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Brain aging is accompanied by profound changes in neuroimmune interactions that 
shape the balance between resilience and vulnerability. Under healthy conditions, 
glial cells, neurons, vascular elements, and peripheral immune inputs cooperate 
to sustain homeostasis. With advancing age, however, immune remodeling and 
systemic inflammaging drive shifts in microglial surveillance, astrocytic reactivity, 
and neuronal susceptibility, creating conditions that compromise synaptic function 
and cognitive performance. These processes unfold along a continuum, from 
subtle impairments in normal aging to maladaptive dynamics that accelerate 
neurodegenerative disease. Sex differences, epigenetic regulation, and systemic 
influences—including the gut microbiome, metabolic state, and lifestyle factors—
further modulate these trajectories. Here, we synthesize current knowledge on 
the cellular, systemic, and molecular mechanisms that govern neuroimmune 
aging, emphasizing how their dysregulation contributes to cognitive decline and 
disease vulnerability. We also highlight emerging conceptual frameworks, such as 
multilayer network modeling and resilience biomarkers, that provide a foundation 
for integrative approaches to brain aging. Understanding these interconnected 
systems underscores the necessity of viewing brain aging not solely through 
a CNS-centric lens, but as a networked process influenced by distal organs, 
circulating immune cells, microbial communities, and lifestyle factors—setting the 
stage for integrative models of neuroimmune dynamics in aging. Clarifying how 
these dynamic interactions unfold and what their consequences are is essential 
for developing strategies to preserve cognitive health and mitigate the burden 
of neurodegeneration in an aging society.
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1 Introduction

Aging is increasingly understood not simply as a gradual decline in cellular and 
physiological function, but as a dynamic process in which systemic, neural, and immune 
systems interact continuously. The brain, once thought largely immune-privileged, is now 
recognized to be in constant dialog with the immune system. These neuroimmune interactions 
influence neuronal function, synaptic plasticity, and ultimately cognition (Liston et al., 2022; 
Müller et  al., 2025b). With aging, this delicate balance tends toward dysregulation, and 
contributes both to regulative functional decline and heightened vulnerability to 
neurodegenerative diseases (Ransohoff, 2016; Di Benedetto et al., 2017).

One prominent hallmark of aging is inflammaging (Franceschi and Campisi, 2014), a 
chronic, low-grade inflammatory state that develops systemically and affects the central nervous 
system (CNS). Alongside immunosenescence, which refers to age-associated remodeling or 
decline in immune function, inflammaging creates a milieu characterized by increased numbers 
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of pro-inflammatory cytokines, altered immune cell profiles, and 
elevated oxidative stress (Murdaca et al., 2022; Bauer et al., 2024).

In the aging brain, several structural and functional changes 
accompany this shift. For example, microglia—the brain’s resident 
innate immune cells—become “primed”: they show elevated 
expression of antigen-presentation markers, pattern recognition 
receptors, and pro-inflammatory cytokines, and are more reactive to 
peripheral insults (Norden and Godbout, 2013; Müller and Di 
Benedetto, 2024a, 2024b). Astrocytes also change from homeostatic 
to reactive states, losing supportive functions related to synaptic 
maintenance and metabolic regulation, while reinforcing 
inflammatory signaling. Neuronal populations accumulate DNA 
damage and experience impaired repair and clearance mechanisms, 
further contributing to neuroinflammation (Zhang et al., 2024; Müller 
and Di Benedetto, 2025b; Müller et al., 2025b).

Moreover, aging impacts the physical and barrier components of 
CNS-immune communication. Blood–brain barrier (BBB) integrity 
declines with age, tight junctions loosen, pericyte coverage decreases, 
and trans-endothelial transport shifts from specific (receptor-
mediated) to more permissive, non-specific mechanisms. These 
changes facilitate greater infiltration of peripheral immune molecules 
or cells, which can exacerbate neuroimmune responses (Knox et al., 
2022; Tamatta et al., 2025).

Crucially, systemic influences—including metabolic health, gut 
microbiota composition, lifestyle factors (e.g., diet, exercise, stress), 
and peripheral immune status—play an increasingly recognized role 
in modulating neuroimmune aging. Dysbiosis in the gut, for instance, 
can trigger low-grade peripheral inflammation and increase 
circulating pathogen- or damage-associated molecular patterns 
(PAMPs or DAMPs), which, via compromised barriers and immune 
crosstalk, propagate to the CNS (Yu et  al., 2022; Müller and Di 
Benedetto, 2025a).

Together, these changes in cellular phenotypes, barrier properties, 
and systemic signals coalesce to produce a neuroimmune environment 
in the aged brain that is more susceptible to maladaptive responses. 
The consequences of this dysregulated neuroimmune dynamics 
include synaptic dysfunction, reduced neuroplasticity, cognitive 
decline, and an increased risk of neurodegenerative pathology such as 
Alzheimer’s disease, Parkinson’s disease, and others (Gaikwad 
et al., 2024).

In this mini review, we aim to provide a comprehensive overview 
of neuroimmune dynamics in brain aging, with a focus on the 
mechanisms by which immune, glial, neuronal, vascular, and systemic 
processes interact over time. We  highlight how these interactions 
shape both adaptive and maladaptive trajectories of aging, and how 
their consequences span from subtle functional decline to increased 
vulnerability to neurodegenerative diseases. By integrating insights 
across molecular, cellular, and systemic levels, we seek to frame brain 
aging as a multilayer network process, offering a conceptual 
foundation for future interdisciplinary research in neuroimmunology 
and aging.

2 Baseline neuroimmune networks in 
the healthy brain: a brief overview

In youth and adulthood, neuroimmune homeostasis depends on 
the coordinated activity of drainage pathways, selective barriers, 

structural interfaces, and specialized glial cells, which together 
regulate molecular exchange, clear metabolic waste, and maintain 
immune surveillance (Figure  1). This interconnected architecture 
ensures that the CNS remains both responsive and protected, 
balancing the demands of function and defense. Before exploring this 
network at the cellular level, it is first essential to outline the principal 
drainage routes and the selective barriers that shape the CNS’s internal 
milieu, providing the framework upon which cellular interactions 
are orchestrated.

A crucial component of CNS homeostasis is the network of fluid 
drainage and antigen-clearance pathways. The glymphatic system 
(Figure  1A) ensures convective flow of cerebrospinal fluid (CSF) 
through arterial perivascular spaces, interstitial space, and eventually 
venous perivascular paths, aided by aquaporin-4 polarization in 
astrocyte endfeet (Silva et al., 2021; Müller and Di Benedetto, 2025a). 
This pathway supports removal of metabolic waste and maintenance 
of extracellular milieu. Imaging studies show that its function (for 
example assessed via DTI-ALPS, the diffusion tensor imaging along 
perivascular space index) declines with advancing adult age, especially 
after midlife, and that lower glymphatic efficacy correlates with 
declines in cognition and structural changes like thinning of key 
memory-related cortical zones (Li et  al., 2022; Wang et  al., 2023; 
Müller and Di Benedetto, 2025a).

In addition, meningeal lymphatic vessels provide routes by which 
soluble molecules and antigens from CSF and meningeal interstitial 
fluid are drained to peripheral lymph nodes, enabling antigen 
presentation and immune surveillance outside the brain parenchyma 
(Figure 1B). At steady state, immune cell populations in the dura and 
leptomeninges interact with these drainage pathways, capturing 
CNS-derived antigens and contributing to peripheral immune 
awareness of CNS status with minimal inflammatory disturbance 
(Louveau et al., 2018; Chachaj et al., 2023).

At the cellular level, microglia act as central orchestrators of CNS 
homeostasis. These long-lived, self-renewing myeloid cells adopt 
ramified morphologies in the steady state, continuously survey their 
environment, prune redundant synapses, clear debris, and release 
trophic factors that sustain neuronal health and network integrity 
(Figure 1C). Disruption of their signature homeostatic transcriptional 
profile leads rapidly to altered morphology, loss of molecular identity, 
and disturbances in neurogenesis and synaptic integrity (Kierdorf and 
Prinz, 2017; Müller and Di Benedetto, 2025b; Müller et al., 2025b).

Astrocytes operate in parallel with microglia: in healthy brains 
they contribute to ion homeostasis, regulation of neurotransmitter 
turnover, support of metabolic-needs (e.g., provision of lactate), and 
reinforcement of synaptic function (Figure 1C). Structural complexity 
of astrocytes (especially in larger mammalian brains) allows them to 
interact with many thousands of synapses, shaping and modulating 
neural circuit function even in resting conditions (Lopez-Ortiz and 
Eyo, 2024; Müller et al., 2025b).

Endothelial and other vascular cells form selective barriers, most 
prominently the BBB, that mediate molecular and cellular traffic 
between the circulation and neural tissue (Figure 1D). This barrier is 
built by tightly connected endothelial cells supported by astrocytic 
endfeet and pericytes, which together maintain its integrity and 
selective permeability. Under homeostatic conditions they restrict 
leakage, tightly regulate transport of nutrients, cytokines, and small 
molecules, and maintain barrier integrity. Meanwhile, peripheral 
immune cells and molecules (cytokines, growth factors) are largely 
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excluded from the parenchyma but can sense and respond to cues at 
barrier interfaces, meningeal spaces, and perivascular zones, providing 
a form of immune surveillance without extensive infiltration. 
Microglia, astrocytes, endothelial cells, oligodendrocyte precursor 

populations, and neurons are all parts of this surveillance and 
signaling ensemble (Kabba et al., 2018; Müller et al., 2025b).

Together, this architecture supports a baseline of neuroimmune 
equilibrium: each cellular type performs dual roles in maintenance 

FIGURE 1

Baseline neuroimmune networks in the healthy brain. Neuroimmune homeostasis arises from the coordinated action of cellular agents, vascular 
interfaces, and fluid drainage systems. (A) The glymphatic pathway drives CSF circulation through periarterial and perivenous routes, aided by 
aquaporin-4–polarized astrocytic endfeet, and supports metabolic waste clearance. (B) Meningeal lymphatic vessels drain CSF and meningeal 
interstitial fluid to peripheral lymph nodes, enabling antigen presentation without parenchymal inflammation. (C) Microglia, long-lived myeloid cells, 
constantly survey the local environment, prune synapses, clear debris, and release trophic factors. Astrocytes complement these functions by 
maintaining ion balance, neurotransmitter turnover, metabolic support, and synaptic regulation. (D) Endothelial cells, supported by pericytes and 
astrocytic endfeet, form the blood–brain barrier, which restricts leakage, regulates molecular transport, and preserves barrier integrity. Together, these 
integrated layers provide surveillance, waste removal, metabolic support, and tightly regulated immune signaling, ensuring a resilient neuroimmune 
equilibrium under healthy conditions. EF, endfeed; a4p, aquaporin-4-polarized astrocytic endfeet; CSF, cerebrospinal fluid; IF, interstitial fluid; BP, brain 
parenchyma; APC, antigen-presenting cell; TC, T cell.
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and surveillance, the barriers limit accidental activation, and drainage 
systems ensure waste and antigen manageability. These integrated 
layers set the stage for how perturbations such as aging, disease, 
systemic stress propagate across scales. As organisms grow older, 
however, systemic immune remodeling reshapes the inputs to this 
network, gradually altering the conditions under which neuroimmune 
communication takes place.

3 Systemic aging and immune 
remodeling

Aging triggers widespread changes in the immune system—
collectively termed immunosenescence—which do not simply reduce 
function, but reorganize immune architecture and regulation in a 
dynamic, remodeling process (Pawelec, 2012). Alongside 
immunosenescence, there is often a parallel increase in systemic, 
low-grade inflammation that emerges even in the absence of overt 
infection (Figure  2A). These two phenomena are intertwined: 
immunosenescence diminishes immune surveillance, while 
inflammaging can be  driven by senescent somatic cells and 
dysregulated immune activation (Fulop et al., 2017; Ajoolabady et al., 
2024; Goyani et al., 2024).

One of the earliest and most striking contributors to 
immunosenescence is thymic involution. Over time, the thymus loses 
mass and becomes replaced by adipose tissue; its capacity to produce 
naïve T cells and to support central tolerance diminishes, reducing the 
diversity of the T-cell receptor repertoire and increasing the 
proportion of memory and senescent T-cell clones. This reduces 
adaptive immune responsiveness to novel antigens (Pawelec, 2012; 
Palmer, 2013; Müller and Pawelec, 2015; Müller et al., 2019a).

At the level of innate immunity, aging is associated with decline 
in functions such as phagocytosis, pathogen detection, and pathogen 
killing. Macrophages, neutrophils, natural killer cells, and dendritic 
cells show altered responsiveness; often there is an elevated basal 
activation state, but a blunted response to acute challenges. Reactive 
oxygen species (ROS) production, mitochondrial dysfunction, 
impaired autophagy, and metabolic dysregulation are recurrent 
cellular features associated with these changes (Goyani et al., 2024).

Another layer of remodeling is found in hematopoietic stem and 
progenitor cells: their output becomes skewed, with a relative increase 
in myeloid vs. lymphoid lineages (Figure 2A). This bias results in more 
proinflammatory myeloid cells (monocytes, neutrophils) and fewer 
naïve lymphocytes. Telomere shortening, epigenetic drift, and 
accumulation of DNA damage in progenitor cells contribute to these 
shifts (Wang et al., 2011; Wells et al., 2024).

At the molecular level, immune remodeling involves changes in 
signaling pathways, epigenetic regulation, post-translational 
modifications, and the secretory phenotypes of senescent cells. For 
example, senescence-associated secretory phenotype (SASP) factors 
such as IL-6, TNF-α, and other inflammatory cytokines increase over 
time; concurrently, regulators like cytokine inducible SH2-containing 
protein (CISH) have been implicated in reducing lysosomal function 
in aging T cells, which contributes to mitochondrial DNA release and 
persistent inflammation (Wang S, et al., 2025).

Gut microbiota alterations also form part of systemic immune 
remodeling. Aging is associated with changes in microbial diversity, 
increased permeability of the gut barrier, and greater translocation of 

microbial products (PAMPs) into circulation, which can chronically 
stimulate innate immune compartments and feed into inflammaging. 
Nutritional status and dietary components (e.g., micronutrients, 
immunonutrients) modulate these effects, affecting levels of systemic 
inflammatory markers such as C-reactive protein, IL-6, and TNF-α 
(Yu et al., 2022; Müller and Di Benedetto, 2025a).

These systemic changes have several consequences for the brain: 
reduced clearance of peripheral insults, altered immune signaling, 
elevated basal inflammation that compromises CNS barriers, and the 
priming of glial cells. Together, they create a milieu in which 
neuroimmune communication becomes increasingly fragile and 
prone to maladaptation. As a result, the cellular constituents of the 
brain’s immune network—particularly microglia, astrocytes, and 
neurons—operate under altered baseline conditions. The next section 
examines how these shifts manifest at the cellular level, tracing the 
progression from adaptive responses in youth to maladaptive 
phenotypes that drive neuroimmune aging.

4 Cellular mechanisms of 
neuroimmune aging

With aging, cellular components of the brain immune 
environment progressively shift in identity, function, and interaction. 
These changes in microglia, astrocytes, and neurons, together with 
altered glia–neuron communication, form key mechanisms 
underlying neuroimmune aging (Figure 2B).

Microglia, in their youthful state, continuously monitor the brain 
environment, rapidly clearing debris, pruning synapses, and 
responding subtly to shifts in extracellular signals. With aging, 
however, microglia adopt a sensitized or senescent phenotype: they 
display elevated baseline expression of pro-inflammatory cytokines, 
antigen presentation molecules (e.g., MHC II), and pattern recognition 
receptors, even in the absence of acute insult. Morphologically, these 
aged microglia often show dystrophic features, including deramified 
or fragmented processes, spherical soma, and reduced motility 
(Norden and Godbout, 2013; Norden et al., 2015; Kierdorf and Prinz, 
2017; Carr et al., 2025; Müller and Di Benedetto, 2025b; Müller et al., 
2025b). Such changes are accompanied by impaired phagocytosis (for 
example, of amyloid in Alzheimer’s disease models), decreased ability 
to resolve inflammation, and a reduced capacity to respond adaptively 
to metabolic or oxidative stress (Heneka et al., 2015; Edler et al., 2021; 
Heneka et al., 2024).

Single-cell transcriptomic profiling of the human orbitofrontal 
cortex across the adult lifespan shows early deviation of microglial 
gene programs in late adulthood, particularly in pathways related to 
lipid metabolism and protein homeostasis (Frohlich et  al., 2024). 
Complementary studies reveal age- and APOE-dependent 
immunometabolic perturbations in human microglia, implicating 
lipid handling and metabolic dysregulation in the transition toward 
disease-associated phenotypes (Patel et al., 2022).

Astrocytes also undergo profound aging-related alterations: their 
metabolic profile changes, synaptic support declines, and reactive 
states become more common (Figure  2B). In adult aging brains, 
astrocytes show a switch from aerobic glycolysis to oxidative 
phosphorylation, which reduces lactate supply to neurons—this 
metabolic rebalancing may heighten neuronal energetic deficits since 
neurons concurrently downregulate expression of Krebs cycle and 
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FIGURE 2

Systemic and neuroimmune remodeling with aging. (A) Aging triggers widespread changes in the immune system, including thymic involution, 
reduced production of naïve T cells, accumulation of memory and senescent T-cell clones, and skewed hematopoiesis favoring myeloid over 
lymphoid lineages. Innate immune cells—macrophages, neutrophils, natural killer cells, and dendritic cells—exhibit elevated basal activation but 
blunted responses to acute challenges. Cellular features such as mitochondrial dysfunction, impaired autophagy, metabolic dysregulation, and DNA 
damage accumulate over time, promoting inflammaging and reduced immune surveillance. (B) In the brain, these systemic changes contribute to 
altered neuroimmune states, reflecting bidirectional interactions between aging peripheral and central immune systems that reciprocally shape 
inflammatory balance. Microglia adopt primed or dystrophic phenotypes with elevated basal cytokine expression, impaired phagocytosis, and retracted 
or fragmented processes. Astrocytes display metabolic dysregulation, reduced synaptic support, and increased reactive states, while neurons 
experience energy deficits, synaptic dysfunction, and heightened vulnerability to maladaptive glial signaling. Dysregulated communication among 
these cell types amplifies inflammatory and stress signals, linking normal aging to early stages of neurodegenerative vulnerability. (C) Interconnected 
systems beyond the brain —including systemic immune signals, microbial metabolites, and lifestyle influences—modulate brain immune states and 
further shape neuroimmune aging. (D) Chronic dysregulation of these networks contributes to vulnerability and progression toward neurodegenerative 
diseases, such as Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. TC, T cells; IL, interleukin; TNF, tumor necrosis factor; smT, senescent 

(Continued)
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related metabolic genes (e.g., mdh1, mdh2; Patel et al., 2022; Gildea 
and Liddelow, 2025).

Additionally, aging astrocytes show mitochondrial fragmentation, 
reduced mitochondrial biogenesis, and lowered resilience to oxidative 
stress. On the synaptic side, aging is associated with downregulation 
of synaptogenic factors (e.g., thrombospondin family genes), and 
upregulation of negative regulators of synapse formation, which 
contributes to reduced dendritic spine density and weakening of 
synaptic plasticity (Gildea and Liddelow, 2025). Spatial transcriptomic 
studies in aging mice reveal widespread astrocytic reprogramming, 
including increased expression of inflammatory and complement 
genes, particularly in white matter tracts where astrocytes interact 
with degenerating myelin and activated microglia (Wang L, 
et al., 2025).

Neurons themselves are not passive in this landscape; they both 
suffer from, and contribute to, neuroimmune aging (Acevedo et al., 
2023; Müller and Di Benedetto, 2025b; Müller et al., 2025b, 2025c). 
Neuronal energy deficits (via reduced metabolic enzyme expression 
and declines in mitochondrial efficiency) reduce neurons’ ability to 
maintain ionic gradients, synaptic transmission, and repair. These 
deficits render neurons more vulnerable to damage by maladaptive 
glial responses, such as excessive release of pro-inflammatory 
cytokines (IL-1β, TNF-α), reactive oxygen species, or complement 
activation. Additionally, the dysregulation of supporting trophic 
factors or metabolic intermediates from astrocytes and microglia can 
tip the balance toward synapse loss, dendritic retraction, and eventual 
functional decline (Acevedo et al., 2023).

Single-nucleus profiling of human orbitofrontal cortex 
demonstrates that aging neurons, particularly inhibitory subtypes, 
accumulate transcriptomic changes overlapping with those seen in 
neurodegenerative and psychiatric conditions, involving synaptic 
transmission, RNA splicing, and protein homeostasis (Frohlich et al., 
2024). These deficits are further amplified when glial support wanes 
and inflammatory signals intensify.

Crosstalk among these cellular compartments becomes 
progressively dysregulated. In healthy conditions, neuron-derived 
signals such as CX3CL1 and CD200 restrain glial reactivity, but their 
expression declines with aging, weakening these inhibitory 
checkpoints. Distress signals from metabolically challenged neurons 
(e.g., DAMPs) increasingly activate microglia and astrocytes, while 
senescent cells scattered through cortical and hippocampal regions 
release pro-inflammatory factors that propagate local activation foci 
in the aged mouse brain (Haidar et al., 2022; Kiss et al., 2022; Müller 
and Di Benedetto, 2025b). Spatial transcriptomics highlight that such 
inflammatory hotspots frequently align with white matter tracts, 
where microglia, astrocytes, and degenerating oligodendrocytes 
converge, reinforcing regional vulnerability (Wang L, et al., 2025).

Altogether, aging shifts the cellular neuroimmune landscape from 
resilient surveillance to a state of heightened sensitivity, metabolic 
fragility, and maladaptive amplification of stress signals. Microglia 
become primed, astrocytes reactive, neurons vulnerable, and their 
communication increasingly feeds back into cycles of inflammation 

and dysfunction. These changes create a cellular framework that 
bridges normal aging processes with the earliest stages of 
neurodegenerative vulnerability. Understanding the timing, cell-type 
specificity, and molecular underpinnings of these shifts is essential to 
map how early neuroimmune dysregulation may presage later 
cognitive decline and disease susceptibility.

5 Sex differences in neuroimmune 
aging

Sex profoundly shapes the trajectory of neuroimmune aging, 
influencing both systemic immune remodeling and the cellular 
dynamics of the brain. These differences arise from hormonal 
regulation, chromosomal factors, and lifelong variations in immune 
system activity, and they contribute to divergent susceptibilities to 
age-related cognitive decline and neurodegeneration (Ruigrok et al., 
2014; McCarthy et al., 2017; Müller et al., 2025c). Alzheimer’s disease 
(AD) shows higher prevalence and faster cognitive decline in female, 
while Parkinson’s disease (PD) occurs more frequently in male and 
manifests with sex-specific symptom profiles. Multiple sclerosis (MS) 
is diagnosed more often in female, yet male typically experience a 
more aggressive and neurodegenerative disease course (Ribbons et al., 
2015; Laws et al., 2018; Gilli et al., 2020; Philipe de Souza Ferreira 
et al., 2022; Boccalini et al., 2025; Cattaneo and Pagonabarraga, 2025).

Hormonal regulation is a central driver of sex-specific 
neuroimmune trajectories. Estrogens, progesterone, and androgens 
modulate microglial activation, astrocytic reactivity, and neuronal 
resilience. Estrogens generally exert anti-inflammatory and 
neuroprotective effects by dampening pro-inflammatory cytokine 
release, enhancing mitochondrial function, and promoting synaptic 
plasticity (Maggioli et  al., 2016; Zarate et  al., 2017). In contrast, 
declining estrogen levels during menopause are associated with 
heightened neuroinflammation and reduced glial support, particularly 
in hippocampal and cortical circuits involved in memory. Androgens, 
though less studied, appear to modulate microglial activity and protect 
against excessive synaptic pruning, with declining testosterone in 
aging males linked to increased vulnerability to glial-driven 
inflammation (Maggio et  al., 2005; Dengri et  al., 2025; Müller 
et al., 2025c).

Beyond endocrine regulation, immune aging follows distinct 
trajectories in males and females. Female generally exhibit stronger 
baseline immune responses, with greater adaptive immune activity but 
also higher risk of autoimmune conditions. With aging, this 
heightened immune tone interacts with declining sex hormones to 
amplify pro-inflammatory signaling in the brain, accelerating the shift 
of microglia and astrocytes toward reactive phenotypes (Klein and 
Flanagan, 2016; Di Benedetto et al., 2019a). In male, immune aging 
tends to follow a slower trajectory with less pronounced inflammaging, 
but often coupled with earlier vascular dysfunction and metabolic 
decline that indirectly affect neuroimmune homeostasis (Giefing-
Kroll et al., 2015; Müller et al., 2025c).

memory T cells; Mf, macrophage; Nf, neutrophil; NK, natural killer; DC, dendritic cells; dMT, dysfunctional mitochondria; SASP, senescence-associated 
secretory phonotype; aMG, activated microglia; AC, astrocyte; aAC, activated astrocyte; dN, degenerating neuron; BV, blood vessel; pIC, peripheral 
immune cells; cBBB, compromised blood–brain-barrier; BP, brain parenchyma.

FIGURE 2 (Continued)
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Sex differences in neuroinflammation reflect not only hormonal 
influences but also genetic and epigenetic factors. The X chromosome, 
enriched in immune-related genes, contributes to stronger immune 
activation in females through partial escape from X-chromosome 
inactivation, enhancing surveillance but also increasing risk of 
overactivation and autoimmunity. These mechanisms shape glial 
function and long-term immune programming, underpinning 
sex-specific vulnerability and resilience in aging and disease (Lopez-
Otin et al., 2023; Feng et al., 2024).

Sex-specific epigenetic regulation, including DNA methylation, 
histone modifications, and microRNAs, programs long-term immune 
and glial phenotypes (McCarthy et al., 2017; Chinn et al., 2021). In 
aging brains, females generally maintain more stable methylation, 
whereas males show greater variability at immune loci, indicating 
divergent epigenetic control of neuroinflammation (Yusipov et al., 
2020; Lopez-Otin et al., 2023; Shirokova et al., 2023). Transcriptomic 
studies reveal stronger inflammatory reprogramming in female 
hippocampal microglia, with upregulation of complement genes and 
glycolytic metabolism characteristic of the DAM phenotype, while 
aged males display a weaker response (Ramamurthy et al., 2022; Kang 
et al., 2024; Singh and Paramanik, 2024).

Mouse studies indicate that male microglia adopt 
pro-inflammatory states early in life, whereas female microglia show 
greater phagocytic capacity and injury responsiveness in adulthood 
(Villa et al., 2018). In humans, transcriptomic profiling has identified 
female-enriched disease-associated microglia (FDAMic), more 
abundant in female with late-onset AD and correlated with disease 
severity (Wu et al., 2024). These cells display activation and antigen-
presentation signatures but reduced phagocytic function, likely linked 
to impaired estrogen receptor signaling in APOE4 carriers.

In the aging mouse hippocampus, female microglia exhibit 
stronger upregulation of senescence-associated and inflammatory 
pathways than males, together with greater expression of 
age-dependent genes and epigenetic modifications (Ocañas et  al., 
2023). Li et al. found that female microglia progress through aging 
phases more gradually, whereas male microglia transition more 
abruptly toward aged phenotypes (Li et al., 2023).

In aged rodents, alterations in microglial function correlate with 
sex differences in cognitive decline. Ince et al. (2023) reported that 
male aged rats display stronger inflammatory priming of microglia 
that associates with worse performance in memory tasks (Ince et al., 
2023). Such findings underscore that sex not only influences cellular 
immune phenotypes but also translates into measurable differences in 
cognitive outcomes.

These converging lines of evidence point to sex as a critical 
modifier of neuroimmune aging, shaping vulnerability to disease and 
resilience to stress. Building on this cellular and molecular framework, 
the next section turns to systemic modulators that interact with brain 
immune networks to further influence aging trajectories.

6 Interconnected systems beyond the 
brain

The aging brain operates within a complex network influenced by 
peripheral systems, metabolites, and lifestyle factors (Figure  2C). 
Increasing evidence highlights the role of the gut–brain–immune axis 
as a central modulator of neuroimmune health. The intestinal 

microbiota produces metabolites, neurotransmitter precursors, and 
short-chain fatty acids that shape microglial maturation, astrocytic 
function, and BBB integrity. With aging, microbial diversity declines 
and pro-inflammatory taxa expand, amplifying systemic cytokine 
levels and skewing microglia toward reactive states—a process that 
contributes to the inflammaging (Pluta et al., 2020; Müller and Di 
Benedetto, 2025a; O'Riordan et al., 2025).

For example, in aged mice, transplantation of gut microbiota from 
old donors worsens the neurological outcome after ischemic stroke, 
mediated in part by elevated valeric acid in the bloodstream and 
increased IL-17 signaling. Young recipients of old microbiota show 
heightened inflammation and poorer recovery, illustrating that 
microbial metabolites can prime peripheral immunity and exacerbate 
central injury (Zeng et al., 2023). Another recent study shows that gut 
microbial communities in aged mice possess increased immunogenic 
potential: aged microbiota more strongly activate Toll-like receptor 4 
signaling, correlate with elevated circulating levels of 
lipopolysaccharide-binding protein, and induce heightened systemic 
inflammation when transplanted into young germ-free mice. These 
findings directly connect age-related shifts in microbiota to increased 
peripheral immune activation and barrier compromise (Caetano-Silva 
et al., 2024).

Peripheral immune cells and circulating factors further interact 
with the brain’s immune milieu. T cells, monocytes, and systemic 
cytokines can access the CNS through the choroid plexus, meningeal 
lymphatics, or transient BBB permeability. With aging, T-cell 
populations shift toward pro-inflammatory phenotypes, monocyte 
recruitment patterns change, and baseline levels of cytokines such as 
IL-6, TNF-α, and IFN-γ rise, all of which influence microglial priming, 
astrocytic reactivity, and neuronal susceptibility (Yang et al., 2020; 
Müller and Di Benedetto, 2025b). These systemic inputs help explain 
why peripheral health—immune competence, infection history, and 
chronic inflammation—can modulate brain aging trajectories.

Recent work in AD mouse models shows that rejuvenation of 
peripheral immune compartments (e.g., via young bone marrow 
transplantation) can restore some Aβ clearance, reduce systemic 
inflammatory cytokines, improve cell–cell communication among 
immune cells, and ameliorate cognitive deficits. This highlights that 
peripheral immunosenescence is not just a bystander but contributes 
causally to central neuroinflammation and disease pathology (Sun 
et al., 2024).

Lifestyle and environmental factors provide additional layers of 
modulation in aged population. Diets rich in fiber, polyphenols, and 
omega-3 fatty acids preserve microbiome diversity, maintain intestinal 
barrier integrity, and reduce pro-inflammatory signaling in 
macrophages and other immune cells. Conversely, high-fat or 
pro-oxidant diets accelerate gut barrier breakdown, systemic 
endotoxin influx, and microglial activation. In aged humans, regular 
physical activity attenuates microglial priming and preserves synaptic 
function, while chronic stress, sleep disruption, and sedentary 
behavior accelerate glial reactivity, impair metabolic homeostasis, 
amplify peripheral inflammatory signaling, and degrade BBB function 
(Phillips, 2017; Müller and Di Benedetto, 2025a).

Together, these interconnected systems—microbial 
communities, peripheral immunity, lifestyle and environment—
create a multilayered network that shapes neuroimmune aging 
(Figure 2C). The extent to which each node (gut, systemic immune 
cells, and lifestyle) influences the brain depends on factors such as 
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age, sex, genetic background, and cumulative environmental 
exposure. Understanding how these upstream systems interact with 
cellular and molecular mechanisms in the brain is essential for 
mapping the trajectories from adaptation to maladaptation—and for 
identifying possible intervention points to sustain cognitive resilience.

7 Consequences of dysregulated 
neuroimmune dynamics

Neuroimmune processes that support plasticity and repair in early 
life can become sources of dysfunction when compensatory 
mechanisms erode, such that continued or excessive immune activity 
crosses adaptive thresholds and accelerates tissue damage. 
Longitudinal imaging and experimental work in  vivo and vitro 
indicate that once microglial priming, astrocytic dysfunction, or 
barrier compromise pass critical limits, vulnerability to acute insults 
and chronic decline increases markedly (Wyss-Coray and Mucke, 
2002; Malpetti et al., 2023; Wang et al., 2023; Xue et al., 2024).

In typical aging, cognitive change most often reflects a slow 
accumulation of subtle neuroimmune alterations—mild increases in 
baseline cytokine tone, faint astrocytic reactivity, reduced synaptic 
plasticity—that translate into declines in processing speed, attention, 
and episodic memory yet remain compatible with independent 
function. In a subset of individuals these same processes intensify and 
enter pathological trajectories: sustained inflammation, persistent glial 
activation, and progressive synaptic loss drive a transition from mild 
functional impairment to clinically meaningful cognitive decline. 
Plasma and CSF biomarkers follow this continuum: longitudinal 
increases in phosphorylated tau species and neurofilament light (NfL) 
identify individuals progressing from preclinical states to symptomatic 
disease (Bilgel et al., 2023).

Neurodegenerative disorders exemplify the end points of prolonged 
neuroimmune dysregulation (Figure 2D). In AD, for example, in vivo 
measures of glial activation (TSPO PET) co-localize with amyloid and 
associate with subsequent atrophy and cognitive deterioration, 
suggesting that chronically activated innate immunity both reflects and 
contributes to disease progression. Similarly, elevated systemic 
inflammatory markers and specific cytokine profiles correlate with 
accelerated cognitive decline across human cohorts, linking peripheral 
inflammaging with central vulnerability (Rossano et al., 2024).

In PD, neuroimmune dysregulation is increasingly recognized as 
a central contributor to disease onset and progression. Microglia in 
the substantia nigra display chronic activation, releasing 
pro-inflammatory cytokines and reactive oxygen species that 
exacerbate dopaminergic neuron vulnerability (Kwon and Koh, 2020; 
Gao et al., 2023; Müller et al., 2025a). Postmortem and in vivo studies 
reveal infiltration of peripheral T cells into affected brain regions, 
suggesting that adaptive immunity participates alongside innate 
immune responses in shaping neurodegeneration (Brochard et al., 
2009; Sommer et al., 2017). Longitudinal cohort studies further show 
that elevated systemic inflammatory markers, such as C-reactive 
protein and IL-6, correlate with faster motor and cognitive decline in 
PD patients (Scalzo et al., 2010; Kim et al., 2022). Thus, these findings 
highlight PD as a exemplary case where central and peripheral 
immune alterations converge to accelerate selective neuronal loss, 

underscoring that neuroimmune dysregulation is not only a 
consequence but also a driver of disease pathology.

Alzheimer’s and Parkinson’s disease illustrate two distinct yet 
converging routes by which maladaptive neuroimmune responses 
accelerate pathology—whether through impaired clearance of protein 
aggregates or heightened vulnerability of specific neuronal populations. 
Similar immune–glial imbalances occur across other neurodegenerative 
diseases, suggesting that neuroimmune dysregulation is a unifying 
mechanism in late-life brain disorders. Together, these observations 
support a model in which dysregulated neuroimmune dynamics unfold 
along a continuum from resilience to vulnerability: many age-related 
changes remain contained for years, but when buffering capacity is lost 
the system tips toward degeneration. Mapping the biomarkers and 
imaging signatures that mark these tipping points offers a pragmatic 
route to detect transitions from adaptive aging to emerging pathology.

8 Perspectives and future directions

The recognition that neuroimmune dysregulation underlies both 
normal cognitive decline and diverse neurodegenerative diseases calls 
for a shift from reductionist views of single cell types or isolated 
pathways toward integrative, network-based frameworks. Aging of the 
brain is not solely a matter of neuronal attrition but reflects 
multilayered interactions among glia, neurons, peripheral immune 
cells, systemic mediators, and environmental inputs.

Analyzing complex biological systems such as the immune system 
and CNS is challenging due to their multidimensionality, context 
dependence, and nonlinear regulation (Müller et al., 2019b). Traditional 
single-layer network models have revealed sex- and CMV-related 
differences in interactions between inflammatory biomarkers, 
hormones, immune cells, and cognitive outcomes (Di Benedetto et al., 
2019b), but they cannot fully capture cross-domain dependencies. 
Multilayer network (MLN) approaches extend this framework by 
integrating interactions across molecular, cellular, and tissue levels, 
enabling simultaneous analysis of intra- and inter-layer dynamics. In 
neuroimmune contexts, nodes can represent cell types while inter-layer 
links reflect cytokines, neurotransmitters, or receptor–ligand signaling, 
with mass spectrometry and multiplex assays providing the quantitative 
basis (Müller et al., 2025c). Applied to neuroinflammation, MLNs can 
reveal how glial reactivity or cytokine perturbations propagate through 
the system, altering neuronal function and resilience.

Recent single-cell and multimodal studies are already beginning 
to map out these multilayered networks. For example, Sun et al. survey 
how cellular clocks, epigenetic drift, altered cell–cell interactions, and 
molecular signaling across cell types contribute to aging-related 
decline and identify candidate rejuvenation targets (Sun et al., 2025). 
In another work, Jones et al. employ multilayer network analysis to 
show how physical activity, synaptic peptide integrity, and 
phosphorylated tau interact to shape both pathology and cognition in 
Alzheimer’s disease (Jones et al., 2024).

MLN analyses show that genes associated with the same disease 
cluster within distinct “disease modules” of molecular interaction 
networks, supporting the disease module hypothesis (Menche et al., 
2015; Sharma et  al., 2015; Buphamalai et  al., 2021). Comparable 
modular organization has been observed in immune and cognitive 
networks, where biomarkers and performance measures form tightly 
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interconnected modules, reflecting functional interdependence (Di 
Benedetto et al., 2019b). Likewise, bacteria–metabolite MLN analyses 
revealed that specific metabolic pathways are closely linked to altered 
microbial communities (Duran et al., 2021). Large-scale proteomic 
studies further demonstrate that immune cells communicate through 
complex, highly coordinated signaling networks—akin to social 
systems—offering crucial insights into the molecular architecture of 
disease-related communication (Rieckmann et al., 2017).

To move forward, three key conceptual directions are particularly 
important. First, resilience biomarkers: molecular signatures that 
stratify individuals by how far they are from tipping points. The recent 
study DNA methylation signature of a lifestyle-based resilience index 
for cognitive health identifies methylation loci correlated with lifestyle, 
cognitive reserve, and slower decline (Zhang et al., 2025). Similarly, 
cell-type abundance measures in AD reveal that higher glial (especially 
astrocyte and oligodendrocyte) proportions correlate with cognitive 
resilience even in the presence of high pathology (O'Neill et al., 2024).

Second, combining imaging, fluid biomarkers, and network 
topology can reveal early signs of adaptation failure. For instance, 
studies of functional brain networks demonstrate that features such as 
k-core resilience are associated with preserved episodic memory and 
processing speed in middle-aged and older adults, even in the 
presence of age-related changes (Stanford et  al., 2022). Also, CSF 
biomarkers reflecting glial reactivity show strong associations with 
BBB leakage and white matter lesions, offering mechanistic links 
between peripheral/homeostatic disruption and central pathology 
(Dai et al., 2024).

Third, precision stratification that accounts for sex, genetic risk 
(e.g., APOE genotype), lifestyle, and systemic health. Longitudinal 
cohort work demonstrates that healthy lifestyle factors—including 
diet, physical activity, cognitive engagement—attenuate genetic risk of 
cognitive decline in APOE-ε4 carriers (Xu et al., 2024). Moreover, 
multicomponent lifestyle scores predict cognitive function proximate 
to death even after controlling for neuropathologies, suggesting 
modifiable factors shape late-life resilience (Dhana et al., 2024).

In moving toward interventions, combining mechanistic 
experimental models with human longitudinal data will be crucial in 
determining when resilience is lost and how to restore it. Advances in 
multi-omics, spatial mapping of cell neighborhoods in aging brain 
tissue, and dynamic network modeling of biomarkers are promising 
tools for this challenge. If the field succeeds in defining reliable early 
markers of maladaptive neuroimmune shifts and tailoring stratified 
prevention strategies, the goal of preserving cognitive health into 
advanced age becomes more attainable.

9 Conclusion

Neuroimmune interactions are central to the trajectory of brain 
aging, shaping the balance between resilience and vulnerability. While 
subtle shifts in glial function and immune signaling underpin normal 
cognitive changes, maladaptive dynamics drive the transition toward 
neurodegenerative disease. Sex differences, systemic modulators, and 
environmental factors add further complexity, emphasizing the need 
for integrative, network-based perspectives. By combining molecular 
profiling, longitudinal studies, and systems modeling, future research 
can illuminate the tipping points at which protective responses 

become pathogenic. Such insights will be  crucial for developing 
strategies aimed not only at treating disease but at sustaining healthy 
cognitive aging across the lifespan.
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