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Objectives: This study aims to investigate age-related alterations of
lung structure.

Methods: We retrospectively collected 928 male subjects from an annual lung
nodule screening cohort. The quantitative parameters included lung volume (LV),
mean lesion density (MLD), emphysema indexes (LAA-910, LAA-910%, LAA-950
and LAA-950%), number of bronchi (NB) and volume of bronchi (VB), as well as
ratio of airway to the lung (ALR). The quantitative parameters were calculated for
total lung, right lung, left lung, and the individual lobes.

Results: LV and VB peaked in the group of 51–60 years-old and 61–70 years-old,
respectively. MLD decreased with age, while LAA-910, LAA-950, LAA-910%, LAA-
950%, and ALR all showed an increasing trendwith age. LV, NB, and VB of the right
lung were larger than those of the left lung, while MLD, LAA-950, LAA-950%, and
ALR of the right lung were lower than those of the left lung (P < 0.05). The LV of
bilateral upper lobes increased with age, while a decline of LV of bilateral lower
lobes was observed since the sixties. The MLD of the bilateral lower lobes
decreased (P < 0.05). The LAA-910%, LAA-950%, and ALR of the 71–80 years-
old in all five lobes were higher than those of the other four groups (P < 0.05).
LAA-950 and LAA-950% of bilateral lower lobes displayed a steeper increase
began at 60 years old. We also provide a computational formula, LungAge Score,
for the assessment of the structural lung aging features.

Conclusion: Lung aging is not a linear process, and the lung structural alterations
in the upper and lower lobes exhibit significant heterogeneity.
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1 Introduction

Evidence showed that chronic respiratory diseases (CRDs) are the third leading cause of
death, responsible for 4.0 million deaths (95% uncertainty interval 3.6–4.3), with a
prevalence of 454.6 million cases (417.4–499.1) globally (GBD, 2019 Chronic
Respiratory Diseases Collaborators et al., 2023), which imposing a huge burden of
death, disability and healthcare costs. Aging is one of the most important risk factors
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for CRDs, and the worldwide increase in life expectancy has been
accompanied by an increase in the prevalence of age-related CRDs
(Cho and Stout-Delgado, 2020; Schneider et al., 2021; Skloot, 2017).
Thus, the study of age-related lung changes is imperative to
preventing or ameliorating CRDs.

The normal aging process of the lungs is associated with
structural and functional alterations (Miller, 2010). That means,
the “healthy aging” individuals may suffer from age-related
disease but retain their functional abilities. Previous studies
have shown that the loss of elastic recoil, hyperinflation, air
trapping, progressive enlargement of the alveolar ducts and distal
alveoli, and an increase in residual volume are the main
physiological manifestations in the aging lung (Bowdish, 2019;
Kasmani et al., 2023). On one hand, the alterations of lung
structure of normal aging may be partly responsible for the
increased susceptibility of older persons to lung disorders,
such as emphysema-predominant chronic obstructive
pulmonary disease, fatal respiratory infection, interstitial lung
diseases, and primary lung cancer (MacNee, 2016; Han et al.,
2021). On the other hand, these overlaps put forward a challenge
in the clinical management of CRDs. Thus, we need to analyze the
changes in lung structure in the elderly.

Computer tomography (CT) is a practical and noninvasive
method for evaluating lung structures (Jiao et al., 2024).
Meanwhile, advanced image post-processing techniques enable
the quantitative analysis of changes in lung and branches, which
is helpful in understanding the normal aging process. Researchers in
our team and other studies have proved the value of the quantitative
biomarkers of emphysema, the airway, and air trapping (relative
volume change of −860 Hounsfield Unit (HU) to −950 HU) in the
clinical management of CRDs (Yin et al., 2019; Jiang et al., 2018;
Shen et al., 2025; Shen et al., 2020; Kim et al., 2022; Tanabe et al.,
2018). However, there are no studies available for the quantification
of age-related changes in the lungs of the CRD-free cohort, which is
essential for understanding normal aging.

Thus, we aimed to investigate age-related alterations in lung
structure using a quantitative technique to assess lung tissue (lung
volume, mean lung density), emphysema (LAA910, LA950), and the
bronchial tree (the number of branches and the volume of branches)
in a Chinese male cohort from a single institution. Meanwhile, we
designed a comprehensive evaluation score, the LungAge score, to
assess the physiological aging of lungs.

2 Materials and methods

2.1 Subjects

This was a post-hoc analysis of a prospective clinical trial,
which was registered online (http://www.chictr.org/en/;
registration number ChiCTR-OCH-14004934). The Ethics
Committee of the Institutional Review Board approved this
study (No. 2013-114–1). All participants were fully informed of
the nature of the study and provided written informed consent for
participation.

In this study, we included only males to avoid factors that
contribute to sex-related differences (Terada et al., 2023; Silveyra
et al., 2021). Chest CT images of 1,097 subjects were retrospectively

collected from August 2017 to December 2019 from an annual lung
nodule screening cohort. The inclusion criteria were: 1) male
subjects who underwent a non-contrast chest CT scan; 2) age
between 18 and 80 years old. The exclusion criteria were: 1)
subjects with a congenital deformity of the spine or thorax (n =
25); 2) subjects who had a history of lung illness or any respiratory
symptoms (n = 10); 3) subjects with a history of lobectomy or
pneumonectomy (n = 10); 4) subjects with noticeable respiratory or
motion artifact (n = 37); 5) subjects with apparent lesions in the CT
scan, such as the diffused emphysema, bronchiectasis, interstitial
lung abnormality, lobar consolidation, nodules or mass of the lung,
active tuberculosis or tuberculosis involving multiple pulmonary
lobes, lung atelectasis, interstitial lung diseases or pleura effusion,
confirmed by a more than 5-year experienced chest radiologist (n =
83); and 6) subjects with severe heart, liver, and kidney
dysfunction (n = 4).

Finally, 928 male subjects were included in the analysis. All
subjects were grouped by age, with 10 years as an age group,
including ≤40 years old (n = 56), 41–50 years old (n = 154),
51–60 years old (n = 297), 61–70 years old (n = 277),
71–80 years old (n = 144). Figure 1 illustrates a flowchart
outlining the process for selecting and grouping participants.

2.2 Chest CT scan

All CT scans were acquired with the same scanning and
reconstruction conditions. CT scans were performed using a 64-
MSCT scanner (Gemini TF PET/CT; Philips, Netherlands) from the
apex to the base of the lungs at the end-inspiratory phase. An
automatic current of 100–300 mAs (based on body weight) and a
kilovoltage of 120 were used. Other scanning parameters were held
constant: helical acquisition, gantry rotation time of 0.4 s,
reconstructed section thickness of 1.25 mm, and reconstructed
section interval of 1.25 mm. Images were reconstructed to
encompass the entire lung field in a 512 × 512 pixel matrix using
the full iterative reconstruction.

2.3 Quantitative assessment of the
lung structure

Raw data were stored in Digital Imaging and Communications
in Medicine format and then transferred to a lung structure analysis
workflow to segment the lung field and airways.

Automated computerized schemes were used to obtain whole
lung field from CT acquisitions. First, the entire lung was segmented
using a three-dimensional adaptive border matching algorithm
(Figure 2A) (Pu et al., 2009). Pulmonary fissures were detected
using computational geometry, and the surfaces of individual lobes
were demarcated by representing the pulmonary fissures as implicit
surface functions (Figure 2B) (Pu et al., 2011). The results of the
computerized segmentation were verified by visual inspection and
manually corrected when the computer failed.

Lung volume (LV) of the total lung (TL), right lung (RL), left
lung (LL) and five lobes (right upper lobe (RUL), right middle lobe
(RML), right lower lobe (RLL), left upper lobe (LUL), and left lower
lobe (LLL)) were computed using the segmentation results by
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counting the voxels circumscribed by the boundaries and
multiplying by the volume (mL).

Emphysema was quantified using the percentage of low-
attenuation areas below −910 HU (LAA-910) (Figure 2C) and
below −950 HU (LAA-950) (Figure 2D). As LAA-910 and LAA-
950 were two widely used emphysema metrics (San José Estépar
et al., 2025; Yang et al., 2025; Koo et al., 2023). Mean lung density
(MLD) is a general indicator of all the components in a given volume
of lung, which includes the air, acini, small airways, arteries, veins,
capillaries, and epithelial lining fluid. MLD can be quantified by the
average density of all the voxels. The ratios of the LAA-910 to LV
and LAA-950 to LV were recorded as LAA-910% and LAA-950%,
respectively.

The airway tree is automatically recognized and extracted by a
geometric algorithm (Pu et al., 2012). The number of bronchi (NB)
and the volume of bronchi (VB) were also calculated for TL, RL, LL,
and five lobes (Figures 2E,F).

The degree of mismatch between the airway and lung, an
indicator of lung function in healthy subjects, is defined as the
ratio of airway volume to lung volume (ALR) on a CT scan for TL,
RL, LL, and five lobes (Maetani et al., 2023).

2.4 Statistical analysis

The following statistical analyses were conducted using IBM
SPSS Statistics version 25.0 (IBM Corp., Armonk, NY,
United States). Baseline characteristics and quantitative
parameters of the lung structures were summarized by age group,

using mean ± standard deviation (SD) for normally distributed
variables and median (interquartile range) for skewed variables. For
variables with a normal distribution, one-way analysis of variance
(ANOVA) was used to assess differences among groups; for
variables without a normal distribution, the Kruskal-Wallis test
was applied. The least significant difference (LSD) for variables
with equal variance or Tamhane’s T2 for variables with unequal
variance was then used to compare the two groups. A paired t-test or
paired samples Wilcoxon Signed-Rank test was used to evaluate the
quantitative parameter differences between the right and left lung.
The main structural lung changes between one age stage and the
previous age stage were identified using binary logistic regression. A
two-sided P-value less than 0.05 was considered statistically
significant for all statistical analyses.

The following statistical analyses were conducted using the
MATLAB (R2023a, The MathWorks, Inc.). A polynomial
weighted least squares fitting method incorporating the RLOESS
smoothing technique was fitted to visualize the changing trend of
quantitative parameters throughout lung aging, where the weighting
scheme is adaptively determined through an iterative robust
estimation process.

The LungAge model was conducted using R language (version
4.0.5). The correlation analysis was used to initially select correlated
parameters. Then, the generalized additive model (GAM), a flexible
nonlinear model that extends the generalized linear model by
replacing linear predictors with additive functions, was applied to
select the most discriminative quantitative parameters. Then, a
machine learning model method, eXtreme Gradient Boosting,
was used to build a predictive model. Then, mean squared error

FIGURE 1
The workflow of subjects. Abbreviations: CT, computed tomography.
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(MSE), root mean squared error (RMSE), mean absolute error
(MAE), and mean absolute percentage error (MAPE) were
calculated to evaluate the model, and a 5-fold cross-validation

was applied to test its performance by R2. Finally, the potential
confounders, height, weight, smoking history, and BMI,
were analyzed.

FIGURE 2
Illustration of the segmentation of the lung, lobes, emphysema, and bronchus. A 53-year-old male with no respiratory symptoms and no apparent
abnormalities on the chest CT scan. The bilateral lungs (A), five lobes (B), LAA-910 (C), LAA-950 (D), and the bronchi (E,F)were segmented. The LV, LAA-
910, LAA-950, MLD, NB, and VB of the total lung were 4562.38 mL, 12.61 mL, 1.73 mL, −770.18 HU, 177 and 77.14 mL, respectively. Abbreviations: CT,
computed tomography; LV, lung volume; LAA-910, lower attenuation area than −910 Hounsfield unit; LAA-950, lower attenuation area
than −950 Hounsfield unit; MLD, mean lung density; NB, number of bronchi; VB, volume of bronchi.
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TABLE 1 Basic demographic characteristics of the patients.

Items ≤40 years-old
(n = 56)

41–50 years-old
(n = 154)

51–60 years-old
(n = 297)

61–70 years-old
(n = 277)

71–80 years-old
(n = 144)

F P

height/cm 174.35 ± 5.41 172.85 ± 4.80a 172.88 ± 5.16a 171.83 ± 5.16a 169.77 ± 6.06a 11.501 0.013

weight/kg 74.93 ± 11.63 74.40 ± 10.76 75.86 ± 9.65 72.87 ± 8.95 69.70 ± 10.11a,b,c,d 13.505 <0.001

BMI/kgem-2 24.44 ± 2.51 24.98 ± 3.11 24.80 ± 2.66 24.85 ± 2.93 24.40 ± 3.24 0.963 0.613

Smoking (no/yes) 14/42b 37/117 115/182b 127/150b 81/63b 41.594e <0.001

Smoking intensity (cigarette/day) 15 (11, 21) 21 (11, 21) 21 (11, 21) 21 (11, 21) 11 (7, 21) 2.772f 0.597

LVTL(mL) 4994.42 ± 1,044.59 5070.02 ± 933.74 5277.16 ± 1,009.35a,b 5172.71 ± 965.27 5086.35 ± 953.62 2.098 0.063

LVRL (mL) 2,648.94 ± 544.23 2,718.21 ± 481.68 2,841.63 ± 510.89a,b 2,796.27 ± 502.62a,c 2,750.40 ± 485.26 2.657 0.021

LVLL (mL) 2,345.49 ± 514.74 2,351.81 ± 465.14 2,435.53 ± 516.33 2,376.44 ± 487.49 2,335.95 ± 497.48c 1.684 0.133

NBTL 160.86 ± 58.64 187.30 ± 64.80 182.50 (146, 238)a 214.75 ± 82.03a,b 200.65 ± 77.41a 31.700 <0.001

NBRL 90.25 ± 36.33 105.56 ± 38.46 104 (81, 133)a 111 (86, 145)a 105.84 ± 44.50 21.176 0.001

NBLL 66.27 ± 27.82 74 (58.5, 92.5) 75 (60, 103)a 89.68 ± 41.87a,b 81 (61, 110.5)a 28.588 <0.001

VBTL(mL) 80.91 (71.86, 95.43) 89.67 ± 20.81 93.84 ± 21.52a 98.32 ± 23.16a,b,c 99.33 ± 25.56a,b 48.666 <0.001

VBRL (mL) 16.82 ± 5.80 19.16 ± 5.46 19.5 (15.82, 23.28)a 20.88 (16.65, 25.64)a,b 18.76 (15.05, 24.2) 27.830 <0.001

VBLL (mL) 15.98 ± 5.17 17.23 (14.32, 21.14) 17.51 (14.43, 21.51) 19.55 ± 6.86a,b 18.90 ± 6.61a 24.691 <0.001

MLDTL (HU) −816.25 (−841.05, −802.63) −824.43 (−838.48, −803.11) −825.94 (−841.58, −805.08) −830.67 (−845.93, −810.90) −837.15 (−851.11, −821.62)a,b,c 30.692 <0.001

MLDRL (HU) −817.27 (−840.54, −801.11) −825.46 (−840.38, −806.66) −826.94 (−842.16, −806.41) −830.92 (−845.63, −811.54) −837.27 (−851.87, −822.16)a,b,c 28.244 <0.001

MLDLL (HU) −815.34 (−838.41, −800.13) −822.07 (−838.24, −799.15) −823.99 (−840.30, −801.56) −827.53 (−845.32, −807.00) −834.68 (−850.46, −813.66)a,b,c 25.401 <0.001

LAA-910TL (mL) 311.01 (128.93, 776.96) 382.32 (142.38, 731.64) 469.57 (169.15, 858.56) 554.85 (188.09, 1,140.11)b,c 751.59 (417.36, 1,365.13)a,b,c 40.681 <0.001

LAA-910RL (mL) 131.86 (56.66, 390) 170.49 (76.59, 393.85) 238.20 (91.41, 479.53) 299.34 (109.75, 621.98)a,b,c 388.92 (220.63, 736.52)a,b,c 47.344 <0.001

LAA-910LL (mL) 157.8 (65.07, 361.15) 180.42 (67.62, 349.56) 211.39 (76.23, 415.85) 255.54 (88.22, 544.70)b 347.20 (167.72, 618.46)a,b,c 32.003 <0.001

LAA-950TL (mL) 18.77 (7.72, 37.28) 18.58 (8.45, 35.06) 20.16 (8.79, 40.17) 24.72 (10.08, 59.88)b,c 41.74 (21.07, 100.11)a,b,c 56.013 <0.001

LAA-950RL (mL) 6.41 (2.45, 12.13) 5.99 (3.13, 12.31) 7.78 (3.61, 17.06) 9.6 (4.07, 26.47)a,b,c 18.34 (7.86, 43.95)a,b,c 71.731 <0.001

LAA-950LL (mL) 10.92 (5.48, 24.92) 10.92 (5.55, 22.26) 11.96 (5.29, 25.42) 14.75 (6.29, 36.73)c 23.96 (11.56, 53.44)a,b,c 40.563 <0.001

LAA-910%TL 6.73 (2.58, 15.13) 7.22 (3.32, 14.44) 9.06 (3.53, 15.99) 11.07 (4.25, 20.44)b 14.94 (8.98, 24.80)a,b,c,d 63.688 <0.001

LAA-910%RL 5.59 (2.51, 13.09) 6.41 (3.12, 13.17) 8.54 (3.35, 16.20) 10.16 (3.92, 19.69)a,b 14.33 (8.33, 25.67)a,b,c,d 69.430 <0.001

LAA-910%LL 6.95 (3.10, 15.05) 7.81 (3.51, 14.32) 8.94 (3.45, 16.42) 10.62 (4.13, 21.05)b 15.56 (8.15, 24.98)a,b,c,d 55.544 <0.001

(Continued on following page)
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3 Results

3.1 Age-related lung structure alterations of
the TL, RL and LL

Totally, 928 males from an annual lung nodule screening cohort
aged 25–85 were divided into five subgroups. The height and weight
of71–80 years-old were significantly lower than those of the former
three groups (P < 0.05). The BMI were not significantly different
among the five age groups (P > 0.05).

For the TL, RL and LL, LV peaked in the group of 51–60 years-
old. The LV of the TL and RL of 51–60 years-old was significantly
larger than that of ≤40 and 41–50 years-old (P < 0.05) (as shown
in Table 1).

For the TL, RL and LL, NB peaked at 61–70 years-old. The NB in
the 51–60 and 61–70 years-old age groups was significantly higher
than that in the ≤40 years old group (P < 0.05) (as shown in Table 1).

The VB of TL peaked in the group of 71–80 years-old, and VB of
RL and LL peaked at 61–70 years-old. For the TL, RL and LL, the VB
of 61–70 years-old was significantly higher than that of the ≤40 and
41–50 years-old (P < 0.05) (as shown in Table 1).

MLD decreased with age, while LAA-910, LAA-950, LAA-910%,
LAA-950%, and ALR all showed an increasing trend with age. MLD
was significantly lower in the 71–80 years-old group than that of the
≤40 years-old, 41–50 years-old, and 51–60 years-old groups, while
LAA-910%, LAA950%, and ALR of 71–80 years-old were
significantly higher than those of the other four age groups (P <
0.05) (as shown in Table 1).

In all five age groups, LV, NB, and VB of the RL were larger than
those of the LL (P < 0.05). MLD, LAA-950, LAA-950%, and ALR of
the RL were lower than those of the LL (P < 0.05) (as shown
in Table 2).

3.2 Age-related lung structure alterations of
individual lobes

The LV of bilateral upper lobes increased with age, while a
decline of LV of bilateral lower lobes was observed since the age
group of the sixties. The significance was observed in theRLL
between the age groups of 61–70 years-old and 51–60 years-old,
as well as between the 71–80 years-old and 51–60 years-old groups
(P < 0.05) (as shown in Table 3).

VB and NB in all five lobes of the lungs increased gradually
with age and peaked in the group of 61–70 years. The NB and
VB in all five lobes of the 61–70 years-old were greater than
those of the ≤40 years-old significantly (P < 0.05) (as shown
in Table 3).

MLD of the bilateral upper lobes and the RML was diminished
with age, and the significance was observed between the group of
71–80 years-old and the groups of ≤40 years-old, 41–50 years-old,
and 51–60 years-old (P < 0.05). The MLD of the bilateral lower lobes
decreased, and a significant difference was observed between the
groups of 71–80 years-old and 51–60 years-old (P < 0.05) (as shown
in Table 3).

LAA-910, LAA-950, LAA-910%, LAA-950%, and ALR
increased gradually with age in all five lobes (all P < 0.05). The
LAA-910%, LAA-950%, and ALR of the 71–80 years-old in all fiveT
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TABLE 2 The comparison of the quantitative parameters between theRL and the LL.

Age groups Items T or Z P

≤40 years-old LVRL - LVLL 12.480a <0.001

NBRL - NBLL 6.216 <0.001

VBRL - VBLL 3.707 <0.001

MLDRL - MLDLL 2.364 0.018

LAA-910RL - LAA-910LL 0.624 0.532

LAA-950RL - LAA-950LL 5.911 <0.001

LAA-910%RL - LAA-910%LL 3.156 0.002

LAA-950%RL - LAA-950%LL 6.298 <0.001

ALRRL - ALRLL 5.196 <0.001

41–50 years-old LVRL - LVLL 70.279a <0.001

NBRL - NBLL 11.393 <0.001

VBRL - VBLL 7.172 <0.001

MLDRL - MLDLL 5.399 <0.001

LAA-910RL - LAA-910LL 1.209 0.227

LAA-950RL - LAA-950LL 8.622 <0.001

LAA-910%RL - LAA-910%LL 3.626 <0.001

LAA-950%RL - LAA-950%LL 10.073 <0.001

ALRRL - ALRLL 7.333 <0.001

51–60 years-old LVRL - LVLL 36.685a <0.001

NBRL - NBLL 14.053 <0.001

VBRL - VBLL 10.751 <0.001

MLDRL - MLDLL 7.128 <0.001

LAA-910RL - LAA-910LL 4.615 <0.001

LAA-950RL - LAA-950LL 9.353 <0.001

LAA-910%RL - LAA-910%LL 2.948 0.003

LAA-950%RL - LAA-950%LL 11.789 <0.001

ALRRL - ALRLL 11.429 <0.001

61–70 years-old LVRL - LVLL 31.483a <0.001

NBRL - NBLL 13.348 <0.001

VBRL - VBLL 10.253 <0.001

MLDRL - MLDLL 3.763 <0.001

LAA-910RL - LAA-910LL 6.322 <0.001

LAA-950RL - LAA-950LL 7.308 <0.001

LAA-910%RL - LAA-910%LL 2.626 0.009

LAA-950%RL - LAA-950%LL 11.015 <0.001

ALRRL - ALRLL 11.053 <0.001

71–80 years-old LVRL - LVLL 20.898a <0.001

NBRL - NBLL 8.665 <0.001

(Continued on following page)
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lobes were higher than those of the other four groups (P < 0.05) (as
shown in Table 3).

The ridge plot was used for illustration of age-related lung
changes at the lobe level, see as Figure 3.

3.3 Curve fitting of the quantitative
parameters

The fitted curves helped to reveal the trajectories of the
quantitative parameters (see Figure 4). LV of TL, RL, LL and
LUL peaked at about 60 years-old. LV of RUL exhibited a
monotonic increase without decline, whereas LV of bilateral
lower lobes demonstrated progressive reduction. Both VB and
NB reached their peak values between 61-70 years of age.

The MLD showed a rapid decline from the age of 30–40 years-
old, remained stable or slightly increased during 40–50 years-old,
then began to decline again after 50 years-old. A final turning point
occurred at 70 years-old, after which MLD exhibited a slight upward
trend. However, the MLD of the RML consistently demonstrated a
decreasing trend throughout.

LAA-910 and LAA-910% exhibited a mild decrease during ages
30–40, followed by a sustained increase until 60 years, after which a
rapid increase and a downward trend were observed. LAA-950 and
LAA-950% of TL decreased during ages 30–50, and then
progressively increased with aging, and a similar trend of LAA-
950 and LAA-950% can be seen in LL, RUL and LUL. However, the
LAA-950 and LAA-950% of RLL and LLL displayed a steeper
increase began at 60 years old, and finished at the 71–80 years old.

3.4 Main changes between two adjacent
age groups

We compared the differences in the quantitative parameters
between the two adjacent age groups. Using binary logistic
regression, we identified the most significant changes between
one age stage and the previous age stage, as shown in Table 4.
The increase in ALR of LLL was the most significant characteristic
between the age group ≤40 and 41–50 years old [OR = 1.315, 95% CI
(1.094, 1.580), P = 0.003]. The most important lung structural

changes from the age of 51–60 years-old to the age of
61–70 years-old pointed to LAA-910 of LLL and LAA-910% of
LLL. The most important lung structural changes from the age of
61–70 years-old to the age of 71–80 years-old were the
emphysema indexes.

3.5 The LungAge score

Spearman correlation was firstly used to identify the related
parameters during lung aging (see Supplementary Table). The
selected parameters in the GAM and their importance were
shown in Figure 5A. The fitted value vs. the response value were
shown in Figure 5B. The MSE, RMSE, MAE, and MAPE were
89.789, 9.475, 7.478, and 13.76%. In the 5-fold cross-validation, the
average R2 in the training group was 0.408, the average R2 in the
testing group was 0.148, see as Figure 5C. The residual plot showed
normal distribution, see as Figures 5D,E. Finally, the potential
confounders, smoking intensity, height, weight, and BMI, were
analyzed to determine their effect on the LungAge score, as
shown in Figures 5F–I.

4 Discussions

By the time we are in our second or third decade, biological
aging and chronological aging do not proceed in step (Bowdish,
2019). We hypothesized that this inconsistency can be measured by
some predictors that are related to the lungs. This study analyzed
age-related structural changes of the aging lung in a relatively large
dataset. The patterns were analyzed not only at the level of the entire
lung and bilateral lungs but also at the level of individual lobes.

These quantitative parameters (LV, NB, VB, MLD, LAA-910,
LAA-950, LAA-910%, LAA-950% and ALR) reflect age-related lung
changes from different angles. LV andMLD are both comprehensive
measurements of the composition and proportion of pulmonary
vessels, gas, and lung tissues. VB can be seen as part of the
anatomical dead space, which reflects, in part, the residual
volume in the lung function test. The increase in NB also
attributed to the increase in residual volume in the lungs with
age, and can be viewed as a biomarker of small airways (Verleden

TABLE 2 (Continued) The comparison of the quantitative parameters between theRL and the LL.

Age groups Items T or Z P

VBRL - VBLL 4.547 <0.001

MLDRL - MLDLL 4.401 <0.001

LAA-910RL - LAA-910LL 5.781 <0.001

LAA-950RL - LAA-950LL 4.200 <0.001

LAA-910%RL - LAA-910%LL 0.227 0.820

LAA-950%RL - LAA-950%LL 6.964 <0.001

ALRRL - ALRLL 9.225 <0.001

Note: a, paired t-test; T and Z were the test statistics of the paired t-test and the paired samples Wilcoxon Signed-Rank test, respectively. LV, lung volume; NB, number of branches; VB, volume

of branches; MLD, mean lung density; LAA, low attenuation area; ALR, airway-to-lung ratio; RL, right lung; LL, left lung. The bold values indicate statistically significant differences between

groups.
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TABLE 3 The comparisons of quantitative parameters for the individual lobes.

Items ≤40 years-old (n = 56) 41–50 years-old (n = 154) 51–60 years-old (n = 297) 61–70 years-old (n = 277) 71–80 years-old (n = 144) F P

LVRUL (mL) 1,013.37 ± 274.63 1,020.86 (884.66, 1,201.50) 1,079.5 (919.33, 1,250.26) 1,081.87 (931.29, 1,272.16) 1,115.92 ± 293.00 11.186 0.048

LVRML (mL) 211.92 (91.40, 374.15) 188.95 (83.64, 444.58) 276.06 (118.93, 527.35) 333.15 (108.9, 520.34) 287.97 (93.49, 505.31) 12.260 0.031

LVRLL (mL) 1,364.35 ± 407.78 1,403.69 ± 410.96 1,419.25 ± 412.35 1,345.35 ± 394.50a 1,312.06 ± 380.16b,a 2.139 0.059

LVLUL (mL) 1,246.19 (1,068.38, 1,397.45) 1,257.74 (1,103.16, 1,382.77) 1,331.02 ± 273.47 1,311.47 ± 249.47 1,301.25 ± 287.23 9.537 0.089

LVLLL (mL) 1,123.61 ± 264.57 1,086.92 ± 275.57 1,104.50 ± 309.27 1,064.95 ± 300.70 933.37 (795.01, 1,148.34) 12.427 0.029

NB RUL 29 (22.5, 37.5) 33 (24, 43) 32 (25, 42) 35 (26, 47)c 33.98 ± 14.29 12.282 0.031

NB RML 13 (11, 17) 17 (11, 22) 17 (13, 25)c 19 (13, 26)c 17 (11.5, 25) 26.335 <0.001

NB RLL 43.59 ± 19.20 51.74 ± 22.34 51 (38, 65) 52 (38, 71)c 51.60 ± 25.31 15.747 0.008

NB LUL 29 (20, 35) 32 (25, 43) 32 (25, 46) 37 (27, 49)c 36 (26, 49.5)c 22.807 <0.001

NB LLL 35.27 ± 16.36 42 (31, 51) 42 (31, 57)c 49.34 ± 25.80c 45.5 (30, 60)c 24.496 <0.001

VBRUL (mL) 3.51 ± 1.37 4.02 ± 1.46 3.89 (3.13, 5.02) 4.35 (3.36, 5.45)c 4.17 ± 1.50c 20.883 0.001

VBRML (mL) 1.83 (1.27, 2.75) 2.38 ± 1.02 2.45 (1.78, 3.27)c 2.72 (1.86, 3.54)c 2.39 ± 1.17 25.669 <0.001

VBRLL (mL) 4.83 ± 2.49 5.43 (3.72, 7.11) 5.66 (4.03, 7.62) 6.08 (4.31, 8.84)c 5.29 (3.64, 7.79) 19.717 0.001

VBLUL (mL) 4.12 ± 1.68 4.50 (3.46, 5.51) 4.60 (3.45, 5.82) 5.17 ± 2.19c,b 4.75 (3.43, 6.31) 21.525 0.001

VBLLL (mL) 5.46 ± 2.51 6.32 ± 2.63 6.10 (4.57, 8.28) 7.32 ± 3.65c 6.30 (4.61, 8.82)c 22.983 <0.001

MLDRUL (HU) −830.86 (−851.56, −813.01) −834.46 (−848.26, −818.81) −835.27 (−849.58, −818.90) −839.48 (−854.02, −821.44) −845.15 (−858.95, −830.46)c,b,a 33.469 <0.001

MLDRML (HU) −823.25 (−838.95, −793.41) −826.95 (−842.82, −802.37) −832.63 (−852.19, −807.55) −836.10 (−855.35, −812.69)c,b −843.29 (−862.50, −817.49)c,b,a 40.832 <0.001

MLDRLL (HU) −810.38 (−831.34, −789.61) −816.18 (−834.83, −793.31) −815.77 (−834.16, −786.49) −818.93 (−838.51, −795.74) −826.24 (−839.20, −805.19)a 15.601 0.008

MLDLUL (HU) −832.35 (−853.44, −818.11) −836.55 (−850.41, −820.54) −838.74 (−852.46, −820.78) −842.01 (−856.74, −824.00) −848.86 (−862.44, −830.39)c,b,a 27.955 <0.001

MLDLLL (HU) −800.35 (−825.18, −775.74) −804.18 (−827.16, −773.78) −803.11 (−825.13, −774.67) −808.89 (−831.53, −781.47) −817.46 (−836.36, −789.11)b,a 14.698 0.012

LAA-910RUL (mL) 62.99 (17.78, 162.46) 62.55 (27.51, 169.50) 96.37 (33.58, 212.40) 114.82 (40.22, 269.78)b,a 164.81 (87.64, 347.51)c,b,a 41.477 <0.001

LAA-910RML (mL) 4.49 (0.21, 25.22) 5.51 (0.42, 40.59) 17.11 (1.41, 85.33)b 25.64 (1.59, 110.62)c,b 37.64 (5.24, 141.35)c,b,a 44.218 <0.001

LAA-910RLL (mL) 59.58 (22.21, 152.86) 68.85 (16.76, 166.94) 80.57 (16.53, 189.62) 91.98 (30.40, 227.76) 142.04 (63.67, 241.95)c,b,a,d 28.371 <0.001

LAA-910LUL (mL) 124.58 (53.27, 273.63) 141.00 (57.22, 261.79) 165.96 (61.41, 314.75) 199.64 (70.88, 405.62)b 246.61 (133.16, 466.68)c,b,a 31.183 <0.001

LAA-910LLL (mL) 35.20 (12.34, 94.00) 34.93 (8.29, 108.87) 37.87 (10.48, 103.36) 51.06 (16.26, 143.20) 82.64 (28.34, 174.67)c,b,a 28.591 <0.001

LAA-950RUL (mL) 2.41 (0.7, 5.47) 1.73 (0.87, 4.14) 2.12 (0.99, 5.19) 2.69 (1.15, 7.37)b,a 4.97 (1.91, 12.21)c,b,a 48.353 <0.001

LAA-950RML (mL) 0.13 (0.01, 0.94) 0.16 (0.01, 1.10) 0.51 (0.05, 2.49)c,b 0.83 (0.07, 4.92)c,b 1.62 (0.15, 7.26)c,b,a 52.901 <0.001

LAA-950RLL (mL) 2.81 (0.8, 6.33) 2.51 (0.86, 7.81) 2.79 (0.96, 6.61) 3.74 (1.41, 10.29) 7.69 (2.78, 16.71)c,b,a,d 50.062 <0.001

(Continued on following page)
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TABLE 3 (Continued) The comparisons of quantitative parameters for the individual lobes.

Items ≤40 years-old (n = 56) 41–50 years-old (n = 154) 51–60 years-old (n = 297) 61–70 years-old (n = 277) 71–80 years-old (n = 144) F P

LAA-950LUL (mL) 8.5 (4.25, 16.25) 7.13 (3.82, 14.72) 8.05 (3.54, 16.52) 9.45 (4.14, 25.55) 16.08 (7.24, 35.91)c,b,a,d 39.766 <0.001

LAA-950LLL (mL) 2.79 (0.84, 8.50) 2.45 (1.11, 8.44) 2.93 (1.06, 7.26) 4.27 (1.73, 11.12)a 6.98 (2.5, 16.49)c,b,a 34.686 <0.001

LAA-910%RUL 6.46 (2.36, 17.24) 6.26 (3.04, 15.49) 8.90 (3.40, 18.18) 10.85 (3.86, 22.59)b 15.77 (8.77, 28.40)c,b,a,d 62.369 <0.001

LAA-910%RML 2.22 (0.19, 9.10) 3.34 (0.62, 14.28) 7.74 (0.96, 19.83)c 9.48 (1.84, 23.79)c,b 17.09 (4.92, 32.58)c,b,a,d 62.370 <0.001

LAA-910%RLL 4.45 (1.81, 9.00) 4.73 (1.46, 11.90) 5.87 (1.35, 12.46) 6.57 (2.46, 16.45) 11.47 (5.74, 18.69)c,b,a,d 57.584 <0.001

LAA-910%LUL 9.81 (4.81, 20.77) 10.99 (5.13, 19.95) 12.23 (5.18, 22.92) 14.68 (5.98, 26.71) 19.63 (11.01, 32.96)c,b,a,d 48.533 <0.001

LAA-910%LLL 3.06 (1.29, 7.61) 2.99 (0.95, 9.00) 3.68 (1.06, 8.69) 5.09 (1.71, 12.42)b 8.36 (3.60, 16.83)c,b,a,d 49.103 <0.001

LAA-950%RUL 0.24 (0.08, 0.44) 0.18 (0.09, 0.36) 0.18 (0.10, 0.45) 0.24 (0.12, 0.60)b 0.51 (0.18, 1.11)c,b,a,d 82.022 <0.001

LAA-950%RML 0.07 (0.00, 0.24) 0.07 (0.02, 0.37) 0.21 (0.03, 0.66)c,b 0.28 (0.05, 0.98)c,b 0.58 (0.12, 1.72)c,b,a,d 78.313 <0.001

LAA-950%RLL 0.20 (0.07, 0.39) 0.18 (0.07, 0.46) 0.19 (0.08, 0.46) 0.28 (0.11, 0.72)b,a 0.57 (0.24, 1.24)c,b,a,d 96.073 <0.001

LAA-950%LUL 0.68 (0.37, 1.19) 0.56 (0.32, 1.15) 0.65 (0.28, 1.24) 0.72 (0.32, 1.73) 1.23 (0.60, 2.67)c,b,a,d 65.103 <0.001

LAA-950%LLL 0.26 (0.09, 0.68) 0.24 (0.11, 0.72) 0.28 (0.11, 0.61) 0.42 (0.17, 1.02)b,a 0.71 (0.29, 1.43)c,b,a,d 62.141 <0.001

ALRRUL 6.46 (2.36, 17.24) 6.26 (3.04, 15.49) 8.90 (3.40, 18.18) 10.85 (3.86, 22.59)b 15.77 (8.77, 28.40)c,b,a,d 62.369 <0.001

ALRRML 2.22 (0.19, 9.10) 3.34 (0.62, 14.28) 7.74 (0.96, 19.83)c 9.48 (1.84, 23.79)c,b 17.09 (4.92, 32.58)c,b,a,d 62.370 <0.001

ALRRLL 4.45 (1.81, 9.00) 4.73 (1.46, 11.90) 5.87 (1.35, 12.46) 6.57 (2.46, 16.45) 11.47 (5.74, 18.69)c,b,a,d 57.584 <0.001

ALRLUL 9.81 (4.81, 20.77) 10.99 (5.13, 19.95) 12.23 (5.18, 22.92) 14.68 (5.98, 26.71) 19.63 (11.01, 32.96)c,b,a,d 48.533 <0.001

ALRLLL 3.06 (1.29, 7.61) 2.99 (0.95, 9.00) 3.68 (1.06, 8.69) 5.09 (1.71, 12.42)b 8.36 (3.60, 16.83)c,b,a,d 49.103 <0.001

Note: LV, lung volume; NB, number of branches; VB, volume of branches; MLD, mean lung density; LAA, low attenuation area; ALR, airway-to-lung ratio; RUL, right upper lobe; RML, right middle; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe.
cSignificantly different from group ≤40 years-old (P < 0.05).
bSignificantly different from group 41–50 years-old (P < 0.05).
aSignificantly different from group 51–60 years-old (P < 0.05).
dSignificantly different from group 61–70 years-old (P < 0.05).

The bold values indicate statistically significant differences between groups.
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et al., 2020). LAA-910, LAA-910%, LAA-950 and LAA-950% were
mainly pointed to the emphysematous changes. ALR was proved to
be a biomarker of impaired pulmonary function in COPD (Maetani
et al., 2023; Tanabe et al., 2019). All the quantitative parameters were
used to assess the effect of aging, and several novel findings
were identified.

First, lung aging is not a linear process in quantitative analysis.
LV peaked at about 60 years old, and VB and NB reached their peak
values between 61 and 70 years of age. The MLD declined from 30 to
40 years of age with minor fluctuations during the fifth decade
(40–50 years), and turned a slight upward trend at 70 years. LAA-
910 and LAA-910% exhibited a mild decrease during ages 30–40,
followed by a sustained increase until 60 years, after which a
downward trend was observed. These data suggest compensatory
structural changes in the lungs to maintain ventilation function at
the age of 50–60 years old. However, as age exceeds 70 years-old, this
compensatory mechanism may gradually fail. Data from the lung
function showed that both the forced vital capacity (FVC) and
forced expiratory volume for one second (FEV1) peaked at
20–30 years old, and then declined (Erelund et al., 2023; Sahebi
et al., 2022). A recent study found that aging is not a linear process
(Shen et al., 2024), and a notable decrease in oxygen carrier activity
around age 60.

Second, lung aging shows different change patterns between the
upper lobes and the lower lobes. For the LV, RUL increased without
a decline trend, but the bilateral lower lobes declined throughout the
ages. The pattern of the LV of bilateral lobes is consistent with the

lung function parameters; this can be explained by the bilateral lower
lobes being more correlated with lung function. The paired
inspiratory-expiratory chest CT quantitative results from Wu
et al. (2021) showed that the volumetric change of the lower
lobes was larger than the upper lobes. They also showed that the
CT quantitative indexes derived from LLL and RUL gave a strong
correlation with TLC and FVC. However, the CT quantitative
indexes derived from the right lung (RUL and RML) were
associated with Li et al. (2024). Also discovered that the LLL
plays the largest role in ventilation among the five lobes,
reminding us that the LLL is more sensitive to lung function
decline than the other four lobes. For the LAA-950 and LAA-
950%, a turning point was observed at approximately 60 years
old in the bilateral lower lobes, but not in the bilateral upper
lobes. These data suggest that the bilateral upper lobes were
predominantly affected by emphysema (Li et al., 2023), while the
bilateral lower lobes were predominantly affected by interstitial
disease (Choi et al., 2022).

Third, the most obvious changes between one age stage and the
previous age stage were identified using binary logistic regression. A
previous study found that emphysema increased with age, ranging
from 0.01% at age 40–50 years to 0.4% at age 70–80 years (Martinez
et al., 2017). Our findings are consistent with previous studies. This
accelerated lung aging, considered as a normal age-related senile
emphysema, may be part of COPD pathogenesis (Yoon et al., 2019).
Studying lung structure in normal subjects provides a basis for
detecting abnormalities at an early stage (Cheng et al., 2019; Jacob

FIGURE 3
The ridge plot of the quantitative parameters of each lobe. Abbreviations: LV, lung volume; LAA-910, lower attenuation area than −910 Hounsfield
unit; LAA-950, lower attenuation area than −950 Hounsfield unit; MLD, mean lung density; NB, number of bronchi; VB, volume of bronchi; RUL, right
upper lobe; RML, right middle; LUL, left upper lobe; LLL, left lower lobe.
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et al., 2019; Ritchie et al., 2024). We have also developed a LungAge
score, which can be used to assess the structural lung aging features.

However, this study has several limitations. First, despite the
relatively large size of the dataset, the sample size is not equally

distributed in each age group. The sample size of the age ≤40 years
old and >70 years old was relatively small. Thus, the present
findings are subject to confirmation in males aged ≤40 years
and >70 years. It is recommended that the sample size be

FIGURE 4
Curve fitting of the quantitative parameters. Abbreviations: LV, lung volume; LAA-910, lower attenuation area than −910 Hounsfield unit; LAA-950,
lower attenuation area than −950 Hounsfield unit; MLD, mean lung density; NB, number of bronchi; VB, volume of bronchi; RUL, right upper lobe; RML,
right middle; LUL, left upper lobe; LLL, left lower lobe.

TABLE 4 The most significant quantitative parameters between two adjacent age groups.

Comparisons Items b P OR 95% CI

Lower limit Upper limit

≤40 years-old vs.
41–50 years-old

ALRLLL 0.274 0.003 1.315 1.094 1.580

41–50 years-old vs. 51–60 years-old LVRUL 0.001 0.017 1.001 1.000 1.002

LVRML 0.002 <0.001 1.002 1.001 1.003

Constant −0.985 0.044 0.374

51–60 years-old vs. 61–70 years-old ALRTL 0.127 <0.001 1.136 1.076 1.199

LAA-910LLL −0.011 0.001 0.989 0.982 0.995

LAA-910%LLL 0.203 <0.001 1.225 1.111 1.351

Constant −3.078 <0.001 0.046

61–70 years-old vs. 71–80 years-old LAA-950LL −0.053 <0.001 0.948 0.922 0.974

LAA-950%LL 1.109 0.017 3.030 1.220 7.526

LAA-950%LUL 0.588 0.019 1.800 1.102 2.938

Constant −1.210 <0.001 0.298

Note: LV, lung volume; LAA, low-attenuation area; RUL, right upper lobe; RML, right middle; LUL, left upper lobe; LLL, left lower lobe; b, the coefficient of the selected index; OR, odds ratio; CI,

confidence interval. The bold values indicate statistically significant differences between groups.
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further expanded in future studies. Second, this is a cross-sectional
study; tracking individuals longitudinally over longer periods will
be required to observe these trajectories at an individual level.
Third, all the subjects were from a single center, which may limit
the applicability of the results in the external sample. Fourth, the
quantitative parameters used in the study are limited when
calculating a more precise LungAge score. More sensitive
biomarkers need to be defined or designed to help us
understand the changes of the aging lung. Fifth, a previous
study from our team has confirmed that the low-dose CT scan
(compared to the standard-dose) and the traditional
reconstruction technique (filtered back projection) will lead to
higher LAA and higher noise (Huang et al., 2020). In clinical
practice, most health management centers or hospitals prefer a
low-dose CT scan for lung nodular screening; therefore, advanced
image reconstruction should be considered to decrease noise and
achieve optimal LAA values (Ferri et al., 2022; Bak et al., 2020).
Sixth, the lack of lung function data limits our consideration to
older individuals who maintain their functionality despite illnesses
and diseases. As we were trying to display the age-related changes
of lung structure with regard to the “healthy aging” population.

Finally, there is a lack of data on pulmonary function. We would
collect pulmonary function data to better interpret the trajectories
of the quantitative parameters.

5 Conclusion

In summary, our findings demonstrated that lung aging is not a
linear process, with peak ages for LV and VB occurring at 51–60 and
61–70 years-old, respectively, while the progression of emphysema
becomes particularly pronounced after 70 years of age. Age-related
lung structural alterations in the upper and lower lobes exhibit
significant heterogeneity, with the upper lobes predominantly
demonstrating volume expansion accompanied by marked
emphysema progression, whereas the bilateral lower lobes
primarily show volume reduction with interstitial fibrotic
proliferation after 60 years-old. This study identifies the
parameters and lobes exhibiting the most significant changes
between adjacent age groups, and we provide a computational
formula, LungAge Score, for the assessment of the structural lung
aging features.

FIGURE 5
The evaluation of the lungAge Score. The selected parameters and their importance were shown in (A). The fitted value vs. the response value was
shown in (B). In the 5-fold cross-validation, the average R2 in the training group was 0.408, and the average R2 in the testing group was 0.148, as shown in
(C). The residual plot showed normal distribution, as shown in (D, E). The potential confounders, smoking intensity, height, weight, and BMI, were
analyzed to determine their effect on the LungAge score, as shown in (F-I). Abbreviations: LV, lung volume; LAA-910, lower attenuation area
than −910 Hounsfield unit; LAA-950, lower attenuation area than −950 Hounsfield unit; MLD, mean lung density; NB, number of bronchi; VB, volume of
bronchi; RUL, right upper lobe; RML, right middle; LUL, left upper lobe; LLL, left lower lobe.
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