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Introduction: Alzheimer’s disease (AD) is characterized by progressive cognitive
and emotional decline, highlighting the need for novel, non-invasive biomarkers
to aid in early detection, monitoring, and stage-specific interventions. This study
investigates music-evoked physiological responses as potential biomarkers of AD
and evaluates their translational value using machine learning (ML).

Materials and methods: A total of 36 AD patients, spanning different severity
levels, listened to emotionally evocative musical excerpts while electrodermal
activity and facial electromyography (corrugator and zygomaticus muscles)
were recorded. Machine learning models were then trained on these signals to
classify the presence and severity of AD and to detect residual emotion-specific
physiological responses elicited by music.

Results: Physiological reactivity to music declined with disease progression,
with positive emotions eliciting more distinct responses than negative ones.
The Random Forest classifier distinguished AD patients from healthy controls
with 70.5% accuracy, while the Naive Bayes model predicted severity with
65.6% accuracy, demonstrating that ML models can detect subtle music-evoked
physiological differences even in individuals with AD.

Discussion:  Music-evoked physiological signals reflect the hierarchical
disruption of emotion-related neural circuits in AD and hold promise as
complementary biomarkers for disease presence and stage. When combined
with machine learning (ML), these measures provide a non-invasive, ecologically
valid approach to support early detection, monitoring, and the development of
stage-specific interventions.
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1 Introduction

Dementia is a progressive neurodegenerative disorder characterized by a gradual
decline in cognitive functions, including memory, learning, orientation, language, and
judgment. Alzheimer’s disease (AD) accounts for 60%-80% of all dementia cases and
often begins long before symptoms become apparent, with progression varying among
individuals (Matziorinis and Koelsch, 2022; Ferri et al., 2009). Although pharmacological
treatments can alleviate some symptoms, their efficacy is limited and often associated with
adverse side effects (Wollen, 2010; Barradas et al., 2021), leading to an increased emphasis
on non-pharmacological interventions such as music therapy (Matziorinis and Koelsch,
2022).
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that with  AD
positively to music, even in advanced stages, with engagement

Research  shows individuals respond
linked to improvements in mood, behavior, and cognitive
performance (Cuddy et al., 2012; Sakamoto et al., 2013; Narme
etal,, 2014; Sarkdmo, 2018). Musical abilities, particularly memory
for familiar tunes, often remain relatively preserved in AD (Warren
et al., 2003), highlighting music as a potential therapeutic tool.
Music can trigger memories and feelings, elicit strong emotions,
and promote connections with oneself and loved ones (Matziorinis
and Koelsch, 2022). However, some studies suggest that while
AD patients may struggle to identify specific emotional categories
in general social contexts (e.g., facial expressions), emotional
responses to music—reflected in arousal and valence—are often
preserved (Gosselin et al., 2005; Cuddy et al., 2015). This distinction
supports the use of music as both a therapeutic and diagnostic tool
for assessing residual emotional processing in AD.

In recent years, several clinical studies have demonstrated
that music-based interventions can serve not only as therapeutic
modalities but also as potential tools for early detection and
monitoring of AD. For instance, Mangiacotti et al. (2024)
developed and validated the 15-min Music Cognitive Test
(MCT), which reliably discriminates mild cognitive impairment
and early AD from healthy controls by assessing phonological,
rhythmic, and melodic encoding processes. In a related trial,
the same group reported that a tailored music therapy program
slowed the decline in episodic memory in mild-to-moderate
AD patients compared to a no-music control group, with
effect sizes comparable to those of standard pharmacotherapies.
Neuroimaging evidence further supports music’s diagnostic and
monitoring potential. The Alzheimer’s and Music Therapy
(ALMUTH) trial utilized repeated fMRI and diffusion-tensor
imaging over 12 months to demonstrate that active singing
interventions were associated with a reduced brain-age gap
estimation and enhanced hippocampal activation, which predicted
cognitive trajectories in prodromal Alzheimer’s disease (Flo et al.,
2022).

Neuropathologically, AD is defined by extracellular amyloid-
beta (AB) deposition, intracellular tau neurofibrillary tangles, and
subsequent neuronal degeneration (Mauldin, 2013; Serrano-Pozo
et al, 2011). Initial damage typically affects the hippocampal
pathway-including the entorhinal cortex, hippocampus, and
posterior cingulate cortex-while primary sensory and motor
regions are spared in early stages (Frisoni et al., 2010; Cuingnet
2011; Villain et al, 2012; Lehmann et al, 2013).
Musical memory, however, appears less affected by cortical
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degeneration (Cuddy et al., 2015; Jacobsen et al., 2015), suggesting
that music may help mitigate cognitive and emotional deficits
associated with AD. Despite widespread cortical atrophy, regions
within the limbic system, such as the amygdala and anterior
cingulate cortex, often remain relatively preserved in the early
and moderate stages of AD (Jacobsen et al., 2015; Frisoni et al.,
2010). These structures are central to emotional processing and
are strongly recruited during music listening, supporting emotional
memory, reward, and autonomic regulation (Koelsch, 2020;
Salimpoor et al,, 2011). Thus, even when higher-order cognitive
networks deteriorate, music can engage residual emotional
and reward-related circuits, potentially alleviating affective and
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behavioral symptoms while providing access to autobiographical
memory and a preserved sense of self.

Mechanisms underlying the benefits of music therapy include
neurogenesis and neuroplasticity, as music-evoked emotions
activate the hippocampus and support synaptic formation, thereby
enhancing memory and mood (Savage et al., 2021; Koelsch, 2020).
Music also promotes dopamine release, engages the brain’s reward
system, and counteracts age-related cognitive decline (Salimpoor
et al, 2011). Moreover, by modulating inflammatory and
autonomic processes, music can exert neuroprotective effects
through reduced stress and immune activation (Kinney et al,
2018). Collectively, these mechanisms demonstrate how music
engages distributed neural networks spanning limbic, reward, and
autonomic systems to support cognitive and emotional functioning
in AD.

The BRECVEMA
emotional responses through eight mechanisms: Brain stem

framework explains music-evoked
reflex, Rhythmic entrainment, Evaluative conditioning, Contagion,
Visual imagery, Episodic memory, Musical expectancy, and
Aesthetic judgment (Juslin, 2013). In this study, four mechanisms
were targeted using validated musical excerpts: Brain stem reflex
(surprise), Contagion (sadness), Episodic memory (happiness),
and musical expectancy (anxiety), with a neutral control
condition (Juslin et al., 2015).

Building on these findings, music-based biomarkers are
emerging as promising tools for the early detection and monitoring
of AD. Recent reviews have highlighted the growing importance
of early biomarkers for detecting AD progression, including
molecular, neuroimaging, and cognitive markers (Prajapati
et al, 2024). Complementing these approaches, music-evoked
physiological signals such as EDA and EMG provide non-
invasive, real-time measures of emotional and cognitive reactivity
that may serve as translational biomarkers. For example, the
ADMarker project exemplifies the potential of combining music-
evoked physiological responses with machine learning. This
multimodal federated learning system integrates various digital
biomarkers derived from music-based interventions to monitor
AD progression in natural living environments. The system
demonstrated up to 93.8% accuracy in detecting a comprehensive
set of digital biomarkers and 88.9% accuracy in identifying early
AD (Ouyang et al., 2024).

Assessing music-evoked responses in AD populations presents
challenges, as emotional reactions are difficult to quantify
due to impaired self-reporting and reduced facial emotion
recognition (Koff et al, 1999; Albert et al, 1991; Fangmeng
et al., 2018). Music-evoked physiological signals offer an objective
and non-invasive means to overcome these limitations. Given
that both emotional valence and autonomic arousal are mediated
by networks that remain partially functional in early AD,
electrodermal activity (EDA) and facial electromyography (EMG)
provide accessible physiological proxies of residual emotional
network engagement during music listening. Facial EMG measures
the activity of the corrugator and zygomaticus muscles to
capture emotional valence. In contrast, EDA reflects sympathetic
arousal, providing real-time monitoring even in the absence
of overt expressions (Cacioppo et al, 2007; Kinecke et al,
2014; Lima et al, 2024; Boucsein, 2012). EDA and EMG
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responses reflect the activation of the central emotion-related
circuits. EDA is primarily modulated by amygdala-hypothalamic
pathways and insular pathways within the salience network
that regulate sympathetic arousal. In contrast, facial EMG
activity is influenced by cortico-subcortical circuits involving
the motor cortex and basal ganglia, which mediate valence
and reward (Cacioppo et al, 2007; Boucsein, 2012). Because
these systems are partly preserved in early AD, music-evoked
physiological reactivity provides a peripheral index of residual
emotional and autonomic network engagement. Therefore, these
physiological signals can serve as music-based biomarkers,
providing insights into alterations in emotional processing in AD
and enabling translational applications for early detection, disease
monitoring, and personalized therapeutic interventions.

Machine learning (ML) has emerged as a powerful tool for
AD diagnosis, prognosis, and classification. Traditional clinical
assessments are time-consuming and may fail to detect early-stage
disease (Zhu et al., 2020). ML models, including support vector
machines, random forests, and deep learning architectures, have
demonstrated high accuracy in analyzing neuroimaging, clinical,
and neuropsychological data (So et al., 2017; Mirzaei and Adeli,
2022; Mathkunti and Rangaswamy, 2020). Beyond diagnosis, ML
can predict disease progression and patient outcomes (Zhang J.
et al., 2024; Qiu et al,, 2020), while interpretable models enhance
clinical applicability by identifying relevant brain regions and
biomarkers. Despite these advances, no studies have yet leveraged
peripheral physiological signals, such as EDA and EMG, to predict
dementia or to assess emotional responses during music therapy.

This study aims to fill these gaps by evaluating emotional
responses to music in AD patients across different severity levels
using EDA and facial EMG and by exploring the feasibility of ML
models to classify emotional content, distinguish AD patients from
healthy controls, and differentiate between disease severity stages.

2 Methodology
2.1 Participants

Participants were recruited from a healthcare facility in Madeira
through a formal collaboration between ARDITI/University of
Madeira and the institution. The study was reviewed and approved
by the institution’s clinical board. Patient recruitment was overseen
by the board, which selected individuals who were diagnostically
assessed by a team of physicians and nurses and diagnosed
with possible or probable AD, with updates on participant
availability provided.

The following exclusion criteria were used to select AD
patients: no history of head trauma, stroke, alcoholism, or known
hearing problems.

The study included 36 participants, all native Portuguese
speakers, with an average age of 77 £ 5.07 years. All patients were
taking anti-dementia medication at the time of the study. Cognitive
function was assessed and categorized into three groups based
on AD severity, according to the Mini-Mental State Examination
(MMSE): The Mild group consisted of 12 participants (eight
females, four males), with an average age of 77.25 £ 5.39
years (range 70-88), diagnosed with possible or probable AD.
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The Moderate group included 12 participants (five females, seven
males), with an average age of 76.16 & 5.55 years (range 67-86). The
Severe group comprised 12 participants (seven females, five males),
with an average age of 77.58 + 3.57 years (range 71-84).

2.2 Materials

2.2.1 Hardware and software

The hardware setup for this study included a laptop to collect
all physiological signals from the BiosignalsPlus wearable device.
For this study, EDA and facial EMG signals were recorded at 16-
bit resolution and 1,000 Hz. Furthermore, participants listened
to the musical conditions through a pair of high-quality speakers
(Creative Inspire T3300).

For software, OpenSignals was used to record and extract all
physiological signals and to compute the features used in this study.
The musical excerpts were presented using the free online platform
eSurv (EUSurvey, 2021).

2.2.2 Mini-Mental State Examination (MMSE)

The Mini-Mental State Examination is a validated and widely
used tool for assessing cognitive function in research and clinical
settings (Folstein et al.,, 1975). It includes five cognitive tests in
the following domains: orientation, registration, attention and
calculation, recall, and language (Arevalo-Rodriguez et al., 2021).

In this study, since our participants were all native Portuguese
speakers, patients were assessed by the healthcare team using the
adapted Portuguese version of the Mini-Mental State Examination
(Guerreiro et al,, 1994). The Mini-Mental State Examination has
a total score of 30 points, with higher scores indicating better
cognitive function, and it can be divided into the following
cognitive impairment levels: Severe (0-9), Moderate (10-18), Mild
(19-23), and No cognitive impairment (24-30).

2.3 Experimental procedure

The experiment was conducted over six weeks, with each
participant participating in a session lasting approximately 45 min.

The study employed a mixed design, using a within-subjects
approach to analyze the emotional content of music and a
between-subjects approach to compare dementia severity levels.
All participants listened to the same five musical excerpts,
presented in a randomized order, each intended to evoke a
specific target emotion: Happiness (Episodic Memory), Sadness
(Contagion), Anxiety (Musical Expectancy), Surprise (Brain-stem
reflex), and Neutral (Control). The musical stimuli used were
previously validated by Barradas et al. (2021) in Portuguese
elderly participants, including both healthy and AD patients. This
validation confirmed that the target mechanism stimuli, originally
developed in Swedish research contexts (Juslin et al., 2015), were
also valid in the Portuguese cultural setting.

All music sessions were conducted individually in a quiet and
familiar setting (the participant’s room at the healthcare facility)
by the researcher, who implemented the experimental protocol.
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An accredited healthcare professional supervised each session to
ensure ethical compliance, participant safety, and adherence to the
experimental protocol. Participants were informed that they would
listen to music through high-quality loudspeakers, with sound
levels kept consistent across all participants. Both the researcher
and the professional ensured that participants remained engaged
and attentive throughout the session.

Physiological sensors were then placed to measure EDA
and facial EMG baseline levels. Facial EMG electrodes were
placed on the left corrugator and zygomaticus muscles because
these sites are well-established indicators of emotional valence,
according to Cacioppo’s guidelines (Cacioppo et al., 2007). The
corrugator muscle activity increases in response to negative
affect, reflecting frowning or distress, whereas zygomaticus activity
increases during positive affect, reflecting smiling or pleasure. In
contrast, EDA electrodes were placed on the palmar surface of
the non-dominant hand at the thenar and hypothenar eminences
to measure sympathetic arousal. The palmar surface is highly
sensitive to changes in sweat gland activity, which reliably
indexes autonomic nervous system engagement during emotional
stimulation (Boucsein, 2012). Baseline recordings were collected
while participants were in a relaxed, silent state.

Following this, participants listened to the musical excerpts.
A short break was provided between each piece to allow
physiological responses to return to baseline before the next
stimulus was presented.

2.4 Biosignals processing

Physiological signals were recorded using the OpenSignals
software. EDA was used to assess arousal levels, while facial EMG,
recorded from the corrugator (negative valence) and zygomaticus
(positive valence) muscles, evaluated emotional valence. Both
EDA and EMG signals were automatically pre-processed by
OpenSignals, including artifact removal and signal filtering. The
software decomposed the raw EDA signal into tonic and phasic
components. The average tonic component was computed for each
musical excerpt and expressed in microSiemens (1S). EMG signals
were filtered with a 6th-order Butterworth bandpass filter (28-
250 Hz), and EMG activity was computed using the maximum
voluntary contraction method. The average EMG level for each
music condition was expressed in microvolts (V). Signal quality
was visually inspected by the researcher, and only segments
corresponding to the musical excerpts were analyzed, thereby
minimizing the risk of missing data. Feature extraction was limited
to those available in the OpenSignals software add-on at the time of
data collection.

2.5 Statistical analysis

Statistical analyses were conducted to examine differences in
physiological responses across various emotional music content
and to identify differences in physiological responses across levels
of AD severity.
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Data normality was assessed using the Shapiro-Wilk test.
For within-subject comparisons of physiological responses
across different emotional content of music, the nonparametric
Friedman test was applied because the data were not normally
distributed. Post-hoc pairwise comparisons were conducted using
the Wilcoxon signed-rank test, with Bonferroni correction for
multiple comparisons. An a priori power analysis (using G-Power
v3.1.9.4) for the Friedman test, assuming a large effect size
(Cohen's f = 0.40), @ = 0.05, target power (power = 0.80), and
five within-subject conditions (five emotions), indicated a required
sample size of nine participants.

For between-group comparisons (in terms of AD severity
levels), the Shapiro-Wilk test was used again to assess normality.
When data were normally distributed, a parametric one-way
ANOVA was performed, followed by post-hoc t-tests with
Bonferroni correction. If the data violated normality assumptions,
the non-parametric Kruskal-Wallis test was used, with Mann-
Whitney U-tests and the Bonferroni correction applied for post-
hoc analysis. An a priori power analysis for the one-way ANOVA,
assuming a large effect size (Cohen's f = 0.40), « = 0.05, target
power (power = 0.80), and three between-subject conditions (three
severity groups), indicated a required sample size of 66 participants.

Due to the challenges of recruiting participants with specific
stages of AD from a geographically constrained population, the
final sample included 36 AD patients across three severity levels.
While the a priori power analysis for the one-way ANOVA
indicates that 66 participants would be required to detect large
effects with 80% power, the current sample is sufficient to
detect robust, large effects in physiological responses to emotional
content while still providing exploratory insights into stage-specific
physiological responses.

2.6 Machine learning

In this study, supervised ML models were employed to classify
emotional content in music, distinguish between healthy and
AD participants, and assess AD severity in AD patients using
physiological signals. Supervised models learn from previously
labeled data to classify new, unseen data by assigning each instance
to its class (Lima et al., 2024).

2.6.1 Models evaluated

The classifiers considered were as follows: K-Nearest Neighbors
(KNN), SVM, Logistic Regression (LogReg), Naive Bayes (NB),
RE and Neural Networks (NN)—Multi-Layer Perceptron (MLP).
These classifiers were chosen based on their proven effectiveness
and complementary strengths in classification tasks. KNN offers
a simple, instance-based approach suitable for datasets with non-
linear class boundaries. SVMs are robust classifiers that perform
well in high-dimensional spaces and effectively handle non-
linear relationships. LogReg provides a computationally efficient,
interpretable baseline for binary classification problems. NB
leverages probabilistic assumptions to deliver fast and often reliable
results, especially when features are conditionally independent. RF
is an ensemble method for handling noisy, high-dimensional data
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while reducing overfitting. Lastly, NNs capture complex nonlinear
patterns across multiple layers, offering flexibility and powerful
modeling capabilities. These models have all been widely used in
related domains and provide a balanced spectrum of algorithmic
complexity, interpretability, and predictive performance (Zhu et al.,
20205 So et al., 2017; Vapnik, 1998; Breiman, 2001; Jain et al., 1996;
Pedregosa et al., 2011; Gupta and Kahali, 2020).

2.6.2 Hyperparameter selection

Hyperparameters for each model and classification task were
optimized using a GridSearch procedure applied exclusively
to the training data in each cross-validation fold. For each
model, a predefined range of hyperparameter values was
identify the that
maximized performance metrics on the training data while

systematically evaluated to parameters

minimizing the risk of overfitting. The hyperparameters
reported in each classification task correspond to the best-
performing configurations found through this iterative search.
This procedure ensures that the models were evaluated under
consistent conditions and that the selected hyperparameters were
determined systematically from the training data rather than
chosen arbitrarily.

2.6.3 Feature selection

Three features were extracted from each signal (EDA, EMG
corrugator, and EMG zygomaticus): the average during baseline,
the average during the musical excerpt, and the difference between
these two measures. This feature processing produced a total of
nine input features per sample. Due to the small number of features
and their direct relevance to emotional arousal and valence, no
additional feature selection was performed, and all features were
included in the classification models.

2.6.4 Cross-validation

Model evaluation was performed using the Leave-One-Subject-
Out (LOSO) cross-validation method for all classification tasks. In
each iteration, the data from one participant was held out as a
testing set, while the data from the remaining participants was used
for training. This procedure was repeated until every participant
had been used as a testing set. Accuracy, Precision, Recall, and
the Fl-score were averaged across all folds to ensure robust
performance estimates (Bishop, 2006; Mohammad and Nasir, Md,
2015).

2.6.5 Classification of emotional content in music

Classification models were trained to predict the emotional
content in music (anxiety, happiness, neutral, sadness, and
surprise) from the participants’ physiological signals.

Building on the study by Barradas et al. (2021), two datasets
were used for this classification task, with each participant listening
to all five musical excerpts: Dataset A consisted of 20 healthy
participants and 20 AD patients (regardless of severity) from
Barradas et al. (2021), used with permission from the authors. This
dataset was used exclusively for this classification task, specifically
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to distinguish between healthy participants and AD patients, as
described in the following section. Dataset B included 36 AD
patients recruited for this study, as described in Section 2.1.
This dataset was used to analyze physiological differences across
emotional content and classify AD severity levels. Both datasets
were collected using the same experimental protocol and were not
merged to ensure consistency while avoiding potential biases that
could arise from combining cohorts.

Data were normalized using a Standard Scaler, applied only to
the training data to prevent data leakage and overfitting.

For Dataset A, models were trained and evaluated using
a user-independent approach. The dataset was balanced, with
each emotion equally represented in LOSO cross-validation.
Hyperparameters were optimized via GridSearch, and the following
configurations were used: KNN (algorithm = auto, n_neighbors
= 4, weights = distance), SVM (gamma = auto, kernel = rbf,
random_state = 0), LogReg (penalty = 12, random_state = 0,
solver = Ibfgs), NB, RF (bootstrap = True, criterion = gini,
n_estimators = 100, random_state = 22), and NN (activation =
logistic, random_state = 41, solver = Ibfgs).

The same procedure was then applied to Dataset B, which
consisted of 36 AD patients, balanced across their AD severity
levels (12 mild, 12 moderate, and 12 severe). The same classifiers
were evaluated in terms of performance using the LOSO, but with
different hyperparameters: KNN (algorithm = auto, n_neighbors
= 3, weights = uniform), SVM (gamma = scale, kernel = linear,
random_state = 0), LogReg (penalty = 11, random_state = 14,
solver = liblinear), NB, RF (bootstrap = True, criterion = entropy,
n_estimators = 200, random_state = 31), and NN (activation =
relu, random_state = 1, solver = Ibfgs).

2.6.6 Classification: healthy vs. AD participants
For distinguishing between healthy and AD participants, only
Dataset A was used. The dataset included 20 participants per class
(healthy vs. AD), providing a balanced binary classification setup.
The same models were evaluated using LOSO, with the following
configurations, obtained via GridSearch: KNN (algorithm = auto,
n_neighbors = 4, weights = distance), SVM (gamma = scale, kernel
= linear, random_state = 0), LogReg (penalty = 11, random_state
= 39, solver = saga), NB, RF (bootstrap = True, criterion =
entropy, n_estimators = 50, random_state = 36), and NN-MLP
Classifier (activation = tanh, random_state = 19, solver = Ibfgs).

2.6.7 Classification of AD severity

Finally, for the classification of AD severity among patients
in Dataset B, models were trained to distinguish Mild, Moderate,
and Severe levels. Dataset B included 12 participants per
severity level, ensuring a balanced three-class distribution. The
same classification models were evaluated, with the following
configurations, obtained via GridSearch: KNN (algorithm = auto,
n_neighbors = 2, weights = uniform), SVM (gamma = auto, kernel
= rbf, random_state = 0), LogReg (penalty = 12, random_state =
0, solver = Ibfgs), NB, RF (bootstrap = True, criterion = entropy,
n_estimators = 50, random_state = 29), and NN-MLP Classifier
(activation = relu, random_state = 25, solver = Ibfgs).
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FIGURE 1

Comparison of EDA responses to the emotional content in music, for all participants regardless of AD severity. **Pz,e < 0.001.

3 Results

This experiment presented musical excerpts with previously
labeled emotions to AD patients, while their physiological signals
(EDA and facial EMG) were recorded. Therefore, the goal was to
evaluate whether these signals provided helpful insights regarding
the arousal and valence of AD patients when listening to music.
Moreover, machine learning models were trained and evaluated
across three distinct tasks: predicting the emotional content of
music, distinguishing between healthy and AD patients, and
identifying severity levels within AD patients.

3.1 EDA and EMG differences to emotional
content in music

Regarding the physiological response to emotional content in
music, we tested for significant differences in EDA and facial
EMG levels across different emotional contents, regardless of AD
severity. This analysis focused exclusively on individuals with AD.
No healthy control group was included in this analysis, as the aim
was to assess emotional reactivity within the AD population from
Dataset B. Comparisons with healthy participants were previously
reported in Barradas et al. (2021) (Dataset A). In contrast, the
present results are based exclusively on Dataset B.

For EDA, the Friedman test revealed a significant difference
among the five emotions [Fr(4) = 27.18, P value < 0.001,
Cohen's f ~ 0.43], indicating a large effect size. Post-hoc power
analysis based on the observed effect size indicated sufficient
power to detect this effect (power ~ 1.00). Pairwise comparisons
(Figure 1) showed that the EDA average for Happiness was
significantly higher than Sadness (P value < 0.001, r = 0.639),
Surprise was significantly higher than Anxiety (P value < 0.001,
r =0.718) and Neutral (P value < 0.001, r = 0.736).
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For the EMG zygomaticus, the Friedman test revealed a
significant difference among the five emotions [Fr(4) = 27.27, P
value < 0.001, Cohen's f ~ 0.44], indicating a large effect size. Post-
hoc power analysis indicated sufficient power to detect this effect
(power ~ 1.00). Pairwise comparisons (Figure 2A) showed that the
EMG level for Happiness was significantly higher than Sadness (P
value < 0.01, r = 0.473), and that Neutral was significantly lower
than Happiness (P value < 0.01, » = 0.520) and Surprise (P value
< 0.001, r = 0.659).

Finally, for the EMG corrugator, the Friedman test revealed a
significant difference between the five emotions [Fr(4) = 10.54,
P value < 0.05, Cohen's f =~ 0.27], indicating a small-to-
medium effect size. Post-hoc power analysis indicated sufficient
power to detect this effect (power =~ 0.99). However, pairwise
comparisons did not reveal any significant differences across the
pairs of emotions (see Figure 2B).

3.2 EDA and EMG differences across AD
severity levels

We also assessed whether physiological responses differed
across AD severity levels (mild, moderate, and severe) for
each emotional content in music. As in the previous section,
this analysis focused exclusively on AD participants from
Dataset B.

For EDA (Figure 3), the One-Way ANOVA test revealed
significant differences between the three AD severity levels for all
emotions: Happiness [F(;33) = 7.75, P value < 0.01, Cohen's f ~
0.69, power ~ 0.95], Sadness [F(;33 = 5.40, P value < 0.01,
Cohen's f ~ 0.89, power ~ 1.00], Anxiety [F(2,33) = 6.47, P value <
0.01, Cohen's f ~ 0.62, power ~ 0.90], Surprise [WelchF ;15 55) =
13.15, P value < 0.01, Cohen's f ~ 0.72, power ~ 0.97] and Neutral
[F2,33) = 5.52, P value < 0.01, Cohen's f ~ 0.58, power ~ 0.85].
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Pairwise comparisons revealed significant differences between the
Mild and the Severe levels for Happiness (P value < 0.01, r = 0.60),
Anxiety (P value < 0.05, r = 0.54) and Surprise (P value < 0.05, r =
0.58), and between the Moderate and Severe levels for Happiness (P
value < 0.01, r = 0.58), Sadness (P value < 0.05, r = 0.55), Anxiety
(P value < 0.01, r = 0.57), Surprise (P value < 0.01, r = 0.63) and
Neutral (P value = 0.01, r = 0.57).

Regarding the EMG zygomaticus muscle (Figure 4A), the one-
way ANOVA test revealed significant differences between the
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three AD levels for Happiness [F(;33 = 5.08, P value < 0.05,
Cohen's f =~ 0.56, power ~ 0.83] and surprise [Fp33 =
4.51, P value < 0.05, Cohen's f =~ 0.53, power =~ 0.78].
Pairwise comparisons revealed that for Happiness, there was a
significant difference between the mild and severe (P value <
0.05, r = 0.50) levels and between the moderate and severe levels
(P value < 0.05, r = 0.52). For surprise, we only found a
significant difference between the mild and severe levels (P value
< 0.05, r = 0.53). No significant results were found between the
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three severity levels for the remaining emotions: Sadness, Anxiety
and Neutral.

Finally, for the EMG corrugator muscle (Figure4B), the
Kruskal-Wallis test only revealed a significant difference between
the three severity levels for Sadness [H(;) = 6.48, P value < 0.05,
Cohen's f =~ 0.40, power =~
revealed a significant difference between the Mild and Severe levels
of AD severity (P value < 0.05, ¥ = 0.42).

0.53]. The pairwise comparison

3.3 Classification of emotional content in
music

The results obtained for classifying emotional content in
music (happiness, neutral, sadness, and surprise) using Dataset
A are shown in Table 1. The model with the highest accuracy in
predicting the emotional content of music was the RE, with an
average accuracy of 40.50% (95% CI: 34.11-46.89), followed by the
SVM, with an average accuracy of 40.00% (95% CI: 33.21-46.79).
The confusion matrices for these models are shown in Figure 5.

For Dataset B, the results obtained are shown in Table 2. The
model with the best accuracy for predicting emotional content in
music among AD patients was RE with an average accuracy of
32.22% (95% CI: 25.50-38.95). The models’ confusion matrices are
shown in Figure 6.

3.4 Classification healthy vs. AD
participants

The results of distinguishing between healthy and AD
participants are shown in Table 3. The RF model achieved the
highest average accuracy of 70.50% (95% CI: 57.55-83.45) in
distinguishing between healthy and AD participants. The confusion
matrices for these models are shown in Figure 7.
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3.5 Classification of AD severity

The results obtained to assess AD severity among AD
participants are shown in Table 4. The NB was the best model
for distinguishing between mild, moderate, and severe dementia,
with an average accuracy of 65.56% (95% CI: 50.41-80.70). The
confusion matrices for these models are shown in Figure 8.

4 Discussion

This study evaluated the emotional responses of AD patients
while listening to musical excerpts across different severity levels
(mild, moderate, severe), using EDA to quantify arousal and facial
EMG to quantify valence. We also developed ML models to predict
the emotional content in music, distinguish healthy from AD
participants, and classify AD severity.

4.1 Physiological responses to emotional
content in music

Our results indicate that individuals with AD retain partially
preserved physiological responses to emotionally evocative music.
EDA increased during excerpts designed to elicit happiness
and surprise, whereas zygomaticus activity was elevated during
happiness relative to sadness and neutral conditions. These
findings align with prior research showing preserved emotional
responsiveness in AD (Walker et al, 2021), demonstrating that
even passive music listening can evoke measurable arousal and
positive valence.

Facial EMG analysis confirmed that zygomaticus activity,
indicative of positive valence, was significantly elevated during
happiness and surprise, consistent with activation of reward
and autobiographical memory networks (Cuddy et al, 2015).
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TABLE 1 Model accuracy comparison for classification of the emotional content in music, using Dataset A.

Classifier Accuracy (%) 95% ClI Precision (%) Recall (%) F1-Score (%)
KNN 34.00 27.99-40.01 61.08 34.00 25.55
SVM 40.00 33.21-46.79 69.37 40.00 30.10
NB 36.00 30.54-41.46 66.08 36.00 26.72
LogReg 38.50 32.82-44.18 67.60 38.50 28.20
RE 40.50 34.11-46.89 68.92 40.50 30.25
NN 35.50 27.77-42.23 61.79 35.50 27.50

The highlighted row represents the model with the best accuracy.

Corrugator activity, associated with negative valence, showed non-  Fuentes-Sanchez et al., 2021). These results support the notion
significant increases during anxiety, reflecting generalized negative  that emotional processing, particularly for positive stimuli, remains
affect or reduced emotional specificity (Burton and Kaszniak, 2006;  partially intact in AD despite cognitive decline.
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FIGURE 5
Model confusion matrices for classification of emotional content in music, using Dataset A.
TABLE 2 Model accuracy comparison for classification of the emotional content in music using Dataset B.
Classifier Accuracy (%) 95% ClI Precision (%) Recall (%) F1-Score (%)
KNN 17.22 11.82-22.62 60.98 17.22 9.39
SVM 31.67 24.01-39.32 74.34 31.67 21.39
NB 26.67 20.83-32.50 74.38 26.67 15.09
LogReg 28.33 22.64-34.02 74.18 28.33 17.02
RF 32.22 25.50-38.95 66.85 32.22 22.07
NN 21.11 16.55-25.67 63.64 21.11 12.57

The highlighted row represents the model with the best accuracy.

Stratification by AD severity revealed a decline in physiological ~ frontal lobe dysfunction (Burton and Kaszniak, 2006). Non-
engagement. Participants with severe AD exhibited lower EDA  significant increases in zygomaticus activity during sadness and
across all conditions and reduced zygomaticus activation, anxiety in moderate and severe patients may reflect dysregulated
especially for happiness and surprise. This decline likely reflects = motor control and incongruent affective displays (Walker et al.,
neuropathological changes, including Af accumulation and  2021; Burton and Kaszniak, 2006; Sun et al., 2021). These findings
neuronal atrophy in frontal, basal ganglia, and brainstem  highlight that while emotional reactivity becomes less differentiated
regions (Barradas et al, 2021). Corrugator activation during and blunted with disease progression, residual affective processing
sadness was also lower in severe compared to mild patients,  persists. Notably, the reduced differentiation observed for negative
indicating reduced sensitivity to negative stimuli and potential  emotions is also reflected in the ML classification results. While
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FIGURE 6
Model confusion matrices for predicting emotional content in music, using Dataset B.
TABLE 3 Model accuracy for classification between healthy and AD participants.
Classifier Accuracy (%) 95% ClI Precision (%) Recall (%) F1-Score (%)
KNN 59.00 47.24-70.76 100.00 59.00 66.70
SVM 68.50 55.15-81.85 100.00 68.50 71.60
NB 66.50 53.51-79.49 100.00 66.50 70.46
LogReg 67.50 53.71-81.29 100.00 67.50 69.90
RF 70.50 57.55-83.45 100.00 70.50 73.55
NN 65.50 52.30-78.70 100.00 65.50 69.28

The highlighted row represents the model with the best accuracy.

positive emotions, such as happiness and surprise, were more
reliably distinguished, sadness and anxiety elicited subtler and
more variable physiological responses across AD severity levels,
making them more challenging for the models to classify. This
pattern aligns with known neuropathological effects on cortical and
limbic regions involved in processing negative affect, including the

Frontiersin Aging Neuroscience

prefrontal cortex and amygdala, whose progressive degeneration in
AD diminishes the specificity of responses to aversive or negative
musical cues.

Music-evoked physiological responses, such as EDA and EMG,
arise from a coordinated interplay between limbic, subcortical,
and brainstem circuits, which are progressively disrupted in AD.
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TABLE 4 Model accuracy comparison for predicting AD severity: mild, moderate and severe.

Classifier Accuracy (%) 95% ClI Precision (%) Recall (%) F1-Score (%)
KNN 56.11 43.29-68.93 100.00 56.11 62.99
SVM 63.33 50.14-76.52 100.00 63.33 69.07
NB 65.56 50.41-80.70 100.00 65.56 67.56
LogReg 58.89 44.07-73.71 100.00 58.89 62.54
RF 57.78 43.98-71.58 100.00 57.78 63.34
NN 57.22 43.20-71.25 100.00 57.22 62.36

The highlighted row represents the model with the best accuracy.
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The amygdala plays a central role in emotional valence, driving
sympathetic arousal reflected in EDA responses (Koelsch, 2020).
As AD progresses, amygdala degeneration may contribute to
the blunted arousal differentiation observed in severe stages.
The hippocampus, which links music to autobiographical and
emotional memories, supports activation of the zygomaticus
muscle during positive and familiar excerpts (Jacobsen et al,
2015; Cuddy et al, 2015). Its relative preservation in early AD
likely underlies the sustained positive valence responses found in
mild patients. Additionally, brainstem structures mediate rapid,
reflexive reactions to sudden acoustic changes -such as pitch,

Frontiersin Aging Neuroscience

rhythm, or tempo-and are comparatively spared in the early
stages of the disease (Koelsch, 2020). This preservation may
explain why even patients with severe AD still exhibit residual
EDA increases in response to surprising or attention-grabbing
musical cues.

These stage-specific physiological patterns provide insights
into potential applications for diagnostic staging and targeted
interventions. In mild stages, preserved autonomic and facial
reactivity to emotionally positive music suggests that such stimuli
could be leveraged to detect early alterations in emotional
processing and therapeutically to enhance mood, attention,
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and autobiographical recall. As AD progresses, the blunted
differentiation in physiological responses observed in moderate and
severe patients reflects diminished cortical and limbic engagement,
indicating the need for simpler musical interventions that target
residual subcortical mechanisms. These differential signatures
could inform stratified music-based interventions and support
stage-sensitive clinical decisions.

Taken these that the
physiological patterns observed in this study reflect a hierarchical
in AD,
characterized by relatively intact subcortical and brainstem

together, observations  suggest

degradation of emotion-related neural pathways
reflexes, partially preserved limbic responses, and declining
cortical modulation as the disease progresses. As emotional
reactivity becomes less differentiated, residual affective processing
persists, but the individual’s remaining cognitive resources shape
its expression. Prior studies have shown that memory, attention,
and executive function modulate emotional recognition and
engagement with music in AD (Jacobsen et al., 2015). Therefore,
tailoring music-based interventions to both cognitive and
emotional capacities may optimize responsiveness and therapeutic
benefit, particularly as cognitive decline affects how emotions are
perceived and expressed in later stages of the disease.

4.2 Classification models

Our ML models trained on physiological data demonstrated
above-chance performance across all classification tasks. The
Random Forest classifier achieved 70.50% accuracy (95% CI: 57.55—
83.45) for distinguishing healthy and AD participants, and the
Naive Bayes classifier achieved 65.56% accuracy (95% CI: 50.41-
80.70) for AD severity classification. Classification of musical
emotions was more challenging in AD participants [32.22% (95%
CI: 25.50-38.95)] compared to healthy controls [40.50% (95% CI:
34.11-46.89)], both of them with the Random Forest classifier,
reflecting inter-subject variability in affective responses (Lima et al.,
2024).

The observed differences in model performance likely reflect
each algorithm’s ability to handle the complex, nonlinear dynamics
of physiological data. The Random Forest classifier achieved
the best performance in distinguishing between healthy and AD
participants and in emotion classification across both datasets,
likely due to its ensemble learning structure, which effectively
models nonlinear interactions among physiological signals in small
sample sizes. In contrast, Naive Bayes performed best for AD
severity classification, suggesting that its probabilistic framework
handled noisy, overlapping data distributions more effectively
in small samples. More complex models, such as SVMs and
NNs, performed less consistently due to their higher variance
and sensitivity to the small dataset size. Conversely, KNN and
LogReg also demonstrated limited generalizability, suggesting that
distance-based and linear classifiers may not effectively capture the
nonlinear and multimodal interactions in physiological responses.
These findings underscore the importance of model selection
in achieving a balance between complexity and generalization,
particularly when working with heterogeneous physiological data
from clinical populations.
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This study is among the first studies to integrate EDA and
facial EMG into ML pipelines for AD classification (Zhang C.
et al., 2024). Our results suggest that physiological measures can
provide objective, complementary information about emotional
processing in AD. To contextualize these results, similar accuracy
ranges have been reported in biomarker-based ML studies.
For instance, cerebrospinal fluid (CSF) biomarkers achieved
75%-85% accuracy in staging AD (Tiwari et al,, 2024), blood
biomarker models reached 80%-90% accuracy in differentiating
neurodegenerative diseases (Kelly et al., 2023), and multimodal
neuroimaging approaches combining structural MRI and resting-
state MEG attained up to 93.5% accuracy (Liu et al, 2024;
Blanco et al,, 2023). Although these methods rely on complex
or invasive data, the present study highlights that music-evoked
physiological responses provide a non-invasive, low-cost, and
ecologically valid alternative. While our physiological markers
do not constitute standalone biomarkers and should not be
interpreted as definitive diagnostic tools, they offer added value
for research into emotional responsiveness and the early detection
of disease.

4.3 Clinical relevance and limitations

Our classification performance provided meaningful insights as
a complementary tool for early-stage AD screening or monitoring,
rather than a standalone diagnostic method. Unlike traditional
cognitive assessments, such as the MMSE or Montreal Cognitive
Assessment (MoCA), which rely on subjective performance
and can be influenced by education, language, and fatigue,
physiological measures capture objective responses to emotional
stimuli. Similarly, neuroimaging methods provide information
on brain atrophy or A accumulation but are costly, resource-
intensive, and not easily repeated. In contrast, EDA and facial
EMG recording are non-invasive, low-cost methods that can be
administered repeatedly, even in non-verbal or severely impaired
patients. Integrating these physiological responses with traditional
assessments may enhance early detection and enable continuous,
objective monitoring of disease progression.

However, the practical implementation of this approach in real-
world clinical settings presents challenges. In this study, we used
the Biosignalsplux wearable device with physiological electrodes,
the OpenSignals software, and musical excerpts from BRECVEMA
to elicit emotional responses. Although these tools are relatively
low-cost and non-invasive compared to neuroimaging, consistent
measurement requires trained personnel to ensure high-quality
data acquisition and reliable results. Personnel must correctly
place EDA and facial EMG electrodes and visually inspect the
signal quality during baseline and musical excerpts. Consistency
in baseline recordings, stimulus administration, and environmental
conditions must be maintained to allow accurate comparisons
across participants. Proper training and standardized procedures
are essential to guarantee reproducible measurements and to
address logistical and operational challenges before physiological
measures can be routinely integrated into clinical practice.

While these findings highlight the potential clinical value
of physiological measures as complementary to existing AD
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assessment protocols, several methodological limitations must be
considered when interpreting these results.

We acknowledge that, despite above-chance performance,
these modest accuracies imply misclassification rates, including
potential false positives and false negatives, which must be
carefully considered when evaluating practical clinical applications.
Nevertheless, this classification performance provides meaningful
insights as a complementary tool for early-stage screening or
monitoring, rather than as a standalone diagnostic method.
Recruitment of participants at specific stages of AD was challenging
due to the geographically limited population, and sample sizes,
particularly for Dataset B, were relatively small, limiting statistical
power and generalizability. Additionally, although both datasets
A and B were collected using the same experimental protocol,
differences in cohort characteristics could introduce subtle bias.
To mitigate this, Dataset A was used solely for classification
tasks involving healthy participants, while Dataset B was used
independently to analyze AD patients and severity-specific
responses. Importantly, the datasets were not merged, thereby
ensuring consistency across analyses.

To minimize overly optimistic performance estimates,
we employed LOSO cross-validation and averaged metrics
across all folds, ensuring that model performance reflects
predictions on unseen participants. While this approach helps
mitigate overfitting, modest sample sizes inherently limit
the robustness of ML models. Larger datasets from a single
cohort, combined with multimodal approaches that integrate
additional physiological signals, cognitive assessment tools, and
neuroimaging data, could enhance model generalizability and
predictive accuracy. Moreover, the current study used a limited
set of nine features across the three physiological signals. While
these features captured meaningful differences in emotional
responses, incorporating additional features could provide a more
comprehensive characterization of physiological reactions to
music, potentially improving classification performance. These
considerations are relevant for translating findings into clinically
meaningful applications.

Several potential confounding factors may have influenced
physiological responses and classification performance. All
participants were taking anti-dementia medications, which could
affect emotional processing and physiological reactivity. While
participants with hearing problems were excluded, subclinical
hearing impairments may have influenced responses to the
musical excerpts. Other comorbid conditions common in elderly
populations, such as cardiovascular or metabolic disorders, could
also have affected EDA and facial EMG signals. We controlled
for major confounders where possible, but residual effects cannot
be entirely ruled out. Although the effects of medication were
not directly controlled in this study, the observed stage-specific
differences in EDA and EMG remain consistent with known
neuropathological progression; however, they should be interpreted
in consideration of potential pharmacological modulation.

Additional factors related to the musical stimuli and cultural
context may also have influenced our results. We did not
assess participants’ musical preferences, which research shows
significantly impacts emotional and physiological responses to
music, particularly in AD populations. Although the stimuli were

Frontiersin Aging Neuroscience

10.3389/fnagi.2025.1701970

validated with Portuguese elderly participants (Barradas et al,
2021), our sample’s cultural homogeneity limits the generalizability
of our findings to other populations. Notably, only the Happiness
condition included familiar music that was explicitly selected for
Portuguese participants. In contrast, the remaining conditions
deliberately employed unfamiliar excerpts to ensure that emotional
mechanisms, rather than familiarity, drove responses.

Future studies should systematically account for medications,
sensory impairments, and comorbidities to ensure that observed
physiological differences are attributable to AD-related changes
rather than extraneous factors. Moreover, clinical applications
should consider individual musical preferences and cultural
backgrounds when developing personalized music-based
interventions for AD patients.

Overall, emotionally evocative music can elicit measurable
arousal and valence responses, even in moderate-to-severe AD.
Positive musical stimuli, such as happiness and surprise, produce
the most consistent physiological responses, while negative
emotions are less differentiated. Emotional responsiveness declines
with disease progression, consistent with neuropathology and
previous literature (Cuddy et al., 2015; Walker et al., 2021; Burton
and Kaszniak, 2006).

In conclusion, individuals with AD exhibit partially
preserved  physiological responses to emotional music,
especially to positive stimuli, although these responses

diminish with disease severity. Machine learning models
applied using EDA and facial EMG successfully differentiated
between healthy and AD participants, capturing patterns
related to disease severity and

indicating the potential

utility of emotional physiology as a complementary

diagnostic tool.
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