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Structural and microstructural
changes in white and gray matter
across the Alzheimer’s disease
continuum

Lingling Lv, Hui Guo, Zhiru Zhao and Xiongfei Zhao*

Department of Neurology, Xianyang Hospital of Yan'an University, Xianyang, Shanxi, China

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by
progressive brain atrophy, with pathological progression accompanied by
significant structural alterations in both gray matter (GM) and white matter (WM).
This review summarizes the neuroimaging features and clinical implications of
brain volumetric changes across distinct the clinical phases of the AD continuum
[preclinical phase, subjective cognitive decline (SCD), mild cognitive impairment
(MCI), and dementia phase]. Our analysis reveals a key conceptual advance: the
spatiotemporal pattern of WM volume loss is not merely a consequence of GM
degeneration but an active and complementary contributor to clinical decline.
We identify specific, underappreciated WM tracts whose atrophy rates offer
unigue prognostic value beyond hippocampal volume. The primary contribution
of this work is a unified model of AD neuroanatomy, which challenges the
isolated view of GM and WM pathology. This refined understanding is critical for
developing the next generation of biomarkers and underscores the imperative
to leverage artificial intelligence for analyzing these complex, multi-tissue
interactions. Future research should further integrate artificial intelligence and
multi-omics data to refine personalized predictive models.

KEYWORDS

Alzheimer's disease, gray matter, white matter, diagnosis, mild cognitive impairment

Introduction

Alzheimer’s disease (AD), recognized as the predominant cause of dementia, has
emerged as one of the most lethal and burdensome diseases of the 21st century
(Alzheimers Dement, 2024; Scheltens et al., 2021). The disease progresses along a
continuum, encompassing the preclinical phase, subjective cognitive decline (SCD), mild
cognitive impairment (MCI), and the dementia phase (Jack et al., 2024). The hallmark
neuropathological features of AD-amyloid-p plaques and neurofibrillary tangles-drive a
progressive neurodegenerative process, which is captured in vivo by magnetic resonance
imaging as gray matter (GM) atrophy (Jack et al., 2018). Notably, brain atrophy in AD
is detectable at early clincial phase, particularly in limbic structures and the gyri of the
frontal and temporal cortices, offering valuable insights into disease progression (Dickerson
etal, 2011). This review synthesizes evidence from medium- to high-quality clinical studies
published between 2019 and 2024 that concurrently examine structural changes in both
GM and white matter (WM) across the AD continuum. To ensure comprehensive coverage,
we systematically searched PubMed, Web of Science Core Collection, Scopus, and Embase
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using the following core search terms and their variants:
Alzheimer

» o«

“gray matter;
disease,” combined with “MRI) “volumetric,”

» o«

white matter,

» o«

Alzheimer’s disease;
atrophy,” and
“neuroimaging.” The search strategy was designed to capture all
relevant studies investigating GM and WM alterations in AD
spectrum disorders. In addition, the reference lists of relevant
review articles were manually screened for potentially eligible
publications. Due to the large volume of search results, a pragmatic
screening strategy was adopted to focus on the most influential
literature. Search outputs were sorted by relevance, and the top
230 records underwent further screening. The study selection
process adhered to the PRISMA guidelines, as summarized in
Figure 1. Following title and abstract screening, 76 records were
excluded. Of the 154 full-text articles sought, 17 were unavailable,
leaving 137 for eligibility assessment. After full-text review, 75
articles were excluded with documented reasons (e.g., not original
research, lack of volumetric data), resulting in 62 studies included
in the qualitative synthesis. This review aims to synthesize evidence
from medium- to high-quality clinical studies published in the
past 5 years that concurrently investigate structural alterations
in both GM and WM across the AD continuum. Furthermore,
this article will also specifically highlight recent advances in brain
imaging technologies and their role in deciphering the mechanisms
underlying AD-related structural changes.

Studies on GM

In individuals with AD, the morphology, volume, and
microstructure of GM exhibit profound degenerative changes.
These alterations collectively underlie the core clinical
manifestations of the disease, including memory impairment,
disturbances. GM
degeneration serves as both a defining neuropathological
feature of AD and a pivotal biomarker for tracking
disease progression.

cognitive dysfunction, and behavioral

Studies on the preclinical phase

Accelerated normal aging may facilitate the early detection
of AD signs in healthy individuals (Avelar-Pereira et al., 2024).
The preclinical detection of AD can be achieved through the
integration of neuroimaging markers and plasma biomarkers,
with temporal lobe atrophy progression serving as a particularly
sensitive indicator of impending cognitive decline (Mitolo et al.,
2024). Standardized volumes of the entorhinal cortex showed a
change of more than 20% up to 15 years prior to the onset
of cognitive decline (Platero, 2022). Thus, establishing early
detection systems will be a pivotal breakthrough in advancing AD
research.

Studies on SCD

Subjective cognitive decline serves as a critical indicator in the
early detection and diagnosis of AD (Jessen et al., 2023). Although
clinical deficits are absent, SCD may represent a preclinical
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phase characterized by neuroanatomical changes that are similar,
albeit more subtle, to those observed in patients with amnestic
MCI (aMCI) or AD dementia (Rivas-Fernandez et al., 2023).
Cortical and subcortical morphological changes may help preserve
cognitive function through compensatory mechanisms in SCD
(Yang et al., 2023). The dorsal precuneus, known to be associated
with early AD, exhibits pronounced neuroimaging changes in
individuals with SCD (Li X. Y. et al, 2024). Compared to the
healthy control (HC) group, patients with SCD displayed relatively
minor surface morphological changes, predominantly localized
to the insula and pars triangularis (Yang et al., 2023). Compared
with HC, SCD showed morphological changes in the right inferior
temporal gyrus (ITG) (Wu et al,, 2023), right insula, and right
amygdala (Song et al, 2024). Compared to the HC, the SCD
group exhibited decreased cortical thickness in the right ITG
(Wu et al,, 2023). However, individuals with SCD demonstrated
greater hippocampal atrophy, reduced cognitive and functional
performance, and more pronounced behavioral symptoms
compared to the HC (Jessen et al., 2023). The Crus I region in the
right cerebellum may serve as a potentially useful brain region
for distinguishing progession SCD (SCDp) from non-progession
SCD (SCDnp) (Deng et al., 2024). There were no significant
differences in GM volume between individuals with SCD and HC
(Serra et al., 2023).

Voxel-based morphometry (VBM) revealed GM atrophy in
the middle frontal gyrus, superior orbital gyrus, superior frontal
gyrus, right rectus gyrus, entire occipital lobe, thalamus, and
precuneus in the SCD group (Riverol et al, 2024). Compared
with HC, both SCD and MCI showed reduced left parietal lobe
(IPL) volume. Both SCD and MCI groups showed reduced ReHo
values and reduced GM volume in the right middle temporal
gyrus compared with HC (Wu et al., 2023). Region of Interest
(ROI) analysis showed volume reduction in the left rectus gyrus,
bilateral medial orbital gyrus, middle frontal gyrus, superior frontal
gyrus, calcarine fissure, and left thalamus (Riverol et al.,, 2024).
SCDp showed greater hippocampal atrophy than SCDnp and
controls. However, in the VBM analysis, the SCDp group only
showed more hippocampal atrophy than the SCDnp group (Riverol
et al., 2024). Compared with HC, SCD showed microstructural
changes in the right ITG, lateral occipital, and insular fiber
tracts (Song et al., 2024). Compared to the HC, the SCD group
exhibited higher reduced fractional Amplitude of Low-Frequency
Fluctuation (fALFF) and ReHo values in the left inferior occipital
gyrus, reduced fALFF values and elevated functional connectivity
values in the IPL (Wu et al., 2023). Patients with amyloid-p positive
SCD (AB+SCD) experience greater cognitive decline and more
pronounced medial temporal lobe atrophy within a 24-months
period (Hong et al., 2023). The brain atrophy in SCD group was
mainly in frontal lobe and occipital lobe. However, only the SCDp
group showed medial temporal lobe atrophy at baseline (Riverol
etal, 2024). The multimodal MRI combined with machine learning
classification method has good performance in the classification of
SCD caused by AD, which has the potential for clinical application.
The diagnostic accuracy of SCD plus individuals was 79.49% in
the Chinese cohort and 83.13% in the ANDI cohort (Lin et al,
2023). The prediction of early AD can be comprehensively assessed
through a combination of MRI technology and clinical indicators
(Devanarayan et al., 2024).
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PRISMA flow diagram illustrating the study selection process.

Studies on MCI

Compared to the HC, patients with MCI primarily exhibited
surface morphological changes in the left brain, including the
transverse temporal gyrus, superior temporal gyrus, insula, and
operculum (Yang et al., 2023). These observed morphological
changes were significantly associated with clinical ratings of
cognitive decline (Yang et al.,, 2023). Compared with MCI that
transformed into AD, the width of multiple brain grooves in
bilateral temporo-occipital region and left frontal region have
significant changes (Sighinolfi et al., 2024). A sample Mendelian
randomization analysis confirmed a potential causal relationship
between a higher neurotic polygenic risk score and a reduced
inferior parietal surface area, as well as an increased risk of
transformation in patients with aMCI (Li Q. et al., 2024).

Hippocampal volume has proven to be an effective biomarker
for distinguishing between the HC, MCI, and dementia groups.
Clinical studies have found that individuals with MCI exhibit
a 14% reduction in hippocampal volume, while those with
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dementia show a 22% reduction compared to healthy individuals
(Convit et al., 1997). Participants with higher levels of education
(>13 years) demonstrated superior cognitive performance and
larger hippocampal volumes. Midbrain and locus ceruleus
volumes are associated with deficits in attention and executive
function in MCI (Dutt et al, 2021). Participants in the MCI
group showed smaller olfactory roi GMYV, including significant
reductions in piriform cortex, amygdala, entorhinal cortex, and
left hippocampus, compared with SCD and HC. There is specific
atrophy in the limbic/medial-temporal olfactory processing areas
in MCI, and this degree of atrophy may predict early cognitive
decline in AD (Jobin et al., 2023). However, another meta-analysis
found structural changes early in the disease are most pronounced
in the medial temporal lobe, particularly in the entorhinal cortex,
which, along with the hippocampus, offers similar discrimination
as the disease progresses. Notably, when it comes to predicting the
conversion from MCI to AD, the entorhinal cortex demonstrates
better predictive accuracy than other structures, including the
hippocampus (Leandrou et al., 2018). Cognitive reserve modulates
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cortical structures only in the early phases of dementia (Serra
et al., 2022). MCI can revert to normal cognition (NC) under
certain conditions, indicating that some patients may experience
a more favorable cognitive trajectory (Yu et al, 2024). The
scientific community recognizes MCI as a pivotal transitional
phase in AD pathogenesis, characterized by substantial clinical and
neurobiological heterogeneity. Current evidence underscores the
imperative for comprehensive multimodal evaluation-integrating
advanced neuroimaging parameters [e.g., hippocampal volumetry,
tau-Positron Emission Tomography (PET) imaging], validated
fluid biomarkers (including CSF p-taul81 and plasma GFAP),
and polygenic risk profiling-to enable: (1) accurate phenotypical
classification, (2) reliable prognostication of conversion risk,
and (3) stratification for targeted therapeutic interventions. This
integrative approach establishes a robust evidence base for
precision medicine paradigms in prodromal AD management.

Studies on the dementia phase

Patients with AD exhibit cognitive changes within a few years
after MRI shows signs of atrophy, providing important insights for
the early identification of AD (Mofrad et al., 2021). Hippocampal
volume features are effective in differentiating between early and
late AD lesions (Ranjbar et al., 2019). AD patients had reduced
bilateral hippocampal volume and hypoperfusion of bilateral
temporoparietal and posterior midline structures compared with
HC (Tai et al,, 2020). Radiomic analysis of hippocampal texture
shows promise in distinguishing the clinical progression of AD
(Ranjbar et al., 2019). The ratio of hippocampus to cortex
emerges as the most effective structural MRI (sMRI) biomarker for
differentiating between subtypes of AD, aligning with the spatial
distribution of tau pathology and predicting the rate of cognitive
decline (Krajcovicova et al, 2019). The hippocampal volume
was positively correlated with plasma AB42 and AP42/AP40,
and negatively correlated with AB40, and P-taul81 and p-tau2l7
concentrations were negatively correlated with temporal GM
volume and cortical thickness in AD (Mitolo et al., 2024).
Precuneus atrophy in healthy individuals is associated with an
increased amyloid load, indicating potential alterations in AD
(Avelar-Pereira et al., 2024). In the context of AD as predicted by
cerebrospinal fluid (CSF) and MRI findings, elevated baseline levels
of pTau-181 were found to correlate with significant reductions
in total GM volumes, particularly within targeted regions of the
medial temporal lobe. These observations indicate that pTau-181
has the potential to serve as a valuable biomarker for forecasting
brain atrophy and cognitive decline among cognitively unimpaired
older adults in the future. This highlights its significance in early
intervention strategies aimed at mitigating the progression of
neurodegeneration (Dark et al., 2024). Emerging neuroimaging
studies have demonstrated that the volumetric ratio between GM
structures and their adjacent ventricular compartments serves
as a reliable neuroimaging biomarker for detecting early-phase
neurodegenerative changes (Hu et al., 2023).

Alzheimer’s disease is characterized by progressive GM
atrophy, particularly in cholinergic regions such as the Nucleus
basalis of Meynert (NbM), which shows significant volume loss in
AD patients compared to HC, though this effect is less pronounced
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in MCI (Mieling et al., 2023). Widespread structural alterations
extend to the hippocampus (reduced volume and hypoperfusion
in temporoparietal regions) (Tai et al., 2020), caudate nucleus
(Tentolouris-Piperas et al., 2017), and brainstem (Jacobs et al.,
2022), with some changes emerging even in preclinical phases.
Notably, the AD genetic risk score (AD-GRS) exhibits age-
dependent associations with volume loss across 38 brain regions in
middle-aged and older adults, highlighting the interplay between
genetic susceptibility and neurodegeneration (Buto et al., 2024).
Conversely, lifelong physical activity correlates with preserved
volume in prefrontal and hippocampal regions, suggesting
modifiable protective factors (Erickson et al, 2012). Further,
postmenopausal women with cognitive complaints demonstrate
accelerated GM loss (Conley et al, 2020), while frontal lobe
structures (e.g., prefrontal cortex, anterior cingulate) are the
strongest predictors of neuropsychiatric symptom progression in
dementia (Boublay et al., 2020). The authors posit that the future
integration of multimodal biomarkers with precision preventive
medicine could revolutionize AD management by enabling early
prediction and targeted intervention a decade or more before
clinical symptoms emerge. This paradigm shift would transform
AD therapeutics from reactive treatment to proactive prevention,
potentially halting pathology at its preclinical phase.

To guide future efforts, we have identified the most sensitive
biomarkers for each AD phase and benchmarked their performance
with key quantitative indicators, including effect sizes and
diagnostic accuracy, to provide a clear reference for the field
(Table 1).

Studies on WM

White matter abnormalities manifest during the early phases
of AD pathogenesis and may actively contribute to disease
progression (Bozzali et al., 2016). Histology studies show that the
brain’s WM architecture is highly complex, with up to 98% of the
WM consisting of multiple fibers with crossing fiber orientations
(Dewenter et al., 2023). WMH burden is associated with cognitive
changes and early cognitive decline in healthy older adults (Kamal
et al, 2023). WMH specifically contributes to cognitive decline
in AD patients independent of amyloid deposition and atrophy
(Garnier-Crussard et al., 2022). However, the cohort study by Wang
etal. (2024) is contrary to this conclusion. Emerging neuroimaging
evidence suggests that WMH may serve as a preclinical biomarker.
They can predict AD onset at least a decade before clinical
symptoms appear (Mortamais et al., 2014).

Studies on the preclinical phase

An increased volume of greater WMH is associated with
a higher number of microhemorrhages in individuals with
preclinical AD (Shirzadi et al., 2024). Longitudinal follow-up of
cognitively intact individuals over 40 years revealed that those
who remained free of AD exhibited distinct neuroimaging profiles
characterized by progressive mild cortical atrophy and increasing
WMH burden, with more pronounced changes emerging after
age 65 (Skampardoni et al., 2024). Amyloid-p (AP) deposition
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TABLE 1 Phase-specific structural MRI biomarkers in the AD continuum.

Disease phase

10.3389/fnagi.2025.1693840

e rimary iy

Preclinical AD GM: entorhinal cortex thickness —0.6to —0.8 0.75-0.85 Predictive
GM: hippocampal volume (CA1 subfield) —0.5t0 —0.7 0.70-0.80 Predictive
WM: fornix mean diffusivity 0.7t0 0.9 0.80-0.85 Predictive
SCD GM: hippocampal volume —0.8to —1.0 0.80-0.90 Predictive/confirmatory
GM: middle temporal gyrus thickness —0.6 to —0.8 0.75-0.85 Confirmatory
WM: parahippocampal cingulum MD 0.8to 1.0 0.82-0.88 Predictive/confirmatory
MCI GM: hippocampal volume —1.2to —1.5 0.85-0.92 Confirmatory
GM: posterior cingulate cortex thickness —1.0to —1.2 0.80-0.87 Confirmatory
WDM: superior longitudinal fasciculus MD 1.0to 1.3 0.83-0.89 Confirmatory
AD dementia GM: widespread cortical thinning > —15 >0.95 Confirmatory
GM: ventricular enlargement > +1.8 >0.90 Confirmatory
WM: WMH burden > +1.2 >0.75 Confirmatory

AD, Alzheimer’s disease; GM, gray matter; WM, white matter; SCD, subjective cognitive decline; MCI, mild cognitive impairment; MD, mean diffusivity; WMH, WM hyperintensities; AUC,

area under the receiver operating characteristic curve. Effect sizes (Cohen’s d) are approximate ranges derived from meta-analyses and key studies cited in this review, comparing each phase to

cognitively normal controls. AUC values represent the accuracy for distinguishing the specified phase from cognitively normal controls or for predicting conversion to the next phase (Predictive
utility). Predictive, primarily useful for forecasting progression to a more advanced phase; Confirmatory, primarily useful for supporting the diagnosis at the current phase.

significantly accelerates WMH progression, with gender-specific
analyses revealing that female participants exhibiting elevated
baseline AP levels showed significantly greater WMH volume
expansion over a 24-months follow-up period (Cha et al., 2024).
The author proposes that a rapid WMH increase in the cognitively
normal elderly should be treated as a clinical red flag, with gender
serving as an integral component of risk assessment models.

Studies on SCD

Studies have found that subjective cognitive decline promotes
the future progression of WMH (Liu et al., 2024). WM volumes
of uncinate fasciculus, cingulum, inferior frontooccipital fasciculus,
anterior thalamic radiation, and corpus callosum clamp were
lower in SCD group than in HC group. However, there were no
significant differences in WM lesions number or volume between
the SCD and HC groups (Riverol et al., 2024). Differences in the
burden of WMH in the brain were observed between patients
with positive (SCD+) and negative SCD (SCD—), indicating the
possibility of distinct underlying pathologies (Morrison et al,
2023). The bilateral longitudinal superior frontal fasciculus fiber
tracts were larger in individuals with SCD compared to those
in the HC (Wei et al., 2024). Compared with the HC, patients
with SCD had larger temporal, occipital, and frontal WMH,
whereas patients with MCI had higher WMH volumes in all
regions (Calcetas et al., 2022). The accuracy of diffusion tensor
imaging (DTTI) in distinguishing SCD from normal controls was
92.68%. Moreover, due to further changes in brain structure
and function, the classification accuracy of MCI, AD dementia
(d-AD) and normal controls can reach more than 97% (Chen
et al, 2023). The author believes that constructing a predictive
model integrating WMH distribution patterns and DTI-based
fiber tracking metrics could offer critical technical support for
early and precise risk stratification of progression from SCD to
MCI or d-AD.

Frontiers in Aging Neuroscience

Studies on MCI

Total WMH and regional WMH were increased in MCI
and AD patients compared with non-MCI patients. We observed
that in all cognitive domains, declines were greater in MCI
compared with HC (stronger association between WMH and
cognition). However, compared with non-AD patients, the overall
cognitive function of AD patients decreased more significantly
only in the temporal region. In HC and MCI, we observed
strong associations between all cognitive domains of interest and
WMH burden, whereas AD patients had only a small number
of associations between WMH and overall cognition (Kamal
et al,, 2023). In HC, higher cognitive reserve (CR) was associated
with macromolecular tissue volume (MTV) in the right para-
hippocampal cingulate (PHC) and the left superior longitudinal
fasciculus (SLF) (Fingerhut et al., 2022). WMHs are associated with
cognitive impairment in both patients with MCI and those with
AD (van den Berg et al., 2018). Additionally, the MCI group with
the presence of vessel amyloidosis had a significant increase in
WMH after 5 years of follow-up (Shirzadi et al., 2024). Research
utilizing diffusion kurtosis imaging and free water imaging, which
effectively differentiated between the MCI, SCD, and HC groups,
has identified changes in WM microstructure in individuals with
MCI and SCD (Bergamino et al., 2024).

The neurite density index (NDI) of specific WM structures
in the bilateral cerebral hemispheres of patients with MCI and
AD was significantly decreased, particularly in the bilateral SLF,
uncinate fasciculus (UF), left posterior thalamic radiation (PTR),
and left cingulate. Conversely, there was a significant increase
in the orientation dispersion index (ODI) in WM regions,
including the left cingulate, right UF, bilateral PHC, and PTR.
Notably, ODI was significantly reduced in the GM of the bilateral
hippocampus. Cognitive performance in MCI/AD patients showed
a significant correlation with NDI. Microstructural alterations in
MCI/AD included decreased fiber directional dispersion in the
hippocampus, along with reduced neurite density and increased
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fiber directional dispersion in specific WM tracts, such as the
cingulate, UF, and PTR (Zhong et al., 2023). In MCI, a higher
CR was associated with lower MTVs in WM tracts, specifically in
the left and right dorsal cingulate gyrus, corpus callosum forceps,
right inferior frontooccipital fasciculus, and right SLF (Fingerhut
et al., 2022). Patients undergoing cognitive training demonstrated
a slower rate of fractional anisotropy decline in multiple WM
tracts, particularly in the cingulum-hippocampal pathway, which
correlated with improved working memory performance (Gozdas
et al,, 2024). A critical direction for future research is to further
elucidate the correlations between WMH distribution patterns—
such as periventricular, deep, and infratentorial-and specific
etiologies, including vascular, AB-related, and inflammatory
pathologies. This can be accomplished through the integration
of multimodal neuroimaging-such as amyloid-PET, tau-PET,
and high-resolution perfusion imaging-with fluid biomarkers to
establish a clinically meaningful etiological classification system for
WMH.

Studies on the dementia phase

Larger global and regional WMH volumes are strongly
associated with cognitive decline (Garnier-Crussard et al., 2022).
The WMH volume (WMHYV) of increased with progressing
amyloid and tau pathology in the AD sample. It was found that
samples from individuals with AD and MCI exhibited reduced
WM volume, and DTT results indicated diminished WM integrity
compared to HC (Radanovic et al, 2013). In the early phases
of AD, there has been an increase in WMH load, indicating a
change in WMH during this period (Pdlhaugen et al., 2021). AD
shows significantly higher heterogeneity compared to SCD, MCI,
or vascular dementia (Roh et al.,, 2024). In AD, both restricted
isotropic diffusion and crossing fibers were reduced, while free
water diffusion was elevated in the mesial temporal GM and WM.
Restricted isotropic diffusion in the hippocampus decreased more
rapidly in participants with AD. Baseline hippocampal limiting
isotropic diffusion can predict cognitive decline, and alterations
in hippocampal and entorhinal limiting isotropic diffusion are
associated with this decline. Additionally, changes in WM and
crossing fibers that restrict directional diffusion are linked to
memory decline in HC. Microstructural changes in the medial
temporal lobe are associated with cognitive decline in prodromal
AD, and these changes differ from those observed in normal
cognitive aging (Reas et al., 2018). The volume of WMH in the left
occipital lobe may be related to the occurrence of delusional AD
(Fan et al., 2023).

WMH volume increased with progressing amyloid and tau
pathology in the AD sample. Compared with the aP-negative
HC, the ap-positive AD patients had larger WMHVs in all brain
regions, with the largest volume change in the splenium of the
corpus callosum (Garnier-Crussard et al., 2022). In the AD sample,
the AB+T— group showed consistently lower fiber density in
most fiber tracts compared to the AB—T— HC. The fiber-bundle
cross-section was also reduced in the AB+T— group. Similarly,
the AP+T+ group showed lower fiber density and lower fiber-
bundle cross-section compared to the AB-T— HC. The Ap+T+
group did not show any additional WM damage regarding fiber
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density or fiber-bundle cross-section compared to Ap+T—. In
summary, both fiber density and fiber-bundle cross-section were
reduced in the presence of amyloid pathology, but not further
altered by additional tau pathology. WMHYV showed the highest
variable importance for fiber density in most fiber tracts, while
brain volume showed the highest variable importance for fiber
bundle cross-section in all tracts. In simple linear regression
analyses, fiber density in the AD sample was likewise associated
with WMHYV and to some extent with microbleed count but not
with lacune count, which was expected given the low number
of lacunes and microbleeds in this sample. Fiber density was
not associated with brain volume and with age only in selected
fiber tracts. Effect sizes for associations with AD PET markers
were substantially smaller than with cerebral small vessel disease
(SVD) MRI markers. Compared to fiber density, fiber-bundle
cross-section was less associated with SVD imaging markers; no
significant associations with lacunes or microbleeds. In contrast,
fiber-bundle cross-section of all fiber tracts was strongly associated
with brain volume and to some extent with age. Associations with
AD PET markers were mostly absent or showed only small effect
sizes. WM damage represents a critical nexus in the interplay
between AD and cerebrovascular disease. Moving forward, it is
essential to transcend traditional diagnostic categories and develop
multidimensional disease models that incorporate vascular, AB,
tau, and neural plasticity components. By integrating multimodal
neuroimaging, fluid biomarkers, and artificial intelligence, we can
advance from a paradigm of “post-symptomatic diagnosis and
treatment” toward one emphasizing “early and precise prediction”
and “targeted intervention”—ultimately paving the way for delaying
or even preventing cognitive decline.

Longitudinal studies of GM and WM

Alzheimer’s  disease  progression follows a  distinct
spatiotemporal pattern of coordinated structural deterioration
in both GM and WM (Reas et al., 2018). During the preclinical
phase, GM atrophy initiates in the medial temporal lobe-primarily
the entorhinal cortex and hippocampus—preceding clinical
symptoms by 5-10 years (Platero, 2022), while concurrent WM
microstructural alterations, characterized by reduced fractional
anisotropy and increased mean diffusivity, become detectable in
limbic tracts such as the parahippocampal cingulum and corpus
callosum (Mortamais et al., 2014; Skampardoni et al., 2024). As
the disease transitions to mild cognitive impairment (MCI), WM
degeneration accelerates, frequently surpassing the rate of GM
atrophy (Fotenos et al., 2005; Kamal et al., 2023).

We hypothesize that the progression from intermediate to
advanced AD phases demonstrates coupled degeneration between
GM and WM. During the intermediate phase, hippocampal
atrophy extends to parietal and lateral temporal regions, while
corresponding WM damage emerges in association fibers such as
the superior longitudinal fasciculus. This coordinated deterioration
evolves further in the advanced phase, where widespread cortical
thinning develops concurrently with disintegration of major WM
tracts, including the cingulum bundle and uncinate fasciculus,
mechanisms

suggesting  interconnected

throughout the disease continuum (Figure 2).

neurodegenerative

frontiersin.org


https://doi.org/10.3389/fnagi.2025.1693840
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/

Lvetal.

10.3389/fnagi.2025.1693840

Entorhinal Cortex Thickness
Hippocampal Volume
Cingulate Cortex Thickness

Brain Cortical Thickness

WMH Burden

Abnormal
A / /
A/ L
Norma! >
Preclinical SCD MCI Dementia

FIGURE 2

Hypothetical timeline of key structural MRI changes across the AD continuum. SCD, subjective cognitive decline; MCI, mild cognitive impairment;

WMH, white matte hyperintensities.

Discussion

The purpose of this review is to establish a foundation for
predicting the risk of progression to AD in patients at various
phases, including HC, SCD, and MCI. Additionally, it aims to
provide valuable insights to assist clinicians in early diagnosis and
the design of effective treatment plans (Lee et al., 2024). Structural
MRI data were used to predict the conversion of SCD to MCI or
dementia (Lerch et al., 2024). An increasing number of artificial
intelligence technologies have been introduced into the diagnosis
of degenerative diseases, such as AD (Frizzell et al., 2022; Qiu et al.,
2020; Warren and Moustafa, 2023). These advanced technologies
not only improve the accuracy of diagnoses but also provide new
possibilities for early detection and personalized treatment, driving
research and development in this field. Longitudinal studies and
large-scale data analysis, such as those from the UK Biobank, are
crucial for understanding the genetic and environmental factors
influencing AD progression.

MRI confounding factors

This review synthesizes the rapidly evolving evidence on
structural MRI biomarkers in AD. However, a critical challenge is
the methodological heterogeneity in the current literature body.
Variations in MRI scanner platforms, field strengths, acquisition
sequences, and automated segmentation pipelines significantly
impact volumetric and microstructural measurements (Song et al.,
20245 Tai et al., 2020; Wu et al., 2023). This heterogeneity not
only contributes to conflicting results regarding the spatiotemporal
sequence of GM and WM changes but also hinders the direct
comparison and meta-analysis of findings across cohorts, limiting
the generalizability of individual study results. Furthermore, the
interpretation of structural changes is complicated by several
confounding factors. The frequent co-existence of vascular
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pathology (e.g., WMH) with AD pathology can obscure the
specific signature of AD-related atrophy, particularly in WM
metrics (Palhaugen et al, 2021; Petersen et al, 2024). Factors
such as education (Fingerhut et al., 2022; Serra et al, 2022),
occupational complexity (Gozdas et al, 2024), and lifestyle
(Erickson et al, 2012; Krueger et al, 2025; Palhaugen et al.,
2021) (collectively termed “cognitive reserve”) can modulate
the relationship between brain atrophy and clinical symptoms,
potentially leading to misclassification of disease phase. Large-
scale, multi-center, prospective studies with harmonized MRI
protocols and unified analytical methods to ensure cross-cohort
reproducibility. Advanced statistical models that can robustly
adjust for the confounding factors mentioned above, to isolate the
pure AD-related structural trajectory.

Structural biomarkers in AD frameworks

Against the evolving backdrop of Alzheimers disease
diagnostic criteria, structural changes in GM and WM have
emerged as objective imaging biomarkers of neurodegeneration,
progressively weaving their way into the fabric of mainstream
diagnostic frameworks (Reas et al., 2018). Within the ATN
(AB/Tau/Neurodegeneration) classification system, GM atrophy
and WM microstructural injury are principally categorized under
the “N” domain, supplying critical evidence of neuronal demise to
substantiate clinical diagnosis (Jack et al., 2018). Specifically, GM
atrophy within the medial temporal lobe-including the entorhinal
cortex and hippocampus-has been formally incorporated into the
NIA-AA diagnostic criteria as a characteristic neuroimaging
hallmark of AD (Heinzinger et al, 2023). Although WM
alterations—such as reduced fractional anisotropy in the cingulum
bundle and fornix-have not yet been fully enshrined in formal
guidelines, they are increasingly recognized as vital elements for
disease subtyping and prognostic evaluation, illuminating the
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earliest disruptions in large-scale neural networks (Chen et al,
2023). Yet, the integration of these structural biomarkers is not
without its challenges. First, as representatives of the “N” category,
GM and WM alterations exhibit limited specificity; analogous
patterns of structural decline may also manifest in vascular
cognitive impairment or primary tauopathies, necessitating their
interpretation within a multimodal context that incorporates AB
and tau biomarkers. Second, structural biomarkers and core AD
pathologies engage in a complex spatiotemporal dialogue: GM
atrophy patterns frequently mirror the topographical spread of
tau pathology as captured by Braak staging (IHeinzinger et al,
2023), whereas WM injury appears to arise from a confluence
of AB deposition, vascular compromise, and tau-driven axonal
degeneration (Morrison et al, 2023). Moreover, translational
efforts are hampered by persistent methodological variability—
divergent MRI acquisition protocols, analytical pipelines, and
diagnostic thresholds across institutions continue to undermine
the reproducibility and broad clinical applicability of GM/WM
biomarkers.

Multimodal Al stratification

The integration of neuroimaging and plasma biomarkers
significantly enhances the accuracy of disease staging across
the Alzheimer continuum (Dark et al, 2024). The distinct
structural and functional alterations identified during preclinical
and subjective cognitive decline (SCD) phases offer a potential
roadmap for stratifying and targeting high-risk individual (Jobin
et al, 2023; Leandrou et al, 2018). Specifically, individuals
categorized based on our MRI-based criteria may be directed into
a tiered management pathway: those exhibiting isolated default
mode network (DMN) functional alterations (preclinical phase)
could be enrolled in more frequent cognitive surveillance (Cui
et al., 2025), whereas those showing additional WMH may be
prioritized for intensive management of vascular risk factors
(e.g., hypertension, diabetes) and enrolled in structured lifestyle
interventions (Skampardoni et al., 2024).

Looking forward, an Al-augmented clinical workflow
cholds significant potential to enhance the early diagnosis and
stratification of patients along the Alzheimer’s disease continuum
while offering data-driven clinical decision support (Frizzell
et al., 2022; Yu et al,, 2024). In such a setting, clinicians would
upload patient MRI data including T1-weighted, diffusion tensor
imaging (DTI), and resting-state functional MRI (rs-fMRI) to
an Al platform integrated with the hospital information system.
This system would automatically generate a comprehensive report
within minutes, quantifying AD risk probability, suggesting a
disease phase, and highlighting key abnormal regions—such as
entorhinal cortical thinning, hippocampal volume loss, and fornix
integrity decline-along with actionable clinical next steps, thereby

establishing Al as a powerful tool for auxiliary screening and triage.

Limitations and future directions

Several limitations in the current literature warrant careful
consideration. First, significant methodological heterogeneity exists
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across studies, including variations in MRI scanner platforms,
field strengths, acquisition parameters, and processing pipelines,
which directly impact the comparability and reproducibility
of structural measurements. Second, the substantial clinical
and biological heterogeneity within AD spectrum populations—
including differences in age at onset, genetic background,
comorbidities (particularly cerebrovascular disease), and cognitive
reserve—creates considerable noise that may obscure distinct
spatiotemporal patterns of GM/WM alterations. Third, many
studies, particularly those focusing on rare subtypes or deep
phenotyping, are constrained by limited sample sizes, reducing
statistical power for robust subgroup analyses. Fourth, the
potential for publication bias toward positive findings may
skew our understanding of the true effect sizes and spatial
distribution of structural changes. Finally, while our review
highlights the promise of integrated biomarkers, the practical
implementation of multimodal data fusion presents substantial
challenges. These include technical issues in data harmonization,
the need for advanced statistical methods capable of handling
high-dimensional, non-linear relationships, and the current lack
of standardized frameworks for validating and interpreting such
integrated models.

Conclusion

In conclusion, this review synthesizes compelling evidence
that the integration of multimodal neuroimaging with clinical
assessments and artificial intelligence holds significant potential for
transforming Alzheimer’s disease diagnosis and management. The
characteristic spatiotemporal patterns of gray and WM alterations
across the disease continuum offer valuable biomarkers for early
detection, stratification, and progression monitoring. However,
the translation of these advanced methodologies into routine
clinical practice faces substantial practical challenges that must be
acknowledged. These include the significant costs associated with
advanced MRI protocols, the pressing need for standardization
across imaging platforms and sites, the considerable heterogeneity
in patient populations that complicates generalizability, and the
limited accessibility of advanced analytical tools in resource-
constrained settings. Future efforts must therefore focus not only
on technological refinement but also on developing cost-effective,
standardized, and accessible implementation frameworks. Only
through addressing these translational barriers can the full potential
of integrated neuroimaging and Al approaches be realized in
diverse clinical contexts, ultimately improving patient care across
the Alzheimer’s disease spectrum.

Author contributions

LL: Conceptualization, Data curation, Formal analysis,
Methodology,
administration, Resources, Software, Supervision, Validation,

Funding acquisition, Investigation, Project

Visualization, Writing - original draft, Writing - review &
editing. HG: Supervision, Writing — review & editing, Formal
analysis, Investigation. ZZ: Investigation, Project administration,
Resources,  Supervision, review &

Writing - editing.

frontiersin.org


https://doi.org/10.3389/fnagi.2025.1693840
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/

Lvetal.

XZ: Conceptualization, Funding acquisition,
Visualization, Writing - review & editing.

Supervision,

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author declares that Gen AI was used in the creation of
this manuscript. Generative AI was used to assist in the refinement
of the language and expression in this manuscript. Specifically, it
was employed to check for grammar and spelling errors, improve

References

Alzheimers Dement (2024). 2024 Alzheimer’s disease facts and figures. Alzheimers
Dement. 20, 3708-3821. doi: 10.1002/alz.13809

Avelar-Pereira, B., Phillips, C. M., and Hosseini, S. M. H. (2024). Convergence of
accelerated brain volume decline in normal aging and Alzheimer’s disease pathology.
J. Alzheimers Dis. 101, 249-258. doi: 10.3233/JAD-231458

Bergamino, M., Keeling, E., McElvogue, M., Schaefer, S. Y., Burke, A., Prigatano, G.,
et al. (2024). White matter microstructure analysis in subjective memory complaints
and cognitive impairment: Insights from diffusion kurtosis imaging and free-water
DTL J. Alzheimers Dis. 98, 863-884. doi: 10.3233/JAD-230952

Boublay, N., Bouet, R., Dorey, ]. M., Padovan, C., Makaroff, Z., Fédérico, D., et al.
(2020). Brain volume predicts behavioral and psychological symptoms in Alzheimer’s
Disease. J. Alzheimers Dis. 73, 1343-1353. doi: 10.3233/JAD-190612

Bozzali, M., Serra, L., and Cercignani, M. (2016). Quantitative MRI to understand
Alzheimer’s disease pathophysiology. Curr. Opin. Neurol. 29, 437-444. doi: 10.1097/
WCO.0000000000000345

Buto, P. T., Wang, J., La Joie, R,, Zimmerman, S. C., Glymour, M. M., Ackley,
S. F., et al. (2024). Genetic risk score for Alzheimer’s disease predicts brain volume
differences in mid and late life in UK biobank participants. Alzheimers Dement. 20,
1978-1987. doi: 10.1002/alz.13610

Calcetas, A. T., Thomas, K. R., Edmonds, E. C., Holmgqvist, S. L., Edwards, L.,
Bordyug, M., et al. (2022). Increased regional white matter hyperintensity volume in
objectively-defined subtle cognitive decline and mild cognitive impairment. Neurobiol.
Aging 118, 1-8. doi: 10.1016/j.neurobiolaging.2022.06.002

Cha, W. J,, Yi, D., Ahn, H,, Byun, M. S, Chang, Y. Y., Choi, J. M, et al. (2024).
Association between brain amyloid deposition and longitudinal changes of white
matter hyperintensities. Alzheimers Res. Ther. 16:50. doi: 10.1186/s13195-024-01417-
8

Chen, Y., Wang, Y., Song, Z., Fan, Y., Gao, T., and Tang, X. (2023). Abnormal white
matter changes in Alzheimer’s disease based on diffusion tensor imaging: A systematic
review. Ageing Res. Rev. 87:101911. doi: 10.1016/j.arr.2023.101911

Conley, A. C., Albert, K. M., Boyd, B. D., Kim, S. G., Shokouhi, S., McDonald, B. C.,
et al. (2020). Cognitive complaints are associated with smaller right medial temporal

gray-matter volume in younger postmenopausal women. Menopause 27, 1220-1227.
doi: 10.1097/GME.0000000000001613

Convit, A., De Leon, M. ., Tarshish, C., De Santi, S., Tsui, W., Rusinek, H., et al.
(1997). Specific hippocampal volume reductions in individuals at risk for Alzheimer’s
disease. Neurobiol. Aging 18, 131-138. doi: 10.1016/s0197-4580(97)00001-8

Cui, L., Zhang, Z,, Tu, Y. Y., Wang, M., Guan, Y. H,, Li, Y. H,, et al. (2025).
Association of precuneus Ap burden with default mode network function. Alzheimers
Dement. 21:e14380. doi: 10.1002/alz.14380

Frontiers in Aging Neuroscience

10.3389/fnagi.2025.1693840

sentence structure for better readability, and suggest alternative
phrasings to enhance the clarity and coherence of the text.
However, all the ideas, concepts, and interpretations presented in
the manuscript are my/our original work, and I have carefully
reviewed and verified the content generated or suggested by the AI
to ensure its accuracy and suitability for this manuscript. I take full
responsibility for the use of generative Al and the final version of
this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’'s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Dark, H. E,, An, Y., Duggan, M. R, Joynes, C., Davatzikos, C., Erus, G., et al. (2024).
Alzheimer’s and neurodegenerative disease biomarkers in blood predict brain atrophy
and cognitive decline. Alzheimers Res. Ther. 16:94. doi: 10.1186/s13195-024-01459-y

Deng, S., Tan, S., Song, X., Lin, X, Yang, K., Li, X,, et al. (2024). Prediction of disease
progression in individuals with subjective cognitive decline using brain network
analysis. CNS Neurosci. Ther. 30:14859. doi: 10.1111/cns.14859

Devanarayan, V., Ye, Y., Charil, A., Andreozzi, E., Sachdev, P, Llano, D. A,, et al.
(2024). Predicting clinical progression trajectories of early Alzheimer’s disease patients.
Alzheimers Dement. 20, 1725-1738. doi: 10.1002/alz.13565

Dewenter, A., Jacob, M. A., Cai, M., Gesierich, B., Hager, P., Kopczak, A., et al.
(2023). Disentangling the effects of Alzheimer’s and small vessel disease on white
matter fibre tracts. Brain 146, 678-689. doi: 10.1093/brain/awac265

Dickerson, B. C., Stoub, T. R,, Shah, R. C,, Sperling, R. A,, Killiany, R. ., Albert, M. S.,
etal. (2011). Alzheimer-signature MRI biomarker predicts AD dementia in cognitively
normal adults. Neurology 76, 1395-1402. doi: 10.1212/WNL.0b013e3182166e96

Dutt, S., Li, Y., Mather, M., and Nation, D. A. (2021). Brainstem substructures
and cognition in prodromal Alzheimer’s disease. Brain Imag. Behav. 15, 2572-2582.
doi: 10.1007/511682-021-00459-y

Erickson, K. I., Weinstein, A. M., and Lopez, O. L. (2012). Physical activity, brain
plasticity, and Alzheimer’s disease. Arch. Med. Res. 43, 615-621. doi: 10.1016/j.arcmed.
2012.09.008

Fan, W., Ma, S, Wang, Z., Han, Y., Liu, X,, Gu, R,, et al. (2023). Correlation between
white matter hyperintensity and delusional symptoms in Alzheimer’s disease. BMC
Psychiatry 23:914. doi: 10.1186/s12888-023-05420-5

Fingerhut, H., Gozdas, E., and Hosseini, S. M. H. (2022). Quantitative MRI evidence
for cognitive reserve in healthy elders and prodromal alzheimer’s disease. J. Alzheimers
Dis. 89, 849-863. doi: 10.3233/JAD-220197

Fotenos, A. F., Snyder, A. Z., Girton, L. E., Morris, J. C., and Buckner, R. L. (2005).
Normative estimates of cross-sectional and longitudinal brain volume decline in aging
and AD. Neurology 64, 1032-1039. doi: 10.1212/01.WNL.0000154530.72969.11

Frizzell, T. O., Glashutter, M., Liu, C. C., Zeng, A., Pan, D., Hajra, S. G, et al. (2022).
Artificial intelligence in brain MRI analysis of Alzheimer’s disease over the past 12
years: A systematic review. Ageing Res. Rev. 77:101614. doi: 10.1016/j.arr.2022.101614

Garnier-Crussard, A., Bougacha, S., Wirth, M., Dautricourt, S., Sherif, S., Landeau,
B., et al. (2022). White matter hyperintensity topography in Alzheimer’s disease and
links to cognition. Alzheimers Dement. 18, 422-433. doi: 10.1002/alz.12410

Gozdas, E., Avelar-Pereira, B., Fingerhut, H., Dacorro, L., Jo, B., Williams, L., et al.
(2024). Long-term cognitive training enhances fluid cognition and brain connectivity
in individuals with MCI. Transl. Psychiatry 14:447. doi: 10.1038/s41398-024-03153-x

frontiersin.org


https://doi.org/10.3389/fnagi.2025.1693840
https://doi.org/10.1002/alz.13809
https://doi.org/10.3233/JAD-231458
https://doi.org/10.3233/JAD-230952
https://doi.org/10.3233/JAD-190612
https://doi.org/10.1097/WCO.0000000000000345
https://doi.org/10.1097/WCO.0000000000000345
https://doi.org/10.1002/alz.13610
https://doi.org/10.1016/j.neurobiolaging.2022.06.002
https://doi.org/10.1186/s13195-024-01417-8
https://doi.org/10.1186/s13195-024-01417-8
https://doi.org/10.1016/j.arr.2023.101911
https://doi.org/10.1097/GME.0000000000001613
https://doi.org/10.1016/s0197-4580(97)00001-8
https://doi.org/10.1002/alz.14380
https://doi.org/10.1186/s13195-024-01459-y
https://doi.org/10.1111/cns.14859
https://doi.org/10.1002/alz.13565
https://doi.org/10.1093/brain/awac265
https://doi.org/10.1212/WNL.0b013e3182166e96
https://doi.org/10.1007/s11682-021-00459-y
https://doi.org/10.1016/j.arcmed.2012.09.008
https://doi.org/10.1016/j.arcmed.2012.09.008
https://doi.org/10.1186/s12888-023-05420-5
https://doi.org/10.3233/JAD-220197
https://doi.org/10.1212/01.WNL.0000154530.72969.11
https://doi.org/10.1016/j.arr.2022.101614
https://doi.org/10.1002/alz.12410
https://doi.org/10.1038/s41398-024-03153-x
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/

Lvetal.

Heinzinger, N., Maass, A., Berron, D., Yakupov, R., Peters, O., Fiebach, J., et al.
(2023). Exploring the ATN classification system using brain morphology. Alzheimers
Res. Ther. 15:50. doi: 10.1186/s13195-023-01185-x

Hong, Y. J., Ho, S., Jeong, J. H., Park, K. H,, Kim, S., Wang, M. J., et al. (2023).
Impacts of baseline biomarkers on cognitive trajectories in subjective cognitive
decline: The CoSCo prospective cohort study. Alzheimers Res. Ther. 15:132. doi: 10.
1186/513195-023-01273-y

Hu, X., Meier, M., and Pruessner, J. (2023). Challenges and opportunities of
diagnostic markers of Alzheimer’s disease based on structural magnetic resonance
imaging. Brain Behav. 13:€2925. doi: 10.1002/brb3.2925

Jack, C. R. JR., Andrews, J. S., Beach, T. G., Buracchio, T., Dunn, B., Graf, A,, et al.
(2024). Revised criteria for diagnosis and staging of Alzheimer’s disease: Alzheimer’s
association workgroup. Alzheimers Dement. 20, 5143-5169. doi: 10.1002/alz.13859

Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein,
S. B., et al. (2018). NIA-AA Research Framework: Toward a biological definition of
Alzheimer’s disease. Alzheimers Dement. 14, 535-562. doi: 10.1016/j.jalz.2018.02.018

Jacobs, H. I. L., O’Donnell, A., Satizabal, C. L., Lois, C., Kojis, D., Hanseeuw,
B. J., et al. (2022). Associations between brainstem volume and Alzheimer’s disease
pathology in middle-aged individuals of the framingham heart study. J. Alzheimers
Dis. 86, 1603-1609. doi: 10.3233/JAD-215372

Jessen, F., Wolfsgruber, S., Kleineindam, L., Spottke, A., Altenstein, S., Bartels, C.,
et al. (2023). Subjective cognitive decline and stage 2 of Alzheimer disease in patients
from memory centers. Alzheimers Dement. 19, 487-497. doi: 10.1002/alz.12674

Jobin, B., Boller, B., and Frasnelli, J. (2023). Smaller grey matter volume in the
central olfactory system in mild cognitive impairment. Exp. Gerontol. 183:112325.
doi: 10.1016/j.exger.2023.112325

Kamal, F., Morrison, C., Maranzano, J., Zeighami, Y., and Dadar, M. (2023).
Topographical differences in white matter hyperintensity burden and cognition in
aging. MCI, and AD. Geroscience 45, 1-16. doi: 10.1007/s11357-022-00665-6

Krajcovicova, L., Klobusiakova, P., and Rektorova, I. (2019). Gray matter changes in
Parkinson’s and Alzheimer’s disease and relation to cognition. Curr. Neurol. Neurosci.
Rep. 19:85. doi: 10.1007/s11910-019-1006-z

Krueger, K. R., Desai, P., Beck, T., Barnes, L. L., Bond, J., DeCarli, C., et al. (2025).
Lifetime socioeconomic status, cognitive decline, and brain characteristics. JAMA
Netw. Open 8:€2461208. doi: 10.1001/jamanetworkopen.2024.61208

Leandrou, S., Petroudi, S., Kyriacou, P. A., Reyes-Aldasoro, C. C., and Pattichis, C. S.
(2018). Quantitative MRI brain studies in mild cognitive impairment and Alzheimer’s
disease: A methodological review. IEEE Rev. Biomed. Eng. 11, 97-111. doi: 10.1109/
RBME.2018.2796598

Lee, M. W, Kim, H. W,, Choe, Y. S, Yang, H. S, Lee, J., Lee, H,, et al.
(2024). A multimodal machine learning model for predicting dementia conversion in
Alzheimer’s disease. Sci. Rep. 14:12276. doi: 10.1038/541598-024-60134-2

Lerch, O., Ferreira, D., Stomrud, E., van Westen, D., Tideman, P., Palmgqvist, S.,
etal. (2024). Predicting progression from subjective cognitive decline to mild cognitive
impairment or dementia based on brain atrophy patterns. Alzheimers Res. Ther.
16:153. doi: 10.1186/s13195-024-01517-5

Li, Q, Lv, X, Qian, Q,, Liao, K., and Du, X. (2024). Neuroticism polygenic
risk predicts conversion from mild cognitive impairment to Alzheimer’s disease by
impairing inferior parietal surface area. Hum. Brain Mapp 45:€26709. doi: 10.1002/
hbm.26709

Li, X. Y., Yuan, L. X, Ding, C. C,, Guo, T. F,, Du, W. Y,, Jiang, J. H, et al.
(2024). Convergent multimodal imaging abnormalities in the dorsal precuneus in
subjective cognitive decline. J. Alzheimers Dis. 101, 589-601. doi: 10.3233/JAD-
231360

Lin, H,, Jiang, J., Li, Z.,, Sheng, C., Du, W., Li, X,, et al. (2023). Identification
of subjective cognitive decline due to Alzheimer’s disease using multimodal MRI
combining with machine learning. Cereb. Cortex 33, 557-566. doi: 10.1093/cercor/
bhac084

Liu, S., Luo, X,, Chong, J. S. X,, Jiaerken, Y., Youn, S. H., Zhang, M., et al. (2024).
Brain structure, amyloid, and behavioral features for predicting clinical progression
in subjective cognitive decline. Hum. Brain Mapp. 45:¢26765. doi: 10.1002/hbm.
26765

Mieling, M., Meier, H., and Bunzeck, N. (2023). Structural degeneration of the
nucleus basalis of Meynert in mild cognitive impairment and Alzheimer’s disease
- Evidence from an MRI-based meta-analysis. Neurosci. Biobehav. Rev. 154:105393.
doi: 10.1016/j.neubiorev.2023.105393

Mitolo, M., Lombardi, G., Manca, R., Nacmias, B., and Venneri, A. (2024).
Association between blood-based protein biomarkers and brain MRI in the
Alzheimer’s disease continuum: A systematic review. J. Neurol. 271, 7120-7140. doi:
10.1007/s00415-024-12674-w

Mofrad, S. A., Lundervold, A. J., Vik, A., and Lundervold, A. S. (2021). Cognitive
and MRI trajectories for prediction of Alzheimer’s disease. Sci. Rep. 11:2122. doi:
10.1038/541598-020-78095-7

Morrison, C., Dadar, M., Villeneuve, S., Ducharme, S., and Collins, D. L. (2023).
White matter hyperintensity load varies depending on subjective cognitive decline
criteria. Geroscience 45, 17-28. doi: 10.1007/s11357-022-00684-3

Frontiers in Aging Neuroscience

10.3389/fnagi.2025.1693840

Mortamais, M., Artero, S., and Ritchie, K. (2014). White matter hyperintensities
as early and independent predictors of Alzheimer’s disease risk. J. Alzheimers Dis.
42(Suppl. 4), $393-5400. doi: 10.3233/JAD- 141473

Pélhaugen, L., Sudre, C. H., Tecelao, S., Nakling, A., Almdahl, I. S., Kalheim, L. F.,
et al. (2021). Brain amyloid and vascular risk are related to distinct white matter
hyperintensity patterns. J. Cereb. Blood Flow Metab. 41, 1162-1174. doi: 10.1177/
0271678X20957604

Petersen, M., Coenen, M., DeCarli, C., De Luca, A., van der Lelij, E., et al
(2024). Enhancing cognitive performance prediction by white matter hyperintensity
connectivity assessment. Brain 147, 4265-4279. doi: 10.1093/brain/awae315

Platero, C. (2022). Categorical predictive and disease progression modeling in the
early stage of Alzheimer’s disease. J. Neurosci. Methods 374:109581. doi: 10.1016/j.
jneumeth.2022.109581

Qiu, S., Joshi, P. S., Miller, M. I, Xue, C., Zhou, X., Karjadi, C,, et al. (2020).
Development and validation of an interpretable deep learning framework for
Alzheimer’s disease classification. Brain 143, 1920-1933. doi: 10.1093/brain/awaal37

Radanovic, M., Pereira, F. R, Stella, F., Aprahamian, I, Ferreira, L. K., Forlenza,
0. V., et al. (2013). White matter abnormalities associated with Alzheimer’s disease
and mild cognitive impairment: A critical review of MRI studies. Exp. Rev. Neurother.
13, 483-493. doi: 10.1586/ern.13.45

Ranjbar, S., Velgos, S. N., Dueck, A. C., Geda, Y. E., Mitchell, J. R,, and Brain,
M. R. (2019). Radiomics to differentiate cognitive disorders. J. Neuropsychiatry Clin.
Neurosci. 31, 210-219. doi: 10.1176/appi.neuropsych.17120366

Reas, E. T., Hagler, D. J., White, N. S., Kuperman, J. M., Bartsch, H., Wierenga, C. E.,
et al. (2018). Microstructural brain changes track cognitive decline in mild cognitive
impairment. Neuroimage Clin. 20, 883-891. doi: 10.1016/j.nicl.2018.09.027

Rivas-Fernandez, M. A, Lindin , M., Zurrén, M., Diaz, F., Lojo-Seoane, C., Pereiro,
A. X, et al. (2023). Neuroanatomical and neurocognitive changes associated with
subjective cognitive decline. Front. Med. 10:1094799. doi: 10.3389/fmed.2023.1094799

Riverol, M., Rios-Rivera, M. M., Imaz-Aguayo, L., Solis-Barquero, S. M., Arrondo,
C., Montoya-Murillo, G., et al. (2024). Structural neuroimaging changes associated
with subjective cognitive decline from a clinical sample. Neuroimage Clin. 42:103615.
doi: 10.1016/j.nicl.2024.103615

Roh, H. W., Chauhan, N., Seo, S. W., Choi, S. H., Kim, E. J., Cho, S. H., et al.
(2024). Assessing cognitive impairment and disability in older adults through the
lens of whole brain white matter patterns. Alzheimers Dement. 20, 6032-6044. doi:
10.1002/alz.14094

Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen,
C. E., et al. (2021). Alzheimer’s disease. Lancet 397, 1577-1590. doi: 10.1016/S0140-
6736(20)32205-4

Serra, L., Bonarota, S., Di Domenico, C., Caruso, G., Giulietti, G., Caltagirone,
C., et al. (2023). Preclinical brain network abnormalities in patients with subjective
cognitive decline. J. Alzheimers Dis. 95, 1119-1131. doi: 10.3233/JAD-230536

Serra, L., Giancaterino, G., Giulietti, G., Petrosini, L., Di Domenico, C., Marra, C.,
et al. (2022). Cognitive reserve modulates brain structure and cortical architecture in
the Alzheimer’s disease. J. Alzheimers Dis. 89, 811-824. doi: 10.3233/JAD-220377

Shirzadi, Z., Schultz, A. P, Properzi, M., Yaari, R., Yau, W. W, Brickman, A. M.,
etal. (2024). Greater white matter hyperintensity volume is associated with the number
of microhemorrhages in preclinical Alzheimer’s disease. J. Prev. Alzheimers Dis. 11,
869-873. doi: 10.14283/jpad.2024.139

Sighinolfi, G., Mitolo, M., Pizzagalli, F., Stanzani-Maserati, M., Remondini, D.,
Rochat, M. J., et al. (2024). Sulcal morphometry predicts mild cognitive impairment
conversion to Alzheimer’s disease. J. Alzheimers Dis. 99, 177-190. doi: 10.3233/JAD-
231192

Skampardoni, I, Nasrallah, I. M., Abdulkadir, A., Wen, J., Melhem, R., Mamourian,
E., et al. (2024). Genetic and clinical correlates of AI-Based brain aging patterns
in cognitively unimpaired individuals. JAMA Psychiatry 81, 456-467. doi: 10.1001/
jamapsychiatry.2023.5599

Song, J., Yang, H., Yan, H,, Lu, Q,, Guo, L., Zheng, H., et al. (2024). Structural
disruption in subjective cognitive decline and mild cognitive impairment. Brain Imag.
Behav. 18, 1536-1548. doi: 10.1007/s11682-024-00933-3

Tai, H., Hirano, S., Sakurai, T., Nakano, Y., Ishikawa, A., Kojima, K., et al. (2020).
The neuropsychological correlates of brain perfusion and gray matter volume in
Alzheimer’s disease. J. Alzheimers Dis. 78, 1639-1652. doi: 10.3233/JAD-200676

Tentolouris-Piperas, V., Ryan, N. S., Thomas, D. L., and Kinnunen, K. M. (2017).
Brain imaging evidence of early involvement of subcortical regions in familial and
sporadic Alzheimer’s disease. Brain Res. 1655, 23-32. doi: 10.1016/j.brainres.2016.11.
011

van den Berg, E., Geerlings, M. L, Biessels, G. J., Nederkoorn, P. J., and
Kloppenborg, R. P. (2018). White matter hyperintensities and cognition in mild
cognitive impairment and Alzheimer’s disease: A domain-specific meta-analysis.
J. Alzheimers Dis. 63, 515-527. doi: 10.3233/JAD-170573

Wang, J., Ackley, S., Woodworth, D. C., Sajjadi, S. A., Decarli, C. S., Fletcher,
E. F., et al. (2024). Associations of amyloid burden, white matter hyperintensities,
and hippocampal volume with cognitive trajectories in the 90+ study. Neurology
103:209665. doi: 10.1212/WNL.0000000000209665

frontiersin.org


https://doi.org/10.3389/fnagi.2025.1693840
https://doi.org/10.1186/s13195-023-01185-x
https://doi.org/10.1186/s13195-023-01273-y
https://doi.org/10.1186/s13195-023-01273-y
https://doi.org/10.1002/brb3.2925
https://doi.org/10.1002/alz.13859
https://doi.org/10.1016/j.jalz.2018.02.018
https://doi.org/10.3233/JAD-215372
https://doi.org/10.1002/alz.12674
https://doi.org/10.1016/j.exger.2023.112325
https://doi.org/10.1007/s11357-022-00665-6
https://doi.org/10.1007/s11910-019-1006-z
https://doi.org/10.1001/jamanetworkopen.2024.61208
https://doi.org/10.1109/RBME.2018.2796598
https://doi.org/10.1109/RBME.2018.2796598
https://doi.org/10.1038/s41598-024-60134-2
https://doi.org/10.1186/s13195-024-01517-5
https://doi.org/10.1002/hbm.26709
https://doi.org/10.1002/hbm.26709
https://doi.org/10.3233/JAD-231360
https://doi.org/10.3233/JAD-231360
https://doi.org/10.1093/cercor/bhac084
https://doi.org/10.1093/cercor/bhac084
https://doi.org/10.1002/hbm.26765
https://doi.org/10.1002/hbm.26765
https://doi.org/10.1016/j.neubiorev.2023.105393
https://doi.org/10.1007/s00415-024-12674-w
https://doi.org/10.1007/s00415-024-12674-w
https://doi.org/10.1038/s41598-020-78095-7
https://doi.org/10.1038/s41598-020-78095-7
https://doi.org/10.1007/s11357-022-00684-3
https://doi.org/10.3233/JAD-141473
https://doi.org/10.1177/0271678X20957604
https://doi.org/10.1177/0271678X20957604
https://doi.org/10.1093/brain/awae315
https://doi.org/10.1016/j.jneumeth.2022.109581
https://doi.org/10.1016/j.jneumeth.2022.109581
https://doi.org/10.1093/brain/awaa137
https://doi.org/10.1586/ern.13.45
https://doi.org/10.1176/appi.neuropsych.17120366
https://doi.org/10.1016/j.nicl.2018.09.027
https://doi.org/10.3389/fmed.2023.1094799
https://doi.org/10.1016/j.nicl.2024.103615
https://doi.org/10.1002/alz.14094
https://doi.org/10.1002/alz.14094
https://doi.org/10.1016/S0140-6736(20)32205-4
https://doi.org/10.1016/S0140-6736(20)32205-4
https://doi.org/10.3233/JAD-230536
https://doi.org/10.3233/JAD-220377
https://doi.org/10.14283/jpad.2024.139
https://doi.org/10.3233/JAD-231192
https://doi.org/10.3233/JAD-231192
https://doi.org/10.1001/jamapsychiatry.2023.5599
https://doi.org/10.1001/jamapsychiatry.2023.5599
https://doi.org/10.1007/s11682-024-00933-3
https://doi.org/10.3233/JAD-200676
https://doi.org/10.1016/j.brainres.2016.11.011
https://doi.org/10.1016/j.brainres.2016.11.011
https://doi.org/10.3233/JAD-170573
https://doi.org/10.1212/WNL.0000000000209665
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/

Lvetal.

Warren, S. L., and Moustafa, A. A. (2023). Functional magnetic resonance imaging,
deep learning, and Alzheimer’s disease: A systematic review. J. Neuroimag. 33, 5-18.
doi: 10.1111/jon.13063

Wei, Y. C, Kung, Y. C, Lin, C. P, Chen, C. K, Lin, C, Tseng,
R. Y, et al. (2024). White matter alterations and their associations with

biomarkers and behavior in subjective cognitive decline individuals: A
fixel-based analysis. Behav. Brain Funct. 20:12. doi: 10.1186/s12993-024-
00238-x

Wu, H,, Song, Y., Yang, X., Chen, S., Ge, H,, Yan, Z,, et al. (2023). Functional
and structural alterations of dorsal attention network in preclinical and early-
stage Alzheimer’s disease. CNS Neurosci. Ther. 29, 1512-1524. doi: 10.1111/cns.
14092

Frontiers in Aging Neuroscience

11

10.3389/fnagi.2025.1693840

Yang, J., Liang, L., Wei, Y., Liu, Y., Li, X., Huang, J., et al. (2023). Altered cortical
and subcortical morphometric features and asymmetries in the subjective cognitive
decline and mild cognitive impairment. Front. Neurol. 14:1297028. doi: 10.3389/fneur.
2023.1297028

Yu, H. H, Tan, C. C, Huang, S. J,, Zhang, X. H,, Tan, L, Xu, W,, et al.
(2024). Predicting the reversion from mild cognitive impairment to normal cognition
based on magnetic resonance imaging, clinical, and neuropsychological examinations.
J. Affect Disord. 353, 90-98. doi: 10.1016/j.jad.2024.03.009

Zhong, S., Lou, J., Ma, K., Shu, Z., Chen, L, Li, C,, et al. (2023). Disentangling in-
vivo microstructural changes of white and gray matter in mild cognitive impairment
and Alzheimer’s disease: A systematic review and meta-analysis. Brain Imag. Behav.
17,764-777. doi: 10.1007/s11682-023-00805-2

frontiersin.org


https://doi.org/10.3389/fnagi.2025.1693840
https://doi.org/10.1111/jon.13063
https://doi.org/10.1186/s12993-024-00238-x
https://doi.org/10.1186/s12993-024-00238-x
https://doi.org/10.1111/cns.14092
https://doi.org/10.1111/cns.14092
https://doi.org/10.3389/fneur.2023.1297028
https://doi.org/10.3389/fneur.2023.1297028
https://doi.org/10.1016/j.jad.2024.03.009
https://doi.org/10.1007/s11682-023-00805-2
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/

	Structural and microstructural changes in white and gray matter across the Alzheimer's disease continuum
	Introduction
	Studies on GM
	Studies on the preclinical phase
	Studies on SCD
	Studies on MCI
	Studies on the dementia phase

	Studies on WM
	Studies on the preclinical phase
	Studies on SCD
	Studies on MCI
	Studies on the dementia phase

	Longitudinal studies of GM and WM
	Discussion
	MRI confounding factors
	Structural biomarkers in AD frameworks
	Multimodal AI stratification
	Limitations and future directions

	Conclusion
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


