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Introduction: The propagation of neural signals across various brain regions
requires us to understand directional connectivity in functional magnetic
resonance imaging (fMRI) data. We employ temporal partial directed coherence
(TPDC), a data driven method to explore directional connectivity in young and
old healthy individuals, manifest PD and prodromal PD patients. TPDC provides
comprehensive analysis of neural signal propagation compared to traditional
methods like Dynamic Causal Modeling, Granger Causality and Transfer Entropy.
Methods: We analyzed preprocessed fMRI data from the young and old groups
of healthy individuals and PD patients at different disease stages. Time series
were extracted by reducing the voxel data (by averaging) into 7 networks of
the Yeo-atlas. TPDC was applied in the frequency range of 0.009-0.08 Hz.
Statistical significance of connections was determined via bootstrapping,
followed by thresholding using permutation testing. Finally, machine learning
classifiers were trained to distinguish prodromal PD from PD patients.

Results: Inyoung healthy individuals, the somatomotor network regulates control
and attention systems, indicating cognitive and motor flexibility. Older healthy
controls show lack of significant connections from control to somatomotor
networks, suggesting a cognitive decline related to age. The somatomotor
network becomes secluded in the prodromal PD patients. A compensatory
mechanism is visible in groups of PD patients. Additionally, machine learning
classifiers achieved high accuracy in distinguishing between prodromal and PD
groups based on directed connectivity patterns.

Conclusion: The study highlights the gradual loss of the significant directed
causal connections between the control and motor networks in different
stages of PD. The governing influence of control network over the motor and
attentional networks diminishes, leading to the isolation of the somatomotor
network. The ability of TPDC-derived features to distinguish prodromal from
Parkinson'’s patients underscores its value for identifying potential biomarkers of
disease onset and progression.
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fMRI, directed connectivity, Parkinson’s disease, prodromal PD, temporal partial
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Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative
disorder affecting motor and non-motor (cognitive, autonomic,
affective, behavioral) functions in part due to pathological disruption
of fine-tuned neural networks. Patients with PD exhibit an intricate
pattern of functional connectivity alterations within the major brain
networks as evidenced by electroencephalography and neuroimaging
studies (Leviashvili et al., 2022). Particularly, reduced connectivity
within the central executive and dorsal attention networks, as well as
increased connectivity within the ventral attention network were
observed (Leviashvili et al., 2022). Moreover, disruptions in
interhemispheric connectivity may substantially interfere with the
execution of complex movements in patients with PD (Bange et al.,
2022). Depicting connectivity patterns in different stages of PD might
provide additional insights into the pathophysiology of the disease
and refine the existing treatment approaches for these patients.
Therapeutic interventions targeting abnormal oscillatory activity
within brain networks, e.g., deep brain stimulation, were shown to
modulate the deficient connectivity patterns and provide clinical
benefits (Muthuraman et al., 2018).

Functional connectivity is characterized by statistical dependence
of activation patterns across different brain regions, resulting from
both indirect and direct neural interactions (Firston, 2011). One
previous research laid the foundational work by assessing functional
connectivity in the human brain using functional magnetic resonance
imaging (fMRI) data (Rogers et al., 2007). More recently, resting-state
fMRI data was used to infer regional functional connections
(Mansour et al., 2023). A multivariate measure, total correlation was
utilized to explore functional brain connectivity (Li et al., 2022). The
human functional connectome across the lifespan using both the
structural and functional MRI data has previously been explored
(Sun et al., 2023). While the functional connectivity captures the
statistical dependencies between different brain regions, it lacks
information about the direction of these interactions. Our study
focuses on directional connectivity, which we believe would
be particularly useful for patients’ classification.

Directed connectivity based on fMRI data is traditionally
assessed using methods like dynamic causal modeling (DCM) (Bajaj
et al., 2016), granger causality (GC) (Kaminski et al., 2001) and
transfer entropy (TE) (Duan et al., 2013). These methods provide
insights into the neural signal propagation across different brain
regions, thereby granting a non-invasive access in deciphering the
intricate interactions across brain networks. Dynamic causal
modeling is a hypothesis-driven method that models causal
interactions between different brain regions taking into account
hemodynamic and neuronal responses (Friston et al., 2003). On the
other hand, TE is a data-driven approach that offers a thorough
analysis of neural data in the time domain by capturing nonlinear
interactions and measuring the directed exchange of information

Abbreviations: DCM, Dynamic causal modeling; fMRI, Functional magnetic
resonance imaging; GC, Granger causality; GSP, Genomics Superstruct Project;
TE, Transfer Entropy; TPDC, Temporal partial directed coherence; PPMI, Parkinson's
Progression Markers Initiative; ROIls, Regions of interest; Ventral Attn, Ventral
Attention Network; Dorsal Attn, Dorsal Attention Network; Limbic, Limbic Network;

Control, Frontoparietal Control Network; SomMotor, Somatomotor Network.
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between the time series (Schreiber, 2000). Temporal partial directed
coherence (TPDC) analysis is purely a data-driven analysis and an
extension of the partial directed coherence, a technique designed to
analyze multivariate time series data and infer causal relationships
between various brain regions. Temporal partial directed coherence
focuses on both time and frequency domains, allowing for a
comprehensive characterization of connectivity patterns at all time
points and frequency bands (Baccald and Sameshima, 2001). One of
the major advantages of TPDC analysis is its ability to uncover the
dynamic patterns of brain connectivity that engage different
functional brain networks.

By employing the TPDC analysis, we aimed to establish the
existing patterns of directed connectivity in three different cohorts -
healthy individuals, patients with manifest PD and patients with
prodromal PD. Connectivity patterns emergent from this study
might be used as open-source reference patterns in future works
studying connectivity alterations in different patient populations to
disentangle healthy aging from disease-specific connectomes in
neurodegenerative disorders.

Materials and methods
Subjects

This study included the preprocessed fMRI data from 1,000 young
healthy participants (male to female ratio 1:1), publicly available at
Harvard Dataverse as “GSP1000 Preprocessed Connectome” (Cohen
et al, 2020). For each subject, the average blood oxygen level-
dependent (BOLD) time series from brain networks (Yeo et al., 2011),
were extracted using a custom Python script that utilizes “nilearn”
python library.! This study also included data collected for a group of
manifest PD patients (n = 435), prodromal PD patients (n = 325) and
old healthy controls (n=29) from the openly available PPMI
(Parkinson’s Progression Markers Initiative) dataset.” Clinical scores
like behavioral inhibition score, Barratt impulsivity score and
conscientiousness score were collected for young healthy controls,
whereas sum of motor exam score (NP3 Total) and Hoehn and Yahr
(H&Y) stage values were collected for the prodromal PD and manifest
PD patients from PPMI. Demographical and clinical details of the
subject and patient groups are given in Table 1.

The NP3 total is a detailed measure of motor symptoms in PD. It
includes scores from multiple individual motor tests such as tremor,
rigidity etc. conducted during a clinical motor exam. A higher NP3
score indicates more severe motor impairment. Hoehn and Yahr
(H&Y) scale classifies the overall severity of PD. BIS is the behavioral
inhibition score on the behavioral inhibition and behavioral activation
(BISBAS) scale. Barratt impulsivity score is the total score on the
Barratt impulsivity scale (Patton et al., 1995). The conscientiousness
score signifies the NEO five-factor model of personality.

The PPMI data was preprocessed using a preprocessing pipeline
that included realignment and coregistration followed by smoothing
using an 8 mm kernel. The preprocessing of these fMRI images was

1 https://nilearn.github.io/stable/
2 https://www.ppmi-info.org/access-data-specimens/download-data
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TABLE 1 Demographical and clinical characteristics of patients and healthy controls.

Prodromal PD

patients, PPMI

PD patients, PPMI

Young healthy
controls, GSP1000

Old healthy
controls, PPMI

N 325 435 1,000 29
Male/female 185/140 299/136 500/500 22/7
Age, mean + SD 66.7 £ 6.5 63.4+9.7 21.4+2.87 61.8+5.1
NP3 total, mean + SD 3.56 +5.68 22.16 £ 10.47 - -
H&Y scale median (range) 0(0-3) 2(1-4) - -
Behavioral inhibition score (BIS) - - 21(7-28) -
median (range)

Barratt Impulsivity score median - - 62 (30-120) -
(range)

Conscientiousness score median - - 32 (0-48) -
(range)

GSP, Genomics Superstruct Project; H&Y, Hoehn and Yahr scale; NP3 total, sum of motor exam scores; PPMI, Parkinson’s Progression Markers Initiative; SD, standard deviation.

performed using the SPM-12 Matlab toolbox.’ Then, the time series
were extracted for the Yeo-7 network parcellation atlas, which includes
the following networks: visual, somatomotor, ventral attention (or
salience), dorsal attention, frontoparietal control, limbic, and default
mode networks. The python library “nilearn™ was used to extract the
time series from the Yeo-7 networks (Yeo et al., 2011), based on the
custom python script with a spatial resolution of 1 mm. Afterwards,
these time series were utilized for the TPDC analysis. Eventually,
thresholding was performed to obtain significant connections for each
group of subjects from the study. The detail of the applied methodology
is shown in Figure 1.

TPDC analysis

In order to determine the causality between the time series,
we used the time-dependent multivariate coefficients. Dual extended
Kalman filters can be used as a foundation for the causality estimation
(Haykin, 2001; Wan and Nelson, 2001). This functions as TPDC
method’s estimation strategy for the time-dependent auto-regressive
coefficients. To find the partial directed coherence at each time point,
time-dependent multivariate auto-regressive coeflicients were
computed. TPDC as an extension of partial directed coherence,
captures both time and frequency resolved directional interaction in
a multivariate time series given a multivariate autoregressive (MVAR)
model of order p.

X(t)= ,éAk(t)X(t—k)JrE(t)

Where X (t) is the vector of fMRI time series across regions,
Ag (t) are the time varying autoregressive coefficient matrices and

3 https://www fil.ion.ucl.ac.uk/spm/software/spm12/
4 https://nilearn.github.io/stable/index.html
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E (t) is the residual noise. The model order was fixed at p = 1. TPDC
is computed as:

Where A,»j ( f ,t) is the Fourier transform of MVAR coefficients,
jj ( f ,t) quantifies the normalized directed influence from region j to
i at frequency fand time . Normalization is performed to reduce the
confounding effect of the indirect connections. We focused on the
frequency band in range from 0.009 Hz - 0.08 Hz as it corresponds to
the range believed to reflect brain physiology and metabolism
(Logothetis and Wandell, 2004; Deco et al., 2011). The TPDC matrix
(e.g., 7*7 matrix) was then obtained by averaging all the frequency
bins in the frequency band of interest. To determine the model
parameters and the system states at any given moment, the two
Kalman filters were run in parallel. The states were estimated by one
extended Kalman filter, which then feeds the data to another extended
Kalman filter, which estimates the model parameters.

The significance level of the estimated TPDC values was
determined using a bootstrapping technique (Kaminski et al., 2001).
The original time series were divided into smaller, non-overlapping
windows, and the order of these windows was randomly changed to
create the new time series. Next, using the updated time series as a
basis, the TPDC matrix was computed. The shuffling operation was
carried out 100 times to calculate the threshold, after which the 99t
percentile was determined. The autoregressive coeflicients were
estimated from the spatially filtered source signals using the open-
source MATLAB ARFIT toolbox (Neumaier and Schneider, 2001;
Schneider and Neumaier, 2001).

Directed connectivity analysis
Significant values that were above the significance threshold were

replaced by 1’s and those below the significance threshold were
replaced by 0’s. In this manner, the causal relationships between any
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connectivity values.

Time series extraction

Workflow diagram of the fMRI data analysis. First, fMRI images were preprocessed and time series extracted. Then, TPDC analysis was performed to
assess the directed connectivity between Yeo-7 networks. Afterwards, significant directed connections were detected by applying the random
permutation testing approach. At the end, random forest machine learning algorithm was used to classify the patients based on their individual

Patient classifcation

two regions were represented in a significance matrix of ones and
zeros. We then employed permutation testing to assess the statistical
significance of the observed connectivity matrices. To generate the
null distributions for each connection, we performed 1,000 random
permutations. In each permutation, the matrices were flattened and
randomly shuffled, only preserving the marginal totals. The shuffled
data were then reshaped and aggregated across subjects, to form a
frequency matrix. The 99th percentile of the resulting null distribution
was used as a significance threshold. Connection values above this
threshold were considered statistically significant, indicating a
significant directed connection and the values below the threshold
were considered insignificant, implying in the absence of significant
directional connectivity.

Afterwards, the obtained individual connectivity matrices were
used to find group level directed connections. A data-driven, Moran’s
permutation testing approach was applied to evaluate the spatial
autocorrelation and identify the statistically significant inter-network
connections (Moran, 1950; Zelesky et al., 2010). This method allows
to compare the identified connectivity patterns to a null model derived
from the permuted datasets, offering data-driven statistically
significant directed connections. In more detail, the algorithm runs in
following steps. For each inter-network pair, the observed connections’
frequency across the groups is computed by summing up the values
into a three-dimensional binary connectivity matrix. To generate the
null distribution for each connection, 1,000 permutations of the
individual matrices were performed. Each individual matrix was
flattened and shuffled randomly. The permuted matrices were then
reshaped and aggregated to generate a permuted frequency matrix.
For each connection, 99th percentile value from its null distribution
was used as a significance threshold. Connections with the values
exceeding that threshold were represented as a significant directed
connection, while the values below the threshold were regarded as
lacking significant directed connectivity.
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Classification analysis

We also used machine learning algorithm able of classifying
individual patients as either prodromal PD or manifest PD patients
based on their individual directed connections. The individual
directed connectivity matrices (7*7) for the patient groups were
therefore flattened into a one-dimensional feature vector for each
subject. The python library “scikit-learn” was used for the classification
analysis. A random forest classifier with 100 decision trees was trained
using the features matrix to distinguish between the two patient
groups.” The data was split into training and testing sets (70:30
stratifies ratio) to maintain class distribution. Performance of the
model was evaluated using metrics such as accuracy, precision, recall
and the F1-score. To further ensure robustness and assess potential
overfitting, we additionally performed a stratified 10-fold cross-
validation. The average accuracy and standard deviation across the
folds were computed to eliminate the risks of overfitting
(Supplementary Table S1).

Statistical analysis

We conducted an analysis of variance (ANOVA) test to examine the
differences in age across the four groups in our study, using MS EXCELs
(Microsoft 365) built-in ANOVA: Single Factor tool available in the
Data Analysis Toolpak. To account for multiple comparisons, post hoc
tests were performed using Bonferroni correction. The differences in
TPDC values for causal connections among the sample of groups of

5 https://scikitlearn.org/stable/modules/generated/sklearn.ensemble

RandomForestClassifier.ntml
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controls and patients were tested using a non-parametric Friedman test
(n=29, p=0.05). To examine the gender (male/female) distribution
between the four groups, we performed Chi-square test of independence.

Associations between the TPDC values and clinical scores in old
healthy controls, patients with prodromal PD and manifest PD
patients were found. In contrast, associations between the TPDC
values and the behavioral scores like behavioral inhibition score,
conscientiousness score, barratt impulsivity score, were assessed for
young healthy controls. Spearman’s rank correlation was used for H&Y
stage, while Pearson’s correlation was used for continuous normally
distributed variables, using custom Python script (scipy pearsonr,
spearmanr). The differences in the TPDC values were evaluated using
linear regression analysis with a significance level of 0.05.

Results
Subject characteristics

The age of subjects differed between the groups
(F(3,1785) = 7732.19, p < 0.001). Particularly, prodromal PD patients
were older compared to manifest PD patients and old healthy controls
(post-hoc p < 0.001). However, no significant differences were found
between manifest PD patients and old healthy controls (post-hoc
p=0.392). A Chi-square test of independence showed a significant
difference in gender distribution across the groups (y*(3) = 48.02,
P <0.0001) - balanced gender distribution in the young healthy
control group, while the older healthy and patient groups have a
higher proportion of male participants, which aligns with the known
male predominance in Parkinson’s disease prevalence.

Directed network connectivity

By applying the TPDC analysis followed by Moran’s permutation
testing approach, we examined the significant directed connections
among the following seven major brain networks of the Yeo-7 atlas,
namely the ventral attention (VAN), dorsal attention (DAN), limbic
(LIN), frontoparietal control (FPN), somatomotor (SMN), visual
(VIN), and default mode (DMN) networks. These connections are
represented in the adjacency matrices, where ‘1’ denotes a directed
edge connecting any two brain networks. For each group, we obtained
separate connectivity matrices, representing significant directed
causal connections.

In young healthy subjects, significant bidirectional connections
between the frontoparietal control and somatomotor networks were
observed. These connections were absent in old healthy controls and
both PD patient groups. However, compensatory connections between
the dorsal and ventral attention networks and the frontoparietal
control network were detectable in old healthy controls, prodromal
PD and manifest PD patients. The attention networks (Dorsal and
ventral) have directed connections to the somatomotor network in
prodromal and manifest PD patients which are absent in case of young
healthy individuals. The older healthy controls have directed
connections from ventral attention and limbic networks to the
somatomotor network, which are absent in the young healthy
individuals. In addition to that, there is a directed connection from
control network to the default network in older healthy individuals
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and patient groups which is absent in the young healthy individuals.
The details of all the connections are available in Figure 2.

By using ordinary least square regression through the ¢-test (p-
values) and coefficient of determination (%), significant differences in
TPDC values across the four groups were observed. When comparing
young healthy controls and prodromal PD patients, significant
differences in TPDC values were found for a sample of connections
(n =29), between the dorsal attention network and the limbic network
(p =0.047, r* = 0.138). While comparing young healthy controls and
manifest PD patients, significant differences in TPDC values for the
connections between the visual network and the somatomotor
network (p = 0.027, > = 0.167), between the somatomotor network
and the limbic network (p = 0.046, r* = 0.14), between the ventral
attention network and the dorsal attention network (p=0.011,
r*=0.215) and between the ventral attention network and the
frontoparietal control network (p = 0.003, r* = 0.28) were detected.

When comparing the TPDC values between the old healthy
controls and prodromal PD patients, significant differences in the
connections between the visual network and the limbic network
(p =0.002, * = 0.302) and between the dorsal attention network and
the frontoparietal control network (p=0.048, r*=0.138) were
identified. When comparing old healthy controls to age-matched
manifest PD patients, significant TPDC differences were observed for
the connections between the dorsal attention network and the ventral
attention network (p = 0.019, r* = 0.187), between both the dorsal and
ventral attention networks and the limbic network (p=0.036,
r*=0.153 and p = 0.019, r* = 0.187, respectively), and between the
frontoparietal control network and the visual network (p = 0.016,
r*=0.196). No significant differences in TPDC values were found
either between young and old healthy control groups, or between
prodromal PD and manifest PD patient groups for any connections.

Patient classification

The random forest classifier showed high performance in
distinguishing between the two PD patient groups. Our model achieved
an overall accuracy of 93.24% with precision of 0.95, recall of 0.88, F1
score of 0.92 in classifying the prodromal PD patients, and a precision
of 0.92, recall of 0.97 and F1-score of 0.94 for classifying manifest PD
patients (Figure 3). To further validate the classification performance,
stratified 10-fold cross-validation was performed, yielding a mean
accuracy of 94.0% + 2.5%, consistent with the initial train—test split
results (Supplementary Table S1). These results indicate that our model
can accurately identify these patients based on their individual directed
connectivity patterns and can distinguish between prodromal PD and
manifest PD patients. In addition to that, feature importance analysis
was also performed to identify top 5 important features to classify PD
staging (Supplementary Table S2). These findings also suggest that the
directed connectivity patterns combined with machine learning
methods, can accurately classify PD at different stages.

Clinical correlations
The TPDC values of the connections identified in young healthy

controls displayed significant correlations with the clinical scores.
Specifically, positive (Pearson’s) correlations between the TPDC
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FIGURE 2
Directed connectivity matrices. Each connectivity matrix displays significant directed connections between the seven major brain networks according
to the Yeo-7 atlas in young healthy controls from the GSP-1000 dataset (a), old healthy controls from the PPMI dataset (b), prodromal PD patients
from the PPMI dataset (c), and manifest PD patients from the PPMI dataset (d).
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Classification of PD patients. (a) Receiver operating characteristic (ROC) curve for the random forest classifier distinguishing between prodromal PD
and manifest PD patients based on individual directional connectivity features. (b) Training and testing accuracy as a function of the number of trees in
the Random Forest model.

Frontiers in Aging Neuroscience

06

frontiersin.org


https://doi.org/10.3389/fnagi.2025.1698600
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org

Anjum et al.

values for the connections between the somatomotor network and
the frontoparietal control network and the behavioral inhibition scale
score [r (1000) =0.094, p =0.019], Barrat impulsivity score [r
(1000) = —0.0823, p = 0.042] and the conscientiousness score [r
(1000) = 0.105, p = 0.009] were detected (Figure 4). Prodromal PD
patients showed positive correlations between the TPDC values of the
connections between the default mode and frontoparietal control
network and the sum of motor exam scores (NP3 total) [r
(325) = 0.015, p=0.032]. In manifest PD patients, there was a
positive correlation between the TPDC values for the connections
from the limbic to the somatomotor network and the sum of motor
exam scores (NP3 total) [r (435) =0.013, p = 0.0176], indicating

10.3389/fnagi.2025.1698600

increased directed connectivity with the progression of motor
impairment as seen in Figure 4.

Although correlations between some TPDC values and clinical
scores are statistically significant, the effect sizes are very small (all <
0.02). After applying Bonferroni correction to account for multiple
comparisons, correlations in manifest PD and prodromal PD patients
remain significant, however, for young healthy controls they do not
remain statistically significant, which is consistent with their small
effect sizes. Hence, the correlations in the healthy and patient groups
explained only a negligible proportion of variance, showing that
associations likely reflect subtle rather than robust relationships
between connectivity and clinical measures.
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FIGURE 4

Correlation between the TPDC values and clinical scores. In young healthy controls, TPDC values from the somatomotor to frontoparietal control
networks correlated with behavioral inhibition score (BIS) (a), Barrat impulsivity scale (b) and conscientiousness score on the NEO five factor model of
personality (c). In prodromal PD patients, TPDC value from the default mode to frontoparietal control network correlated with sum of motor exam

scores (NP3 total) (d). In manifest PD patients, TPDC values from limbic to somatomotor networks correlated with sum of motor exam scores (NP3
total) (e).
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Discussion

In this study, we investigated how the directed causal connectivity
patterns change across the lifespan and during the progression of PD,
especially focusing on the transition of prodromal PD to manifest PD
stage. We have identified age and disease related alterations in the
directed interactions among important brain networks. In addition to
that, we showed that these connectivity values correlate with the
clinical and motor scores. Our findings would be helpful in providing
important insights into the neural basis and early diagnosis of PD.

Directed network connectivity

The young healthy controls presented a pattern of significant
directed connectivity. Directed connections from the frontoparietal
control network to the somatomotor network and from the default
mode network to the frontoparietal control network, showed strong
top-down regulatory influences, which are essential for healthy brain
functioning in young adults. The directed connectivity from the
frontoparietal control network to the somatomotor network suggests
that these regions play an active role in mediating movement,
attention, and cognition (Leisman et al., 2016) in a consistent manner
as with the cognitive flexibility and motor control normally observed
in young individuals.

Old healthy controls showed a reduction in directed causal
connections between different networks. For example, the
frontoparietal control network did not exhibit significant connections
with the somatomotor network, which was prominent in young
healthy individuals, likely due to age-related changes. The
somatomotor network had fewer efferent connections that may
indicate an age-related motor decline such as balance and gait deficits,
control/coordination deficits and slowing of movements (Seidler et al.,
2010). There was a lack of directed connectivity from other networks
to the dorsal and ventral attention networks, similar to the lack of
structural and functional connectivity decline normally observed with
the attention networks in older individuals (Zhang et al., 2024)
suggesting a decline in the attention mechanisms related to normal
aging brain.

Prodromal PD patients

The prodromal PD group showed early signs of connectivity
disruption, primarily in the somatomotor network. The absence of
strong outgoing directed connections from the somatomotor network
may be related to motor deficits and could possibly lead to
PD. Connections from the ventral attention network to the
somatomotor and frontoparietal control networks in prodromal PD
patients could reflect some compensatory mechanisms (Passaretti
etal,, 2024), where the attentional network may try to take over some
of the motor and cognitive tasks.

Parkinson's disease patients

The PD patient group showed a breakdown in connections
especially within the frontoparietal control and somatomotor
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networks, indicating the motor deficits normally seen in PD. The
loss of causal connection from the frontoparietal control network
to the somatomotor network indicates a disruption in the influence
of motor control, which is a clear sign of motor symptoms in PD
and may require increased reliance on the attention-based control
(Azulay et al., 2006). We observed this in our study, where dorsal
and ventral attention networks are highly active and showed
significant directed causal connections to the somatomotor and
control networks, exhibiting some compensatory attention
processes, partly observed in the prodromal PD patients. However,
these efforts may not be enough to suppress the disease-related
network disruptions.

In addition, we found causal directed connections from the
somatomotor network to the visual network, which were present
only in PD patients, suggesting the reliance on sensory inputs
from the visual system for the guidance of movements. This aligns
well with the clinical observations in PD patients, which show
increased dependence on the visual cues during gait and balance
tasks (Zhang et al., 2023).

Age-related network alterations

Young healthy controls showed directed connectivity between the
somatomotor and control networks reflecting the intricate integration
of higher-order functions and motor planning. This significant
directed connectivity was absent in the older individuals (older
healthy controls, prodromal PD and PD patients), pointing to possible
age-related effects on the control and motor functions (Marek et al.,
2015; Jockwitz and Caspers, 2021).

In older individuals and patients, there is a notable absence of
significant directed connectivity from the attention networks
(both ventral and dorsal) to the limbic network, which is
responsible for memory processing and emotional regulations,
and it tends to deteriorate with advanced age (Gunbey et al,
2014). However, a compensatory mechanism might come into
play in the shape of increased connectivity to other networks.
Such connections from the attention networks to the control
network in older individuals and PD patients my indicate an
increased role of attention networks in the aging brain (Ferreira
and Busatto, 2013; Watanabe et al., 2021).

Age-related directed connectivity patterns from the limbic
network to the somatomotor network were observed in older healthy
controls and PD patients, which were absent in the young healthy
controls. This significant connection might show some compensatory
adaptation to support the motor function as limbic-motor interface is
potentially involved in the modulation of complex functions such as
spatial awareness and motor coordination (Rizzo et al., 2018). This
connection would highlight the role of the limbic network in
mediating motor and cognitive tasks in the aging process.

The relatively small sample size of the old healthy control group
(n = 29) compared to the other cohorts is a limitation and may reduce
the robustness of age-related comparisons. While the present analysis
provides valuable preliminary insights, future studies should include
larger age-matched control cohorts to strengthen generalizability. In
addition to that, sensitivity analyses or weighted statistical approaches
could be employed to mitigate potential biases arising from group
size imbalances.
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Disease-related network alterations

In prodromal PD and manifest PD patients, we observed directed
connections from the control network to the dorsal attention network,
which were absent in the young and older healthy controls, suggesting
some compensatory mechanisms as attention is controlled by
frontoparietal control network in PD patients (Secley et al., 2007;
Tessitore et al., 2012). This adaptation might be an attempt by the
brain to counter the decline of the motor system with attentional
network taking over to maintain the functional movement.

In the prodromal stage we see that the somatomotor network is
secluded with no outgoing connections, signaling the early disruption
in the integration of motor system, which is a hallmark of PD
pathophysiology (Abbruzzese and Berardelli, 2003), however with the
progression of the disease we see a significant directed connectivity to
visual and default networks in case of PD patients suggesting an
adaptation mechanism where disease takes over and reconfigures itself
against the motor decline (De Schipper et al., 2018; Thomas et al.,
2023). However, this adaptation might not be enough to compensate
for the loss of motor functions, highlighting the need for therapeutic
interventions such as deep brain stimulation or cognitive training.

Disease stage classification

Our study shows that the directed connectivity patterns derived
from the resting state fMRI data, using the TPDC analysis, can
effectively and accurately distinguish between the prodromal PD and
Parkinson’s disease patients. The high accuracy, strong performance
metrics across both patient group and the ability of our model to
classify individual patients based on unique directed connectivity
patterns, shows the relevance of this approach which can be particularly
useful in the diagnosis of Parkinson’s disease at an early stage. Our
findings suggest that changes in the brain network connectivity
patterns can help in tracking disease progression over time.

Clinical significance

We can suggest that the loss of causal connections between the
control and somatomotor networks could serve as an early biomarker
for PD diagnosis and disease progression. The use of these directed
causal connectivity patterns into a machine learning framework
resulted into highly accurate classification of PD patients at different
stages. Our findings suggest that combining directed connectivity with
clinical scores enhances our understanding of PD pathophysiology
and holds great potential for early diagnosis and intervention. In light
of previous research, our results point to therapeutic strategies like
deep brain stimulation or cognitive training, which might help restore
this causal connectivity relation and preserve motor control and
cognitive function at the early onset of PD.

Conclusion
The study highlights the gradual loss of the directed causal

connections between the control and motor networks, as a significant
feature of PD, starting in the prodromal stage and capping at the
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full-blown expression of PD. The control network loses the governing
influence over the motor network, leading to the isolation of the highly
important somatomotor network. These disruptions are quite different
from the effects of normal aging as seen in the PPMI-healthy older
individuals, where the loss of these connections has less influence. The
study also highlights the potential biomarkers for early diagnosis and
intervention. Some observed connectivity patterns could possibly
be of compensatory mechanisms; however, these inferences are
correlational, and alternative explanations, such as network
reorganization or disease heterogeneity, cannot be excluded. This
study aims to contribute to the understanding of directed connectivity
patterns in neurodegenerative diseases such as Parkinson’s disease,
highlighting the differences in directed connectivity patterns between
healthy individuals and Parkinson’s patients.

Limitations

The relatively small sample size of the old healthy control group
(n = 29) compared to the other cohorts is a limitation and may reduce
the robustness of age-related comparisons. External validation in
independent cohorts in future work is required to confirm the
generalizability and clinical relevance of these findings.
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