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Introduction: The propagation of neural signals across various brain regions 
requires us to understand directional connectivity in functional magnetic 
resonance imaging (fMRI) data. We employ temporal partial directed coherence 
(TPDC), a data driven method to explore directional connectivity in young and 
old healthy individuals, manifest PD and prodromal PD patients. TPDC provides 
comprehensive analysis of neural signal propagation compared to traditional 
methods like Dynamic Causal Modeling, Granger Causality and Transfer Entropy.
Methods: We analyzed preprocessed fMRI data from the young and old groups 
of healthy individuals and PD patients at different disease stages. Time series 
were extracted by reducing the voxel data (by averaging) into 7 networks of 
the Yeo-atlas. TPDC was applied in the frequency range of 0.009–0.08 Hz. 
Statistical significance of connections was determined via bootstrapping, 
followed by thresholding using permutation testing. Finally, machine learning 
classifiers were trained to distinguish prodromal PD from PD patients.
Results: In young healthy individuals, the somatomotor network regulates control 
and attention systems, indicating cognitive and motor flexibility. Older healthy 
controls show lack of significant connections from control to somatomotor 
networks, suggesting a cognitive decline related to age. The somatomotor 
network becomes secluded in the prodromal PD patients. A compensatory 
mechanism is visible in groups of PD patients. Additionally, machine learning 
classifiers achieved high accuracy in distinguishing between prodromal and PD 
groups based on directed connectivity patterns.
Conclusion: The study highlights the gradual loss of the significant directed 
causal connections between the control and motor networks in different 
stages of PD. The governing influence of control network over the motor and 
attentional networks diminishes, leading to the isolation of the somatomotor 
network. The ability of TPDC-derived features to distinguish prodromal from 
Parkinson’s patients underscores its value for identifying potential biomarkers of 
disease onset and progression.
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Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative 
disorder affecting motor and non-motor (cognitive, autonomic, 
affective, behavioral) functions in part due to pathological disruption 
of fine-tuned neural networks. Patients with PD exhibit an intricate 
pattern of functional connectivity alterations within the major brain 
networks as evidenced by electroencephalography and neuroimaging 
studies (Leviashvili et al., 2022). Particularly, reduced connectivity 
within the central executive and dorsal attention networks, as well as 
increased connectivity within the ventral attention network were 
observed (Leviashvili et  al., 2022). Moreover, disruptions in 
interhemispheric connectivity may substantially interfere with the 
execution of complex movements in patients with PD (Bange et al., 
2022). Depicting connectivity patterns in different stages of PD might 
provide additional insights into the pathophysiology of the disease 
and refine the existing treatment approaches for these patients. 
Therapeutic interventions targeting abnormal oscillatory activity 
within brain networks, e.g., deep brain stimulation, were shown to 
modulate the deficient connectivity patterns and provide clinical 
benefits (Muthuraman et al., 2018).

Functional connectivity is characterized by statistical dependence 
of activation patterns across different brain regions, resulting from 
both indirect and direct neural interactions (Firston, 2011). One 
previous research laid the foundational work by assessing functional 
connectivity in the human brain using functional magnetic resonance 
imaging (fMRI) data (Rogers et al., 2007). More recently, resting-state 
fMRI data was used to infer regional functional connections 
(Mansour et al., 2023). A multivariate measure, total correlation was 
utilized to explore functional brain connectivity (Li et al., 2022). The 
human functional connectome across the lifespan using both the 
structural and functional MRI data has previously been explored 
(Sun et al., 2023). While the functional connectivity captures the 
statistical dependencies between different brain regions, it lacks 
information about the direction of these interactions. Our study 
focuses on directional connectivity, which we  believe would 
be particularly useful for patients’ classification.

Directed connectivity based on fMRI data is traditionally 
assessed using methods like dynamic causal modeling (DCM) (Bajaj 
et  al., 2016), granger causality (GC) (Kaminski et  al., 2001) and 
transfer entropy (TE) (Duan et al., 2013). These methods provide 
insights into the neural signal propagation across different brain 
regions, thereby granting a non-invasive access in deciphering the 
intricate interactions across brain networks. Dynamic causal 
modeling is a hypothesis-driven method that models causal 
interactions between different brain regions taking into account 
hemodynamic and neuronal responses (Friston et al., 2003). On the 
other hand, TE is a data-driven approach that offers a thorough 
analysis of neural data in the time domain by capturing nonlinear 
interactions and measuring the directed exchange of information 

between the time series (Schreiber, 2000). Temporal partial directed 
coherence (TPDC) analysis is purely a data-driven analysis and an 
extension of the partial directed coherence, a technique designed to 
analyze multivariate time series data and infer causal relationships 
between various brain regions. Temporal partial directed coherence 
focuses on both time and frequency domains, allowing for a 
comprehensive characterization of connectivity patterns at all time 
points and frequency bands (Baccalá and Sameshima, 2001). One of 
the major advantages of TPDC analysis is its ability to uncover the 
dynamic patterns of brain connectivity that engage different 
functional brain networks.

By employing the TPDC analysis, we aimed to establish the 
existing patterns of directed connectivity in three different cohorts - 
healthy individuals, patients with manifest PD and patients with 
prodromal PD. Connectivity patterns emergent from this study 
might be used as open-source reference patterns in future works 
studying connectivity alterations in different patient populations to 
disentangle healthy aging from disease-specific connectomes in 
neurodegenerative disorders.

Materials and methods

Subjects

This study included the preprocessed fMRI data from 1,000 young 
healthy participants (male to female ratio 1:1), publicly available at 
Harvard Dataverse as “GSP1000 Preprocessed Connectome” (Cohen 
et  al., 2020). For each subject, the average blood oxygen level-
dependent (BOLD) time series from brain networks (Yeo et al., 2011), 
were extracted using a custom Python script that utilizes “nilearn” 
python library.1 This study also included data collected for a group of 
manifest PD patients (n = 435), prodromal PD patients (n = 325) and 
old healthy controls (n = 29) from the openly available PPMI 
(Parkinson’s Progression Markers Initiative) dataset.2 Clinical scores 
like behavioral inhibition score, Barratt impulsivity score and 
conscientiousness score were collected for young healthy controls, 
whereas sum of motor exam score (NP3 Total) and Hoehn and Yahr 
(H&Y) stage values were collected for the prodromal PD and manifest 
PD patients from PPMI. Demographical and clinical details of the 
subject and patient groups are given in Table 1.

The NP3 total is a detailed measure of motor symptoms in PD. It 
includes scores from multiple individual motor tests such as tremor, 
rigidity etc. conducted during a clinical motor exam. A higher NP3 
score indicates more severe motor impairment. Hoehn and Yahr 
(H&Y) scale classifies the overall severity of PD. BIS is the behavioral 
inhibition score on the behavioral inhibition and behavioral activation 
(BISBAS) scale. Barratt impulsivity score is the total score on the 
Barratt impulsivity scale (Patton et al., 1995). The conscientiousness 
score signifies the NEO five-factor model of personality.

The PPMI data was preprocessed using a preprocessing pipeline 
that included realignment and coregistration followed by smoothing 
using an 8 mm kernel. The preprocessing of these fMRI images was 

1  https://nilearn.github.io/stable/

2  https://www.ppmi-info.org/access-data-specimens/download-data

Abbreviations: DCM, Dynamic causal modeling; fMRI, Functional magnetic 

resonance imaging; GC, Granger causality; GSP, Genomics Superstruct Project; 

TE, Transfer Entropy; TPDC, Temporal partial directed coherence; PPMI, Parkinson’s 

Progression Markers Initiative; ROIs, Regions of interest; Ventral Attn, Ventral 

Attention Network; Dorsal Attn, Dorsal Attention Network; Limbic, Limbic Network; 

Control, Frontoparietal Control Network; SomMotor, Somatomotor Network.
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performed using the SPM-12 Matlab toolbox.3 Then, the time series 
were extracted for the Yeo-7 network parcellation atlas, which includes 
the following networks: visual, somatomotor, ventral attention (or 
salience), dorsal attention, frontoparietal control, limbic, and default 
mode networks. The python library “nilearn”4 was used to extract the 
time series from the Yeo-7 networks (Yeo et al., 2011), based on the 
custom python script with a spatial resolution of 1 mm. Afterwards, 
these time series were utilized for the TPDC analysis. Eventually, 
thresholding was performed to obtain significant connections for each 
group of subjects from the study. The detail of the applied methodology 
is shown in Figure 1.

TPDC analysis

In order to determine the causality between the time series, 
we used the time-dependent multivariate coefficients. Dual extended 
Kalman filters can be used as a foundation for the causality estimation 
(Haykin, 2001; Wan and Nelson, 2001). This functions as TPDC 
method’s estimation strategy for the time-dependent auto-regressive 
coefficients. To find the partial directed coherence at each time point, 
time-dependent multivariate auto-regressive coefficients were 
computed. TPDC as an extension of partial directed coherence, 
captures both time and frequency resolved directional interaction in 
a multivariate time series given a multivariate autoregressive (MVAR) 
model of order p.

	
( ) ( ) ( ) ( )

=
= − +∑
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Where ( )X t is the vector of fMRI time series across regions, 
( )kA t  are the time varying autoregressive coefficient matrices and 

3  https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

4  https://nilearn.github.io/stable/index.html

( )E t  is the residual noise. The model order was fixed at p = 1. TPDC 
is computed as:
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Where ( ),ijA f t  is the Fourier transform of MVAR coefficients, 
( )π ,ij f t  quantifies the normalized directed influence from region j to 

i at frequency f and time t. Normalization is performed to reduce the 
confounding effect of the indirect connections. We focused on the 
frequency band in range from 0.009 Hz - 0.08 Hz as it corresponds to 
the range believed to reflect brain physiology and metabolism 
(Logothetis and Wandell, 2004; Deco et al., 2011). The TPDC matrix 
(e.g., 7*7 matrix) was then obtained by averaging all the frequency 
bins in the frequency band of interest. To determine the model 
parameters and the system states at any given moment, the two 
Kalman filters were run in parallel. The states were estimated by one 
extended Kalman filter, which then feeds the data to another extended 
Kalman filter, which estimates the model parameters.

The significance level of the estimated TPDC values was 
determined using a bootstrapping technique (Kaminski et al., 2001). 
The original time series were divided into smaller, non-overlapping 
windows, and the order of these windows was randomly changed to 
create the new time series. Next, using the updated time series as a 
basis, the TPDC matrix was computed. The shuffling operation was 
carried out 100 times to calculate the threshold, after which the 99th 
percentile was determined. The autoregressive coefficients were 
estimated from the spatially filtered source signals using the open-
source MATLAB ARFIT toolbox (Neumaier and Schneider, 2001; 
Schneider and Neumaier, 2001).

Directed connectivity analysis

Significant values that were above the significance threshold were 
replaced by 1’s and those below the significance threshold were 
replaced by 0’s. In this manner, the causal relationships between any 

TABLE 1  Demographical and clinical characteristics of patients and healthy controls.

Prodromal PD 
patients, PPMI

PD patients, PPMI Young healthy 
controls, GSP1000

Old healthy 
controls, PPMI

N 325 435 1,000 29

Male/female 185/140 299/136 500/500 22/7

Age, mean ± SD 66.7 ± 6.5 63.4 ± 9.7 21.4 ± 2.87 61.8 ± 5.1

NP3 total, mean ± SD 3.56 ± 5.68 22.16 ± 10.47 – –

H&Y scale median (range) 0 (0–3) 2 (1–4) – –

Behavioral inhibition score (BIS) 

median (range)

– – 21 (7–28) –

Barratt Impulsivity score median 

(range)

– – 62 (30–120) –

Conscientiousness score median 

(range)

– – 32 (0–48) –

GSP, Genomics Superstruct Project; H&Y, Hoehn and Yahr scale; NP3 total, sum of motor exam scores; PPMI, Parkinson’s Progression Markers Initiative; SD, standard deviation.
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two regions were represented in a significance matrix of ones and 
zeros. We then employed permutation testing to assess the statistical 
significance of the observed connectivity matrices. To generate the 
null distributions for each connection, we performed 1,000 random 
permutations. In each permutation, the matrices were flattened and 
randomly shuffled, only preserving the marginal totals. The shuffled 
data were then reshaped and aggregated across subjects, to form a 
frequency matrix. The 99th percentile of the resulting null distribution 
was used as a significance threshold. Connection values above this 
threshold were considered statistically significant, indicating a 
significant directed connection and the values below the threshold 
were considered insignificant, implying in the absence of significant 
directional connectivity.

Afterwards, the obtained individual connectivity matrices were 
used to find group level directed connections. A data-driven, Moran’s 
permutation testing approach was applied to evaluate the spatial 
autocorrelation and identify the statistically significant inter-network 
connections (Moran, 1950; Zelesky et al., 2010). This method allows 
to compare the identified connectivity patterns to a null model derived 
from the permuted datasets, offering data-driven statistically 
significant directed connections. In more detail, the algorithm runs in 
following steps. For each inter-network pair, the observed connections’ 
frequency across the groups is computed by summing up the values 
into a three-dimensional binary connectivity matrix. To generate the 
null distribution for each connection, 1,000 permutations of the 
individual matrices were performed. Each individual matrix was 
flattened and shuffled randomly. The permuted matrices were then 
reshaped and aggregated to generate a permuted frequency matrix. 
For each connection, 99th percentile value from its null distribution 
was used as a significance threshold. Connections with the values 
exceeding that threshold were represented as a significant directed 
connection, while the values below the threshold were regarded as 
lacking significant directed connectivity.

Classification analysis

We also used machine learning algorithm able of classifying 
individual patients as either prodromal PD or manifest PD patients 
based on their individual directed connections. The individual 
directed connectivity matrices (7*7) for the patient groups were 
therefore flattened into a one-dimensional feature vector for each 
subject. The python library “scikit-learn” was used for the classification 
analysis. A random forest classifier with 100 decision trees was trained 
using the features matrix to distinguish between the two patient 
groups.5 The data was split into training and testing sets (70:30 
stratifies ratio) to maintain class distribution. Performance of the 
model was evaluated using metrics such as accuracy, precision, recall 
and the F1-score. To further ensure robustness and assess potential 
overfitting, we  additionally performed a stratified 10-fold cross-
validation. The average accuracy and standard deviation across the 
folds were computed to eliminate the risks of overfitting 
(Supplementary Table S1).

Statistical analysis

We conducted an analysis of variance (ANOVA) test to examine the 
differences in age across the four groups in our study, using MS EXCEL’s 
(Microsoft 365) built-in ANOVA: Single Factor tool available in the 
Data Analysis Toolpak. To account for multiple comparisons, post hoc 
tests were performed using Bonferroni correction. The differences in 
TPDC values for causal connections among the sample of groups of 

5  https://scikitlearn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html

FIGURE 1

Workflow diagram of the fMRI data analysis. First, fMRI images were preprocessed and time series extracted. Then, TPDC analysis was performed to 
assess the directed connectivity between Yeo-7 networks. Afterwards, significant directed connections were detected by applying the random 
permutation testing approach. At the end, random forest machine learning algorithm was used to classify the patients based on their individual 
connectivity values.
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controls and patients were tested using a non-parametric Friedman test 
(n = 29, p = 0.05). To examine the gender (male/female) distribution 
between the four groups, we performed Chi-square test of independence.

Associations between the TPDC values and clinical scores in old 
healthy controls, patients with prodromal PD and manifest PD 
patients were found. In contrast, associations between the TPDC 
values and the behavioral scores like behavioral inhibition score, 
conscientiousness score, barratt impulsivity score, were assessed for 
young healthy controls. Spearman’s rank correlation was used for H&Y 
stage, while Pearson’s correlation was used for continuous normally 
distributed variables, using custom Python script (scipy pearsonr, 
spearmanr). The differences in the TPDC values were evaluated using 
linear regression analysis with a significance level of 0.05.

Results

Subject characteristics

The age of subjects differed between the groups 
(F(3,1785) = 7732.19, p < 0.001). Particularly, prodromal PD patients 
were older compared to manifest PD patients and old healthy controls 
(post-hoc p < 0.001). However, no significant differences were found 
between manifest PD patients and old healthy controls (post-hoc 
p = 0.392). A Chi-square test of independence showed a significant 
difference in gender distribution across the groups (χ2(3) = 48.02, 
p < 0.0001)  - balanced gender distribution in the young healthy 
control group, while the older healthy and patient groups have a 
higher proportion of male participants, which aligns with the known 
male predominance in Parkinson’s disease prevalence.

Directed network connectivity

By applying the TPDC analysis followed by Moran’s permutation 
testing approach, we examined the significant directed connections 
among the following seven major brain networks of the Yeo-7 atlas, 
namely the ventral attention (VAN), dorsal attention (DAN), limbic 
(LIN), frontoparietal control (FPN), somatomotor (SMN), visual 
(VIN), and default mode (DMN) networks. These connections are 
represented in the adjacency matrices, where ‘1’ denotes a directed 
edge connecting any two brain networks. For each group, we obtained 
separate connectivity matrices, representing significant directed 
causal connections.

In young healthy subjects, significant bidirectional connections 
between the frontoparietal control and somatomotor networks were 
observed. These connections were absent in old healthy controls and 
both PD patient groups. However, compensatory connections between 
the dorsal and ventral attention networks and the frontoparietal 
control network were detectable in old healthy controls, prodromal 
PD and manifest PD patients. The attention networks (Dorsal and 
ventral) have directed connections to the somatomotor network in 
prodromal and manifest PD patients which are absent in case of young 
healthy individuals. The older healthy controls have directed 
connections from ventral attention and limbic networks to the 
somatomotor network, which are absent in the young healthy 
individuals. In addition to that, there is a directed connection from 
control network to the default network in older healthy individuals 

and patient groups which is absent in the young healthy individuals. 
The details of all the connections are available in Figure 2.

By using ordinary least square regression through the t-test (p-
values) and coefficient of determination (r2), significant differences in 
TPDC values across the four groups were observed. When comparing 
young healthy controls and prodromal PD patients, significant 
differences in TPDC values were found for a sample of connections 
(n = 29), between the dorsal attention network and the limbic network 
(p = 0.047, r2 = 0.138). While comparing young healthy controls and 
manifest PD patients, significant differences in TPDC values for the 
connections between the visual network and the somatomotor 
network (p = 0.027, r2 = 0.167), between the somatomotor network 
and the limbic network (p = 0.046, r2 = 0.14), between the ventral 
attention network and the dorsal attention network (p = 0.011, 
r2 = 0.215) and between the ventral attention network and the 
frontoparietal control network (p = 0.003, r2 = 0.28) were detected.

When comparing the TPDC values between the old healthy 
controls and prodromal PD patients, significant differences in the 
connections between the visual network and the limbic network 
(p = 0.002, r2 = 0.302) and between the dorsal attention network and 
the frontoparietal control network (p = 0.048, r2 = 0.138) were 
identified. When comparing old healthy controls to age-matched 
manifest PD patients, significant TPDC differences were observed for 
the connections between the dorsal attention network and the ventral 
attention network (p = 0.019, r2 = 0.187), between both the dorsal and 
ventral attention networks and the limbic network (p = 0.036, 
r2 = 0.153 and p = 0.019, r2 = 0.187, respectively), and between the 
frontoparietal control network and the visual network (p = 0.016, 
r2 = 0.196). No significant differences in TPDC values were found 
either between young and old healthy control groups, or between 
prodromal PD and manifest PD patient groups for any connections.

Patient classification

The random forest classifier showed high performance in 
distinguishing between the two PD patient groups. Our model achieved 
an overall accuracy of 93.24% with precision of 0.95, recall of 0.88, F1 
score of 0.92 in classifying the prodromal PD patients, and a precision 
of 0.92, recall of 0.97 and F1-score of 0.94 for classifying manifest PD 
patients (Figure 3). To further validate the classification performance, 
stratified 10-fold cross-validation was performed, yielding a mean 
accuracy of 94.0% ± 2.5%, consistent with the initial train–test split 
results (Supplementary Table S1). These results indicate that our model 
can accurately identify these patients based on their individual directed 
connectivity patterns and can distinguish between prodromal PD and 
manifest PD patients. In addition to that, feature importance analysis 
was also performed to identify top 5 important features to classify PD 
staging (Supplementary Table S2). These findings also suggest that the 
directed connectivity patterns combined with machine learning 
methods, can accurately classify PD at different stages.

Clinical correlations

The TPDC values of the connections identified in young healthy 
controls displayed significant correlations with the clinical scores. 
Specifically, positive (Pearson’s) correlations between the TPDC 
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FIGURE 2

Directed connectivity matrices. Each connectivity matrix displays significant directed connections between the seven major brain networks according 
to the Yeo-7 atlas in young healthy controls from the GSP-1000 dataset (a), old healthy controls from the PPMI dataset (b), prodromal PD patients 
from the PPMI dataset (c), and manifest PD patients from the PPMI dataset (d).

FIGURE 3

Classification of PD patients. (a) Receiver operating characteristic (ROC) curve for the random forest classifier distinguishing between prodromal PD 
and manifest PD patients based on individual directional connectivity features. (b) Training and testing accuracy as a function of the number of trees in 
the Random Forest model.
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values for the connections between the somatomotor network and 
the frontoparietal control network and the behavioral inhibition scale 
score [r (1000) = 0.094, p = 0.019], Barrat impulsivity score [r 
(1000) = −0.0823, p = 0.042] and the conscientiousness score [r 
(1000) = 0.105, p = 0.009] were detected (Figure 4). Prodromal PD 
patients showed positive correlations between the TPDC values of the 
connections between the default mode and frontoparietal control 
network and the sum of motor exam scores (NP3 total) [r 
(325) = 0.015, p = 0.032]. In manifest PD patients, there was a 
positive correlation between the TPDC values for the connections 
from the limbic to the somatomotor network and the sum of motor 
exam scores (NP3 total) [r (435) = 0.013, p = 0.0176], indicating 

increased directed connectivity with the progression of motor 
impairment as seen in Figure 4.

Although correlations between some TPDC values and clinical 
scores are statistically significant, the effect sizes are very small (all < 
0.02). After applying Bonferroni correction to account for multiple 
comparisons, correlations in manifest PD and prodromal PD patients 
remain significant, however, for young healthy controls they do not 
remain statistically significant, which is consistent with their small 
effect sizes. Hence, the correlations in the healthy and patient groups 
explained only a negligible proportion of variance, showing that 
associations likely reflect subtle rather than robust relationships 
between connectivity and clinical measures.

FIGURE 4

Correlation between the TPDC values and clinical scores. In young healthy controls, TPDC values from the somatomotor to frontoparietal control 
networks correlated with behavioral inhibition score (BIS) (a), Barrat impulsivity scale (b) and conscientiousness score on the NEO five factor model of 
personality (c). In prodromal PD patients, TPDC value from the default mode to frontoparietal control network correlated with sum of motor exam 
scores (NP3 total) (d). In manifest PD patients, TPDC values from limbic to somatomotor networks correlated with sum of motor exam scores (NP3 
total) (e).
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Discussion

In this study, we investigated how the directed causal connectivity 
patterns change across the lifespan and during the progression of PD, 
especially focusing on the transition of prodromal PD to manifest PD 
stage. We have identified age and disease related alterations in the 
directed interactions among important brain networks. In addition to 
that, we  showed that these connectivity values correlate with the 
clinical and motor scores. Our findings would be helpful in providing 
important insights into the neural basis and early diagnosis of PD.

Directed network connectivity

The young healthy controls presented a pattern of significant 
directed connectivity. Directed connections from the frontoparietal 
control network to the somatomotor network and from the default 
mode network to the frontoparietal control network, showed strong 
top-down regulatory influences, which are essential for healthy brain 
functioning in young adults. The directed connectivity from the 
frontoparietal control network to the somatomotor network suggests 
that these regions play an active role in mediating movement, 
attention, and cognition (Leisman et al., 2016) in a consistent manner 
as with the cognitive flexibility and motor control normally observed 
in young individuals.

Old healthy controls showed a reduction in directed causal 
connections between different networks. For example, the 
frontoparietal control network did not exhibit significant connections 
with the somatomotor network, which was prominent in young 
healthy individuals, likely due to age-related changes. The 
somatomotor network had fewer efferent connections that may 
indicate an age-related motor decline such as balance and gait deficits, 
control/coordination deficits and slowing of movements (Seidler et al., 
2010). There was a lack of directed connectivity from other networks 
to the dorsal and ventral attention networks, similar to the lack of 
structural and functional connectivity decline normally observed with 
the attention networks in older individuals (Zhang et  al., 2024) 
suggesting a decline in the attention mechanisms related to normal 
aging brain.

Prodromal PD patients

The prodromal PD group showed early signs of connectivity 
disruption, primarily in the somatomotor network. The absence of 
strong outgoing directed connections from the somatomotor network 
may be  related to motor deficits and could possibly lead to 
PD. Connections from the ventral attention network to the 
somatomotor and frontoparietal control networks in prodromal PD 
patients could reflect some compensatory mechanisms (Passaretti 
et al., 2024), where the attentional network may try to take over some 
of the motor and cognitive tasks.

Parkinson’s disease patients

The PD patient group showed a breakdown in connections 
especially within the frontoparietal control and somatomotor 

networks, indicating the motor deficits normally seen in PD. The 
loss of causal connection from the frontoparietal control network 
to the somatomotor network indicates a disruption in the influence 
of motor control, which is a clear sign of motor symptoms in PD 
and may require increased reliance on the attention-based control 
(Azulay et al., 2006). We observed this in our study, where dorsal 
and ventral attention networks are highly active and showed 
significant directed causal connections to the somatomotor and 
control networks, exhibiting some compensatory attention 
processes, partly observed in the prodromal PD patients. However, 
these efforts may not be enough to suppress the disease-related 
network disruptions.

In addition, we found causal directed connections from the 
somatomotor network to the visual network, which were present 
only in PD patients, suggesting the reliance on sensory inputs 
from the visual system for the guidance of movements. This aligns 
well with the clinical observations in PD patients, which show 
increased dependence on the visual cues during gait and balance 
tasks (Zhang et al., 2023).

Age-related network alterations

Young healthy controls showed directed connectivity between the 
somatomotor and control networks reflecting the intricate integration 
of higher-order functions and motor planning. This significant 
directed connectivity was absent in the older individuals (older 
healthy controls, prodromal PD and PD patients), pointing to possible 
age-related effects on the control and motor functions (Marek et al., 
2015; Jockwitz and Caspers, 2021).

In older individuals and patients, there is a notable absence of 
significant directed connectivity from the attention networks 
(both ventral and dorsal) to the limbic network, which is 
responsible for memory processing and emotional regulations, 
and it tends to deteriorate with advanced age (Gunbey et  al., 
2014). However, a compensatory mechanism might come into 
play in the shape of increased connectivity to other networks. 
Such connections from the attention networks to the control 
network in older individuals and PD patients my indicate an 
increased role of attention networks in the aging brain (Ferreira 
and Busatto, 2013; Watanabe et al., 2021).

Age-related directed connectivity patterns from the limbic 
network to the somatomotor network were observed in older healthy 
controls and PD patients, which were absent in the young healthy 
controls. This significant connection might show some compensatory 
adaptation to support the motor function as limbic-motor interface is 
potentially involved in the modulation of complex functions such as 
spatial awareness and motor coordination (Rizzo et al., 2018). This 
connection would highlight the role of the limbic network in 
mediating motor and cognitive tasks in the aging process.

The relatively small sample size of the old healthy control group 
(n = 29) compared to the other cohorts is a limitation and may reduce 
the robustness of age-related comparisons. While the present analysis 
provides valuable preliminary insights, future studies should include 
larger age-matched control cohorts to strengthen generalizability. In 
addition to that, sensitivity analyses or weighted statistical approaches 
could be employed to mitigate potential biases arising from group 
size imbalances.
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Disease-related network alterations

In prodromal PD and manifest PD patients, we observed directed 
connections from the control network to the dorsal attention network, 
which were absent in the young and older healthy controls, suggesting 
some compensatory mechanisms as attention is controlled by 
frontoparietal control network in PD patients (Seeley et al., 2007; 
Tessitore et al., 2012). This adaptation might be an attempt by the 
brain to counter the decline of the motor system with attentional 
network taking over to maintain the functional movement.

In the prodromal stage we see that the somatomotor network is 
secluded with no outgoing connections, signaling the early disruption 
in the integration of motor system, which is a hallmark of PD 
pathophysiology (Abbruzzese and Berardelli, 2003), however with the 
progression of the disease we see a significant directed connectivity to 
visual and default networks in case of PD patients suggesting an 
adaptation mechanism where disease takes over and reconfigures itself 
against the motor decline (De Schipper et al., 2018; Thomas et al., 
2023). However, this adaptation might not be enough to compensate 
for the loss of motor functions, highlighting the need for therapeutic 
interventions such as deep brain stimulation or cognitive training.

Disease stage classification

Our study shows that the directed connectivity patterns derived 
from the resting state fMRI data, using the TPDC analysis, can 
effectively and accurately distinguish between the prodromal PD and 
Parkinson’s disease patients. The high accuracy, strong performance 
metrics across both patient group and the ability of our model to 
classify individual patients based on unique directed connectivity 
patterns, shows the relevance of this approach which can be particularly 
useful in the diagnosis of Parkinson’s disease at an early stage. Our 
findings suggest that changes in the brain network connectivity 
patterns can help in tracking disease progression over time.

Clinical significance

We can suggest that the loss of causal connections between the 
control and somatomotor networks could serve as an early biomarker 
for PD diagnosis and disease progression. The use of these directed 
causal connectivity patterns into a machine learning framework 
resulted into highly accurate classification of PD patients at different 
stages. Our findings suggest that combining directed connectivity with 
clinical scores enhances our understanding of PD pathophysiology 
and holds great potential for early diagnosis and intervention. In light 
of previous research, our results point to therapeutic strategies like 
deep brain stimulation or cognitive training, which might help restore 
this causal connectivity relation and preserve motor control and 
cognitive function at the early onset of PD.

Conclusion

The study highlights the gradual loss of the directed causal 
connections between the control and motor networks, as a significant 
feature of PD, starting in the prodromal stage and capping at the 

full-blown expression of PD. The control network loses the governing 
influence over the motor network, leading to the isolation of the highly 
important somatomotor network. These disruptions are quite different 
from the effects of normal aging as seen in the PPMI-healthy older 
individuals, where the loss of these connections has less influence. The 
study also highlights the potential biomarkers for early diagnosis and 
intervention. Some observed connectivity patterns could possibly 
be  of compensatory mechanisms; however, these inferences are 
correlational, and alternative explanations, such as network 
reorganization or disease heterogeneity, cannot be  excluded. This 
study aims to contribute to the understanding of directed connectivity 
patterns in neurodegenerative diseases such as Parkinson’s disease, 
highlighting the differences in directed connectivity patterns between 
healthy individuals and Parkinson’s patients.

Limitations

The relatively small sample size of the old healthy control group 
(n = 29) compared to the other cohorts is a limitation and may reduce 
the robustness of age-related comparisons. External validation in 
independent cohorts in future work is required to confirm the 
generalizability and clinical relevance of these findings.
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