. In this regard,
precision geromedicine should take into account that the expression
of metabolizing enzymes (such as cytochrome P450 isoforms) and
hepatic membrane transporters are regulated, like many other genes,
by clock-dependent mechanisms, and influence intestinal
absorption, hepatic uptake, and biliary and renal excretion of
various drugs (Zhang et al., 2009; Ohdo, 2010; Dallmann et al.,
2016; Kobuchi et al., 2018; Mukherji et al., 2019; Ayyar and
Sukumaran, 2021; Geng et al., 2021; Ma et al., 2023). The
alteration of these mechanisms generates distinct temporal
windows of bioactivation, efficacy, and toxicity, even under
physiological conditions. In addition to this molecular regulation,
pharmacokinetics is also influenced by circadian variation in
physiological processes such as hepatic blood flow,
gastrointestinal motility, gastric pH, renal perfusion, and plasma
concentration of binding proteins, which vary rhythmically and
interfere with the absorption, availability, metabolism, and excretion
of drugs.

However, during aging, a number of molecular, structural,
especially in the suprachiasmatic nucleus, and physiological
alterations occur (Hood and Amir, 2017; Buijink and Michel,
2021), leading to reduced clock gene expression, particularly in
hepatic, intestinal, and renal tissues (Nakamura et al., 2011; Kobuchi
et al., 2018; Xu et al., 2023). As a result, the circadian expression of
metabolizing enzymes becomes erratic, such as carboxylesterase-1,
essential for prodrug bioactivation and hepatic detoxification,
affecting drug clearance (Dallmann et al., 2016; Ballesta et al.,
2017; Ma et al., 2023). NAD+ metabolism is another molecular
axis disrupted during aging, impairing hepatic circadian rhythms
through three pathways: by reducing sirtuin activity, the function of
the CLOCK:BMAL1 complex, and the acetylation of protein targets,
not only in the liver, but also in the intestine and the central nervous
system. In this way, changes in NAD+ metabolism also promote
generalized peripheral desynchronization (Massudi et al., 2012;
Gomes et al., 2013; Imai and Guarente, 2014).
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In addition to these molecular and epigenetic changes,
anatomical and functional alterations characteristic of older
adults negatively influence pharmacokinetics in this population.
A reduction in hepatic blood flow, renal function, and gastric
pH, as previously mentioned, compromises drug excretion, while
the loss of lean mass and increased body fat alter drug distribution,
aggravating the effects of chronodisruption (Hämmerlein et al.,
1998; Baraldo and Furlanut, 2006; ELDesoky, 2007).

All these alterations contribute not only to the weakening of the
response to conventional therapy in this population, but also to
chronotherapy, which presupposes a physiological rhythmicity that
is not observed in these patients, particularly in the presence of
comorbidities, polypharmacy, or sleep disorders (Lévi et al., 2010;
Ohdo, 2010; Dallmann et al., 2016). A paradigmatic example is the
nighttime administration of antihypertensives aimed at attenuating
the morning blood pressure surge. In the elderly, this response may
be paradoxical or even absent, due to the deterioration of blood
pressure rhythms and age-related autonomic dysfunction
(Albuquerque et al., 2021; Akyel et al., 2023). Oncology protocols
based on chronotolerance and chronoefficacy often result in poorer
outcomes in older adults, with high interindividual variability and
an increased risk of hematologic, neurologic, and gastrointestinal
toxicity (Ballesta et al., 2017; Puppala et al., 2021; Amiama-Roig
et al., 2022).

This loss of chronobiological responsiveness stems both from
the desynchronization between central and peripheral clocks, and
from the chronotype heterogeneity observed with aging, as the
geriatric tendency toward morning chronotypes may not align
with dosing regimens designed for younger adults with evening
chronotypes (Dallmann et al., 2014; Kara et al., 2023). Added to this
is the pharmacodynamic remodeling associated with aging, with
changes in receptors, ion channels, and signaling pathways linked to
the circadian system (Ozturk et al., 2017; Zhao et al., 2020).

In light of this scenario, personalized medicine emerges as a
promising strategy to counteract the deleterious effects of aging on
biological rhythmicity and to enhance therapeutic responses in
elderly patients. Devices capable of accurately estimating an
individual’s circadian phase have become increasingly valuable
tools for aligning interventions not only with the disease but also
with the residual rhythmicity of older individuals (Dose et al., 2023).
Among these technologies, TimeTeller utilizes transcriptomic data
from a single biological sample to analyze the coordinated
expression of a multigenic panel composed of core elements of
the molecular clock, enabling the inference of internal biological
time with high precision. This approach is highly innovative and
overcomes the limitations of traditional methods, which rely on
indirect markers or behavioral measurements (Dose et al., 2023;
Vlachou et al., 2024).

In this regard, as the circadian system is plastic and modifiable,
chronomodulation, the strategic alignment of behaviors, treatments,
and molecular interventions with the body’s internal clock, offers a
compelling and multifaceted strategy to counteract the circadian
system decay. Beyond lifestyle-based approaches such as timed light
exposure, structured sleep, and feeding-fasting cycles that enhance
circadian amplitude and metabolic resilience, molecular
chronotherapeutics are gaining traction. Central to this molecular
axis are chrono-metabolites, endogenous compounds like NAD+,
polyamines, and urolithins, whose rhythmic oscillations bridge

circadian regulation with metabolic integrity. With aging, the
decline in these oscillations compromises core clock function,
disrupts mitochondrial homeostasis, and weakens stress
responses. Targeted restoration of their rhythmicity, via
supplements such as nicotinamide riboside, dietary polyamines,
or urolithin A, has been shown to rejuvenate circadian gene
expression, synchronize metabolic rhythms, and improve physical
performance in aging models. Together, these interventions
illustrate how chronomodulation, from behavior to metabolite,
stands not only as a preventive strategy but as a foundational
pillar of precision geroscience, where aging is rhythmically
recalibrated to preserve physiological harmony (Sato et al., 2017;
Mukherji et al., 2019; Dong et al., 2020; Verma et al., 2023; Xu et al.,
2023). Moreover, circadian-aligned interventions, such as timed
light exposure, structured physical activity, meal scheduling, and
sleep optimization, hold promise for enhancing drug tolerability,
improving therapeutic outcomes, and promoting healthspan in
the elderly.

Moreover, understanding whether the target molecule for
treating a specific disease is subject to circadian regulation could
aid in optimizing the timing of drug administration. In this context,
ALZ-801, which targets APOEε4 in Alzheimer’s disease, is currently
being evaluated in two clinical trials (NCT04693520,
NCT06304883) (Kroemer et al., 2025). Notably, APOE−/− mice
exhibit altered rhythms of peripheral and central clock genes in
heart and liver tissues, characterized by increased amplitudes and
phase shifts, effects that are further exacerbated by a high-fat diet
(Xu et al., 2009). Additionally, disruption of the core clock gene
Bmal1 in the brain leads to elevated Apoe expression and accelerated
amyloid plaque accumulation (Hussain et al., 2024). Another
example is Resmetirom, a thyroid hormone receptor-β agonist
used to treat non-alcoholic fatty liver disease, a condition highly
prevalent in aging, which reduces the expression of DBI, a gene
classified as a gero-gene (Kroemer et al., 2025). DBI exhibits
circadian oscillation in both the suprachiasmatic nucleus and the
liver (Montégut et al., 2023). Thus, it would be of particular interest
to further investigate the chronotherapeutic potential of ALZ-801 or
Resmetirom to determine whether its efficacy or tolerability is
influenced by the timing of administration, in alignment with the
circadian nature of their targets.

In parallel, chronotimed drug delivery technologies and
stimulus-responsive nanoparticles (e.g., to pH and temperature)
represent other technological advances that have also shown the
capacity to align drug administration with the patient’s biological
phase. These tools contrast with strategies that aim to reprogram
hepatic rhythmicity, such as compounds that act on the molecular
clock (e.g., RORα agonists and REV-ERB inhibitors).

Currently, several chronomodulated therapies have proven their
efficacy. In this regard, in cardiovascular diseases, it has been
evaluated that taking a low dose of acetylsalicylic acid (ASA) in
the evening, rather than the morning, is more effective since it aligns
better with the body’s circadian rhythm, potentially reducing the
risk of cardiovascular events. The limited 24-h efficacy of once-daily
ASA is partly explained by its pharmacokinetics and the circadian
physiology of platelets. ASA is rapidly absorbed and eliminated, so
newly produced platelets, released at a rate of 10%–15% per day,
escape COX-1 inhibition and can form clots. Effective platelet
inhibition requires ~95% COX-1 blockade, yet studies show that
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24 h after morning intake, a quarter of cardiovascular patients have
insufficient inhibition. Notably, platelet production follows a
circadian rhythm, peaking in the late night and early morning,
coinciding with the timing of adverse cardiovascular events
(Buurma et al., 2019).

In epilepsy, administering a higher evening dose of clobazam has
been shown to improve seizure control in patients whose seizures
occur predominantly at night or in the early morning. Tailoring drug
administration to individual seizure susceptibility patterns exemplifies
how chronotherapy can optimize epilepsy management: differential
dosing allows for delivering higher treatment levels at the times of
greatest vulnerability, while minimizing side effects during periods of
lower risk (Thome-Souza et al., 2016).

Chronomodulated treatment also shows promise in metabolic
diseases, particularly via time-restricted eating and timed
administration of antihypertensives or metformin (Hermida
et al., 2011; Türk et al., 2023). Several clinical trials and modeling
studies support the concept that aligning treatment with circadian
rhythms can enhance efficacy and reduce risks.

8 Conclusion

The convergence of circadian biology and aging research reveals
time not merely as a backdrop but as a dynamic biological force,
where Kronos, that represents the linear progression of age, and
Kairos, the opportune moment dictated by biological rhythms, co-
determine the trajectory of health and disease.

The circadian system emerges as a central integrator of internal
physiology and external temporal cues, shaping molecular pathways
implicated in longevity, age-related diseases, and the systemic
resilience observed in long-lived species. Disruptions to this
temporal architecture, whether through genetic mutations,
lifestyle factors, or social disconnection, can accelerate the
hallmarks of aging and compromise physiological homeostasis, as
seen in natural aging. It would be worthwhile to understand how the
circadian system operates in contexts of accelerated aging, such as in
progeroid syndromes, both in preclinical models and in humans, to
uncover potential shared mechanisms.

This lesson is being learned from long-lived species such as the
naked mole-rat, cavefish, and certain whales, which appear to age at
a slower pace than other animals. The studies suggest that genome
stability, modulation of the mTOR pathway, glucose metabolism,
and circadian plasticity act in concert in these species to delay aging
and extend lifespan. A key factor underlying this phenomenon is the
stable environment in which these species live, coupled with their
remarkable ability to adapt swiftly and with high plasticity to
external changes when necessary. Conceptually, as with the stem
cell pool, the less you exhaust it, the more reserve you retain later in
life. In this light, living in a stable environment may reduce the need
for constant circadian adjustments, thereby preserving the integrity
of the circadian system over time.

The concept of the chrono-exposome, introduced in this review,
broadens this perspective by situating circadian rhythms within the
wider context of temporal environmental and behavioral exposures
throughout life. From this viewpoint, lifelong exposure to various
stressors can disrupt circadian homeostasis and accelerate aging. Such
disruptions can begin early, for example, when neonates in intensive

care units are exposed to inappropriate light cycles, continue through
infancy and adolescence with irregular exposure to screens and erratic
eating patterns, persist into adulthood where jetlag and shift work are
common, and extend into older age with increased sedentarism and
psychosocial isolation.

In this context, the interplay between circadian rhythms and
pharmacological responses gains critical relevance in the aging
population. As aging weakens both the amplitude and
synchronization of circadian oscillations, the efficacy and safety
of pharmacological interventions are increasingly compromised.
This decline in circadian robustness affects drug metabolism,
detoxification, and target engagement, while also contributing to
the heterogeneity in therapeutic outcomes among older adults.
Chronotherapeutic approaches, though promising, must account
for the altered rhythmic landscape of the elderly, whose
chronotypes, molecular clocks, and peripheral rhythms are no
longer aligned with standard dosing paradigms. Innovations such
as transcriptome-based circadian phase estimators, rhythmic
biomarker profiling, and chrono-active compounds open new
avenues for aligning treatments with residual circadian function.
As such, circadian-informed precision geromedicine, where both the
timing and the nature of interventions are tailored to the aging clock,
emerges as a foundational strategy not only to enhance therapeutic
efficacy and reduce toxicity, but also to recalibrate biological time
itself, preserving physiological harmony across the aging trajectory.

As we advance toward precision geromedicine, recognizing the
plasticity of the circadian system to recalibrate homeostasis, restoring
circadian integrity through personalized, time-aligned interventions
emerges as a promising strategy to mitigate age-related decline and
improve therapeutic outcomes. Embracing time not merely as a
measurable factor but as a modifiable variable may ultimately
enable us to harmonize human aging with biological opportunity.

Future circadian aging research should integrate molecular,
environmental, and therapeutic approaches, deciphering shared
longevity pathways with those that keep a healthy circadian
system, mitigating chrono-exposome insults, and tailoring
chronotherapy to the changing clock across life. Protecting
genome stability, metabolic balance, and circadian plasticity
emerges as essential for the health of both the organism and its
circadian system. Ultimately, preserving temporal harmony may
prove as vital as preserving life itself.
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