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Structural and microstructural
changes in white and gray matter
across the Alzheimer’s disease
continuum
Lingling Lv, Hui Guo, Zhiru Zhao and Xiongfei Zhao*

Department of Neurology, Xianyang Hospital of Yan’an University, Xianyang, Shanxi, China

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by

progressive brain atrophy, with pathological progression accompanied by

significant structural alterations in both gray matter (GM) and white matter (WM).

This review summarizes the neuroimaging features and clinical implications of

brain volumetric changes across distinct the clinical phases of the AD continuum

[preclinical phase, subjective cognitive decline (SCD), mild cognitive impairment

(MCI), and dementia phase]. Our analysis reveals a key conceptual advance: the

spatiotemporal pattern of WM volume loss is not merely a consequence of GM

degeneration but an active and complementary contributor to clinical decline.

We identify specific, underappreciated WM tracts whose atrophy rates offer

unique prognostic value beyond hippocampal volume. The primary contribution

of this work is a unified model of AD neuroanatomy, which challenges the

isolated view of GM and WM pathology. This refined understanding is critical for

developing the next generation of biomarkers and underscores the imperative

to leverage artificial intelligence for analyzing these complex, multi-tissue

interactions. Future research should further integrate artificial intelligence and

multi-omics data to refine personalized predictive models.
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Introduction

Alzheimer’s disease (AD), recognized as the predominant cause of dementia, has
emerged as one of the most lethal and burdensome diseases of the 21st century
(Alzheimers Dement, 2024; Scheltens et al., 2021). The disease progresses along a
continuum, encompassing the preclinical phase, subjective cognitive decline (SCD), mild
cognitive impairment (MCI), and the dementia phase (Jack et al., 2024). The hallmark
neuropathological features of AD–amyloid-β plaques and neurofibrillary tangles–drive a
progressive neurodegenerative process, which is captured in vivo by magnetic resonance
imaging as gray matter (GM) atrophy (Jack et al., 2018). Notably, brain atrophy in AD
is detectable at early clincial phase, particularly in limbic structures and the gyri of the
frontal and temporal cortices, offering valuable insights into disease progression (Dickerson
et al., 2011). This review synthesizes evidence from medium- to high-quality clinical studies
published between 2019 and 2024 that concurrently examine structural changes in both
GM and white matter (WM) across the AD continuum. To ensure comprehensive coverage,
we systematically searched PubMed, Web of Science Core Collection, Scopus, and Embase
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using the following core search terms and their variants: 
“gray matter,” “white matter,” “Alzheimer’s disease,” “Alzheimer 
disease,” combined with “MRI,” “volumetric,” “atrophy,” and 
“neuroimaging.” The search strategy was designed to capture all 
relevant studies investigating GM and WM alterations in AD 
spectrum disorders. In addition, the reference lists of relevant 
review articles were manually screened for potentially eligible 
publications. Due to the large volume of search results, a pragmatic 
screening strategy was adopted to focus on the most influential 
literature. Search outputs were sorted by relevance, and the top 
230 records underwent further screening. The study selection 
process adhered to the PRISMA guidelines, as summarized in 
Figure 1. Following title and abstract screening, 76 records were 
excluded. Of the 154 full-text articles sought, 17 were unavailable, 
leaving 137 for eligibility assessment. After full-text review, 75 
articles were excluded with documented reasons (e.g., not original 
research, lack of volumetric data), resulting in 62 studies included 
in the qualitative synthesis. This review aims to synthesize evidence 
from medium- to high-quality clinical studies published in the 
past 5 years that concurrently investigate structural alterations 
in both GM and WM across the AD continuum. Furthermore, 
this article will also specifically highlight recent advances in brain 
imaging technologies and their role in deciphering the mechanisms 
underlying AD-related structural changes. 

Studies on GM 

In individuals with AD, the morphology, volume, and 
microstructure of GM exhibit profound degenerative changes. 
These alterations collectively underlie the core clinical 
manifestations of the disease, including memory impairment, 
cognitive dysfunction, and behavioral disturbances. GM 
degeneration serves as both a defining neuropathological 
feature of AD and a pivotal biomarker for tracking 
disease progression. 

Studies on the preclinical phase 

Accelerated normal aging may facilitate the early detection 
of AD signs in healthy individuals (Avelar-Pereira et al., 2024). 
The preclinical detection of AD can be achieved through the 
integration of neuroimaging markers and plasma biomarkers, 
with temporal lobe atrophy progression serving as a particularly 
sensitive indicator of impending cognitive decline (Mitolo et al., 
2024). Standardized volumes of the entorhinal cortex showed a 
change of more than 20% up to 15 years prior to the onset 
of cognitive decline (Platero, 2022). Thus, establishing early 
detection systems will be a pivotal breakthrough in advancing AD 
research. 

Studies on SCD 

Subjective cognitive decline serves as a critical indicator in the 
early detection and diagnosis of AD (Jessen et al., 2023). Although 
clinical deficits are absent, SCD may represent a preclinical 

phase characterized by neuroanatomical changes that are similar, 
albeit more subtle, to those observed in patients with amnestic 
MCI (aMCI) or AD dementia (Rivas-Fernández et al., 2023). 
Cortical and subcortical morphological changes may help preserve 
cognitive function through compensatory mechanisms in SCD 
(Yang et al., 2023). The dorsal precuneus, known to be associated 
with early AD, exhibits pronounced neuroimaging changes in 
individuals with SCD (Li X. Y. et al., 2024). Compared to the 
healthy control (HC) group, patients with SCD displayed relatively 
minor surface morphological changes, predominantly localized 
to the insula and pars triangularis (Yang et al., 2023). Compared 
with HC, SCD showed morphological changes in the right inferior 
temporal gyrus (ITG) (Wu et al., 2023), right insula, and right 
amygdala (Song et al., 2024). Compared to the HC, the SCD 
group exhibited decreased cortical thickness in the right ITG 
(Wu et al., 2023). However, individuals with SCD demonstrated 
greater hippocampal atrophy, reduced cognitive and functional 
performance, and more pronounced behavioral symptoms 
compared to the HC (Jessen et al., 2023). The Crus I region in the 
right cerebellum may serve as a potentially useful brain region 
for distinguishing progession SCD (SCDp) from non-progession 
SCD (SCDnp) (Deng et al., 2024). There were no significant 
dierences in GM volume between individuals with SCD and HC 
(Serra et al., 2023). 

Voxel-based morphometry (VBM) revealed GM atrophy in 
the middle frontal gyrus, superior orbital gyrus, superior frontal 
gyrus, right rectus gyrus, entire occipital lobe, thalamus, and 
precuneus in the SCD group (Riverol et al., 2024). Compared 
with HC, both SCD and MCI showed reduced left parietal lobe 
(IPL) volume. Both SCD and MCI groups showed reduced ReHo 
values and reduced GM volume in the right middle temporal 
gyrus compared with HC (Wu et al., 2023). Region of Interest 
(ROI) analysis showed volume reduction in the left rectus gyrus, 
bilateral medial orbital gyrus, middle frontal gyrus, superior frontal 
gyrus, calcarine fissure, and left thalamus (Riverol et al., 2024). 
SCDp showed greater hippocampal atrophy than SCDnp and 
controls. However, in the VBM analysis, the SCDp group only 
showed more hippocampal atrophy than the SCDnp group (Riverol 
et al., 2024). Compared with HC, SCD showed microstructural 
changes in the right ITG, lateral occipital, and insular fiber 
tracts (Song et al., 2024). Compared to the HC, the SCD group 
exhibited higher reduced fractional Amplitude of Low-Frequency 
Fluctuation (fALFF) and ReHo values in the left inferior occipital 
gyrus, reduced fALFF values and elevated functional connectivity 
values in the IPL (Wu et al., 2023). Patients with amyloid-β positive 
SCD (Aβ+SCD) experience greater cognitive decline and more 
pronounced medial temporal lobe atrophy within a 24-months 
period (Hong et al., 2023). The brain atrophy in SCD group was 
mainly in frontal lobe and occipital lobe. However, only the SCDp 
group showed medial temporal lobe atrophy at baseline (Riverol 
et al., 2024). The multimodal MRI combined with machine learning 
classification method has good performance in the classification of 
SCD caused by AD, which has the potential for clinical application. 
The diagnostic accuracy of SCD plus individuals was 79.49% in 
the Chinese cohort and 83.13% in the ANDI cohort (Lin et al., 
2023). The prediction of early AD can be comprehensively assessed 
through a combination of MRI technology and clinical indicators 
(Devanarayan et al., 2024). 
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FIGURE 1 

PRISMA flow diagram illustrating the study selection process. 

Studies on MCI 

Compared to the HC, patients with MCI primarily exhibited 
surface morphological changes in the left brain, including the 
transverse temporal gyrus, superior temporal gyrus, insula, and 
operculum (Yang et al., 2023). These observed morphological 
changes were significantly associated with clinical ratings of 
cognitive decline (Yang et al., 2023). Compared with MCI that 
transformed into AD, the width of multiple brain grooves in 
bilateral temporo-occipital region and left frontal region have 
significant changes (Sighinolfi et al., 2024). A sample Mendelian 
randomization analysis confirmed a potential causal relationship 
between a higher neurotic polygenic risk score and a reduced 
inferior parietal surface area, as well as an increased risk of 
transformation in patients with aMCI (Li Q. et al., 2024). 

Hippocampal volume has proven to be an eective biomarker 
for distinguishing between the HC, MCI, and dementia groups. 
Clinical studies have found that individuals with MCI exhibit 
a 14% reduction in hippocampal volume, while those with 

dementia show a 22% reduction compared to healthy individuals 
(Convit et al., 1997). Participants with higher levels of education 
(>13 years) demonstrated superior cognitive performance and 
larger hippocampal volumes. Midbrain and locus ceruleus 
volumes are associated with deficits in attention and executive 
function in MCI (Dutt et al., 2021). Participants in the MCI 
group showed smaller olfactory roi GMV, including significant 
reductions in piriform cortex, amygdala, entorhinal cortex, and 
left hippocampus, compared with SCD and HC. There is specific 
atrophy in the limbic/medial-temporal olfactory processing areas 
in MCI, and this degree of atrophy may predict early cognitive 
decline in AD (Jobin et al., 2023). However, another meta-analysis 
found structural changes early in the disease are most pronounced 
in the medial temporal lobe, particularly in the entorhinal cortex, 
which, along with the hippocampus, oers similar discrimination 
as the disease progresses. Notably, when it comes to predicting the 
conversion from MCI to AD, the entorhinal cortex demonstrates 
better predictive accuracy than other structures, including the 
hippocampus (Leandrou et al., 2018). Cognitive reserve modulates 
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cortical structures only in the early phases of dementia (Serra 
et al., 2022). MCI can revert to normal cognition (NC) under 
certain conditions, indicating that some patients may experience 
a more favorable cognitive trajectory (Yu et al., 2024). The 
scientific community recognizes MCI as a pivotal transitional 
phase in AD pathogenesis, characterized by substantial clinical and 
neurobiological heterogeneity. Current evidence underscores the 
imperative for comprehensive multimodal evaluation-integrating 
advanced neuroimaging parameters [e.g., hippocampal volumetry, 
tau-Positron Emission Tomography (PET) imaging], validated 
fluid biomarkers (including CSF p-tau181 and plasma GFAP), 
and polygenic risk profiling-to enable: (1) accurate phenotypical 
classification, (2) reliable prognostication of conversion risk, 
and (3) stratification for targeted therapeutic interventions. This 
integrative approach establishes a robust evidence base for 
precision medicine paradigms in prodromal AD management. 

Studies on the dementia phase 

Patients with AD exhibit cognitive changes within a few years 
after MRI shows signs of atrophy, providing important insights for 
the early identification of AD (Mofrad et al., 2021). Hippocampal 
volume features are eective in dierentiating between early and 
late AD lesions (Ranjbar et al., 2019). AD patients had reduced 
bilateral hippocampal volume and hypoperfusion of bilateral 
temporoparietal and posterior midline structures compared with 
HC (Tai et al., 2020). Radiomic analysis of hippocampal texture 
shows promise in distinguishing the clinical progression of AD 
(Ranjbar et al., 2019). The ratio of hippocampus to cortex 
emerges as the most eective structural MRI (sMRI) biomarker for 
dierentiating between subtypes of AD, aligning with the spatial 
distribution of tau pathology and predicting the rate of cognitive 
decline (Krajcovicova et al., 2019). The hippocampal volume 
was positively correlated with plasma Aβ42 and Aβ42/Aβ40, 
and negatively correlated with Aβ40, and P-tau181 and p-tau217 
concentrations were negatively correlated with temporal GM 
volume and cortical thickness in AD (Mitolo et al., 2024). 
Precuneus atrophy in healthy individuals is associated with an 
increased amyloid load, indicating potential alterations in AD 
(Avelar-Pereira et al., 2024). In the context of AD as predicted by 
cerebrospinal fluid (CSF) and MRI findings, elevated baseline levels 
of pTau-181 were found to correlate with significant reductions 
in total GM volumes, particularly within targeted regions of the 
medial temporal lobe. These observations indicate that pTau-181 
has the potential to serve as a valuable biomarker for forecasting 
brain atrophy and cognitive decline among cognitively unimpaired 
older adults in the future. This highlights its significance in early 
intervention strategies aimed at mitigating the progression of 
neurodegeneration (Dark et al., 2024). Emerging neuroimaging 
studies have demonstrated that the volumetric ratio between GM 
structures and their adjacent ventricular compartments serves 
as a reliable neuroimaging biomarker for detecting early-phase 
neurodegenerative changes (Hu et al., 2023). 

Alzheimer’s disease is characterized by progressive GM 
atrophy, particularly in cholinergic regions such as the Nucleus 
basalis of Meynert (NbM), which shows significant volume loss in 
AD patients compared to HC, though this eect is less pronounced 

in MCI (Mieling et al., 2023). Widespread structural alterations 
extend to the hippocampus (reduced volume and hypoperfusion 
in temporoparietal regions) (Tai et al., 2020), caudate nucleus 
(Tentolouris-Piperas et al., 2017), and brainstem (Jacobs et al., 
2022), with some changes emerging even in preclinical phases. 
Notably, the AD genetic risk score (AD-GRS) exhibits age-
dependent associations with volume loss across 38 brain regions in 
middle-aged and older adults, highlighting the interplay between 
genetic susceptibility and neurodegeneration (Buto et al., 2024). 
Conversely, lifelong physical activity correlates with preserved 
volume in prefrontal and hippocampal regions, suggesting 
modifiable protective factors (Erickson et al., 2012). Further, 
postmenopausal women with cognitive complaints demonstrate 
accelerated GM loss (Conley et al., 2020), while frontal lobe 
structures (e.g., prefrontal cortex, anterior cingulate) are the 
strongest predictors of neuropsychiatric symptom progression in 
dementia (Boublay et al., 2020). The authors posit that the future 
integration of multimodal biomarkers with precision preventive 
medicine could revolutionize AD management by enabling early 
prediction and targeted intervention a decade or more before 
clinical symptoms emerge. This paradigm shift would transform 
AD therapeutics from reactive treatment to proactive prevention, 
potentially halting pathology at its preclinical phase. 

To guide future eorts, we have identified the most sensitive 
biomarkers for each AD phase and benchmarked their performance 
with key quantitative indicators, including eect sizes and 
diagnostic accuracy, to provide a clear reference for the field 
(Table 1). 

Studies on WM 

White matter abnormalities manifest during the early phases 
of AD pathogenesis and may actively contribute to disease 
progression (Bozzali et al., 2016). Histology studies show that the 
brain’s WM architecture is highly complex, with up to 98% of the 
WM consisting of multiple fibers with crossing fiber orientations 
(Dewenter et al., 2023). WMH burden is associated with cognitive 
changes and early cognitive decline in healthy older adults (Kamal 
et al., 2023). WMH specifically contributes to cognitive decline 
in AD patients independent of amyloid deposition and atrophy 
(Garnier-Crussard et al., 2022). However, the cohort study by Wang 
et al. (2024) is contrary to this conclusion. Emerging neuroimaging 
evidence suggests that WMH may serve as a preclinical biomarker. 
They can predict AD onset at least a decade before clinical 
symptoms appear (Mortamais et al., 2014). 

Studies on the preclinical phase 

An increased volume of greater WMH is associated with 
a higher number of microhemorrhages in individuals with 
preclinical AD (Shirzadi et al., 2024). Longitudinal follow-up of 
cognitively intact individuals over 40 years revealed that those 
who remained free of AD exhibited distinct neuroimaging profiles 
characterized by progressive mild cortical atrophy and increasing 
WMH burden, with more pronounced changes emerging after 
age 65 (Skampardoni et al., 2024). Amyloid-β (Aβ) deposition 
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TABLE 1 Phase-specific structural MRI biomarkers in the AD continuum. 

Disease phase Most sensitive biomarkers Effect size (Cohen’s d) AUC Primary utility 

Preclinical AD GM: entorhinal cortex thickness −0.6 to −0.8 0.75–0.85 Predictive 

GM: hippocampal volume (CA1 subfield) −0.5 to −0.7 0.70–0.80 Predictive 

WM: fornix mean diusivity 0.7 to 0.9 0.80–0.85 Predictive 

SCD GM: hippocampal volume −0.8 to −1.0 0.80–0.90 Predictive/confirmatory 

GM: middle temporal gyrus thickness −0.6 to −0.8 0.75–0.85 Confirmatory 

WM: parahippocampal cingulum MD 0.8 to 1.0 0.82–0.88 Predictive/confirmatory 

MCI GM: hippocampal volume −1.2 to −1.5 0.85–0.92 Confirmatory 

GM: posterior cingulate cortex thickness −1.0 to −1.2 0.80–0.87 Confirmatory 

WM: superior longitudinal fasciculus MD 1.0 to 1.3 0.83–0.89 Confirmatory 

AD dementia GM: widespread cortical thinning > −1.5 >0.95 Confirmatory 

GM: ventricular enlargement > +1.8 >0.90 Confirmatory 

WM: WMH burden > +1.2 >0.75 Confirmatory 

AD, Alzheimer’s disease; GM, gray matter; WM, white matter; SCD, subjective cognitive decline; MCI, mild cognitive impairment; MD, mean diusivity; WMH, WM hyperintensities; AUC, 
area under the receiver operating characteristic curve. Eect sizes (Cohen’s d) are approximate ranges derived from meta-analyses and key studies cited in this review, comparing each phase to 
cognitively normal controls. AUC values represent the accuracy for distinguishing the specified phase from cognitively normal controls or for predicting conversion to the next phase (Predictive 
utility). Predictive, primarily useful for forecasting progression to a more advanced phase; Confirmatory, primarily useful for supporting the diagnosis at the current phase. 

significantly accelerates WMH progression, with gender-specific 
analyses revealing that female participants exhibiting elevated 
baseline Aβ levels showed significantly greater WMH volume 
expansion over a 24-months follow-up period (Cha et al., 2024). 
The author proposes that a rapid WMH increase in the cognitively 
normal elderly should be treated as a clinical red flag, with gender 
serving as an integral component of risk assessment models. 

Studies on SCD 

Studies have found that subjective cognitive decline promotes 
the future progression of WMH (Liu et al., 2024). WM volumes 
of uncinate fasciculus, cingulum, inferior frontooccipital fasciculus, 
anterior thalamic radiation, and corpus callosum clamp were 
lower in SCD group than in HC group. However, there were no 
significant dierences in WM lesions number or volume between 
the SCD and HC groups (Riverol et al., 2024). Dierences in the 
burden of WMH in the brain were observed between patients 
with positive (SCD+) and negative SCD (SCD−), indicating the 
possibility of distinct underlying pathologies (Morrison et al., 
2023). The bilateral longitudinal superior frontal fasciculus fiber 
tracts were larger in individuals with SCD compared to those 
in the HC (Wei et al., 2024). Compared with the HC, patients 
with SCD had larger temporal, occipital, and frontal WMH, 
whereas patients with MCI had higher WMH volumes in all 
regions (Calcetas et al., 2022). The accuracy of diusion tensor 
imaging (DTI) in distinguishing SCD from normal controls was 
92.68%. Moreover, due to further changes in brain structure 
and function, the classification accuracy of MCI, AD dementia 
(d-AD) and normal controls can reach more than 97% (Chen 
et al., 2023). The author believes that constructing a predictive 
model integrating WMH distribution patterns and DTI-based 
fiber tracking metrics could oer critical technical support for 
early and precise risk stratification of progression from SCD to 
MCI or d-AD. 

Studies on MCI 

Total WMH and regional WMH were increased in MCI 
and AD patients compared with non-MCI patients. We observed 
that in all cognitive domains, declines were greater in MCI 
compared with HC (stronger association between WMH and 
cognition). However, compared with non-AD patients, the overall 
cognitive function of AD patients decreased more significantly 
only in the temporal region. In HC and MCI, we observed 
strong associations between all cognitive domains of interest and 
WMH burden, whereas AD patients had only a small number 
of associations between WMH and overall cognition (Kamal 
et al., 2023). In HC, higher cognitive reserve (CR) was associated 
with macromolecular tissue volume (MTV) in the right para-
hippocampal cingulate (PHC) and the left superior longitudinal 
fasciculus (SLF) (Fingerhut et al., 2022). WMHs are associated with 
cognitive impairment in both patients with MCI and those with 
AD (van den Berg et al., 2018). Additionally, the MCI group with 
the presence of vessel amyloidosis had a significant increase in 
WMH after 5 years of follow-up (Shirzadi et al., 2024). Research 
utilizing diusion kurtosis imaging and free water imaging, which 
eectively dierentiated between the MCI, SCD, and HC groups, 
has identified changes in WM microstructure in individuals with 
MCI and SCD (Bergamino et al., 2024). 

The neurite density index (NDI) of specific WM structures 
in the bilateral cerebral hemispheres of patients with MCI and 
AD was significantly decreased, particularly in the bilateral SLF, 
uncinate fasciculus (UF), left posterior thalamic radiation (PTR), 
and left cingulate. Conversely, there was a significant increase 
in the orientation dispersion index (ODI) in WM regions, 
including the left cingulate, right UF, bilateral PHC, and PTR. 
Notably, ODI was significantly reduced in the GM of the bilateral 
hippocampus. Cognitive performance in MCI/AD patients showed 
a significant correlation with NDI. Microstructural alterations in 
MCI/AD included decreased fiber directional dispersion in the 
hippocampus, along with reduced neurite density and increased 
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fiber directional dispersion in specific WM tracts, such as the 
cingulate, UF, and PTR (Zhong et al., 2023). In MCI, a higher 
CR was associated with lower MTVs in WM tracts, specifically in 
the left and right dorsal cingulate gyrus, corpus callosum forceps, 
right inferior frontooccipital fasciculus, and right SLF (Fingerhut 
et al., 2022). Patients undergoing cognitive training demonstrated 
a slower rate of fractional anisotropy decline in multiple WM 
tracts, particularly in the cingulum-hippocampal pathway, which 
correlated with improved working memory performance (Gozdas 
et al., 2024). A critical direction for future research is to further 
elucidate the correlations between WMH distribution patterns– 
such as periventricular, deep, and infratentorial–and specific 
etiologies, including vascular, Aβ-related, and inflammatory 
pathologies. This can be accomplished through the integration 
of multimodal neuroimaging–such as amyloid-PET, tau-PET, 
and high-resolution perfusion imaging–with fluid biomarkers to 
establish a clinically meaningful etiological classification system for 
WMH. 

Studies on the dementia phase 

Larger global and regional WMH volumes are strongly 
associated with cognitive decline (Garnier-Crussard et al., 2022). 
The WMH volume (WMHV) of increased with progressing 
amyloid and tau pathology in the AD sample. It was found that 
samples from individuals with AD and MCI exhibited reduced 
WM volume, and DTI results indicated diminished WM integrity 
compared to HC (Radanovic et al., 2013). In the early phases 
of AD, there has been an increase in WMH load, indicating a 
change in WMH during this period (Pålhaugen et al., 2021). AD 
shows significantly higher heterogeneity compared to SCD, MCI, 
or vascular dementia (Roh et al., 2024). In AD, both restricted 
isotropic diusion and crossing fibers were reduced, while free 
water diusion was elevated in the mesial temporal GM and WM. 
Restricted isotropic diusion in the hippocampus decreased more 
rapidly in participants with AD. Baseline hippocampal limiting 
isotropic diusion can predict cognitive decline, and alterations 
in hippocampal and entorhinal limiting isotropic diusion are 
associated with this decline. Additionally, changes in WM and 
crossing fibers that restrict directional diusion are linked to 
memory decline in HC. Microstructural changes in the medial 
temporal lobe are associated with cognitive decline in prodromal 
AD, and these changes dier from those observed in normal 
cognitive aging (Reas et al., 2018). The volume of WMH in the left 
occipital lobe may be related to the occurrence of delusional AD 
(Fan et al., 2023). 

WMH volume increased with progressing amyloid and tau 
pathology in the AD sample. Compared with the aβ-negative 
HC, the aβ-positive AD patients had larger WMHVs in all brain 
regions, with the largest volume change in the splenium of the 
corpus callosum (Garnier-Crussard et al., 2022). In the AD sample, 
the Aβ+T− group showed consistently lower fiber density in 
most fiber tracts compared to the Aβ−T− HC. The fiber-bundle 
cross-section was also reduced in the Aβ+T− group. Similarly, 
the Aβ+T+ group showed lower fiber density and lower fiber-
bundle cross-section compared to the Aβ-T− HC. The Aβ+T+ 
group did not show any additional WM damage regarding fiber 

density or fiber-bundle cross-section compared to Aβ+T−. In 
summary, both fiber density and fiber-bundle cross-section were 
reduced in the presence of amyloid pathology, but not further 
altered by additional tau pathology. WMHV showed the highest 
variable importance for fiber density in most fiber tracts, while 
brain volume showed the highest variable importance for fiber 
bundle cross-section in all tracts. In simple linear regression 
analyses, fiber density in the AD sample was likewise associated 
with WMHV and to some extent with microbleed count but not 
with lacune count, which was expected given the low number 
of lacunes and microbleeds in this sample. Fiber density was 
not associated with brain volume and with age only in selected 
fiber tracts. Eect sizes for associations with AD PET markers 
were substantially smaller than with cerebral small vessel disease 
(SVD) MRI markers. Compared to fiber density, fiber-bundle 
cross-section was less associated with SVD imaging markers; no 
significant associations with lacunes or microbleeds. In contrast, 
fiber-bundle cross-section of all fiber tracts was strongly associated 
with brain volume and to some extent with age. Associations with 
AD PET markers were mostly absent or showed only small eect 
sizes. WM damage represents a critical nexus in the interplay 
between AD and cerebrovascular disease. Moving forward, it is 
essential to transcend traditional diagnostic categories and develop 
multidimensional disease models that incorporate vascular, Aβ, 
tau, and neural plasticity components. By integrating multimodal 
neuroimaging, fluid biomarkers, and artificial intelligence, we can 
advance from a paradigm of “post-symptomatic diagnosis and 
treatment” toward one emphasizing “early and precise prediction” 
and “targeted intervention”–ultimately paving the way for delaying 
or even preventing cognitive decline. 

Longitudinal studies of GM and WM 

Alzheimer’s disease progression follows a distinct 
spatiotemporal pattern of coordinated structural deterioration 
in both GM and WM (Reas et al., 2018). During the preclinical 
phase, GM atrophy initiates in the medial temporal lobe–primarily 
the entorhinal cortex and hippocampus–preceding clinical 
symptoms by 5–10 years (Platero, 2022), while concurrent WM 
microstructural alterations, characterized by reduced fractional 
anisotropy and increased mean diusivity, become detectable in 
limbic tracts such as the parahippocampal cingulum and corpus 
callosum (Mortamais et al., 2014; Skampardoni et al., 2024). As 
the disease transitions to mild cognitive impairment (MCI), WM 
degeneration accelerates, frequently surpassing the rate of GM 
atrophy (Fotenos et al., 2005; Kamal et al., 2023). 

We hypothesize that the progression from intermediate to 
advanced AD phases demonstrates coupled degeneration between 
GM and WM. During the intermediate phase, hippocampal 
atrophy extends to parietal and lateral temporal regions, while 
corresponding WM damage emerges in association fibers such as 
the superior longitudinal fasciculus. This coordinated deterioration 
evolves further in the advanced phase, where widespread cortical 
thinning develops concurrently with disintegration of major WM 
tracts, including the cingulum bundle and uncinate fasciculus, 
suggesting interconnected neurodegenerative mechanisms 
throughout the disease continuum (Figure 2). 
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FIGURE 2 

Hypothetical timeline of key structural MRI changes across the AD continuum. SCD, subjective cognitive decline; MCI, mild cognitive impairment; 
WMH, white matte hyperintensities. 

Discussion 

The purpose of this review is to establish a foundation for 
predicting the risk of progression to AD in patients at various 
phases, including HC, SCD, and MCI. Additionally, it aims to 
provide valuable insights to assist clinicians in early diagnosis and 
the design of eective treatment plans (Lee et al., 2024). Structural 
MRI data were used to predict the conversion of SCD to MCI or 
dementia (Lerch et al., 2024). An increasing number of artificial 
intelligence technologies have been introduced into the diagnosis 
of degenerative diseases, such as AD (Frizzell et al., 2022; Qiu et al., 
2020; Warren and Moustafa, 2023). These advanced technologies 
not only improve the accuracy of diagnoses but also provide new 
possibilities for early detection and personalized treatment, driving 
research and development in this field. Longitudinal studies and 
large-scale data analysis, such as those from the UK Biobank, are 
crucial for understanding the genetic and environmental factors 
influencing AD progression. 

MRI confounding factors 

This review synthesizes the rapidly evolving evidence on 
structural MRI biomarkers in AD. However, a critical challenge is 
the methodological heterogeneity in the current literature body. 
Variations in MRI scanner platforms, field strengths, acquisition 
sequences, and automated segmentation pipelines significantly 
impact volumetric and microstructural measurements (Song et al., 
2024; Tai et al., 2020; Wu et al., 2023). This heterogeneity not 
only contributes to conflicting results regarding the spatiotemporal 
sequence of GM and WM changes but also hinders the direct 
comparison and meta-analysis of findings across cohorts, limiting 
the generalizability of individual study results. Furthermore, the 
interpretation of structural changes is complicated by several 
confounding factors. The frequent co-existence of vascular 

pathology (e.g., WMH) with AD pathology can obscure the 
specific signature of AD-related atrophy, particularly in WM 
metrics (Pålhaugen et al., 2021; Petersen et al., 2024). Factors 
such as education (Fingerhut et al., 2022; Serra et al., 2022), 
occupational complexity (Gozdas et al., 2024), and lifestyle 
(Erickson et al., 2012; Krueger et al., 2025; Pålhaugen et al., 
2021) (collectively termed “cognitive reserve”) can modulate 
the relationship between brain atrophy and clinical symptoms, 
potentially leading to misclassification of disease phase. Large-
scale, multi-center, prospective studies with harmonized MRI 
protocols and unified analytical methods to ensure cross-cohort 
reproducibility. Advanced statistical models that can robustly 
adjust for the confounding factors mentioned above, to isolate the 
pure AD-related structural trajectory. 

Structural biomarkers in AD frameworks 

Against the evolving backdrop of Alzheimer’s disease 
diagnostic criteria, structural changes in GM and WM have 
emerged as objective imaging biomarkers of neurodegeneration, 
progressively weaving their way into the fabric of mainstream 
diagnostic frameworks (Reas et al., 2018). Within the ATN 
(Aβ/Tau/Neurodegeneration) classification system, GM atrophy 
and WM microstructural injury are principally categorized under 
the “N” domain, supplying critical evidence of neuronal demise to 
substantiate clinical diagnosis (Jack et al., 2018). Specifically, GM 
atrophy within the medial temporal lobe–including the entorhinal 
cortex and hippocampus–has been formally incorporated into the 
NIA-AA diagnostic criteria as a characteristic neuroimaging 
hallmark of AD (Heinzinger et al., 2023). Although WM 
alterations–such as reduced fractional anisotropy in the cingulum 
bundle and fornix–have not yet been fully enshrined in formal 
guidelines, they are increasingly recognized as vital elements for 
disease subtyping and prognostic evaluation, illuminating the 
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earliest disruptions in large-scale neural networks (Chen et al., 
2023). Yet, the integration of these structural biomarkers is not 
without its challenges. First, as representatives of the “N” category, 
GM and WM alterations exhibit limited specificity; analogous 
patterns of structural decline may also manifest in vascular 
cognitive impairment or primary tauopathies, necessitating their 
interpretation within a multimodal context that incorporates Aβ 
and tau biomarkers. Second, structural biomarkers and core AD 
pathologies engage in a complex spatiotemporal dialogue: GM 
atrophy patterns frequently mirror the topographical spread of 
tau pathology as captured by Braak staging (Heinzinger et al., 
2023), whereas WM injury appears to arise from a confluence 
of Aβ deposition, vascular compromise, and tau-driven axonal 
degeneration (Morrison et al., 2023). Moreover, translational 
eorts are hampered by persistent methodological variability– 
divergent MRI acquisition protocols, analytical pipelines, and 
diagnostic thresholds across institutions continue to undermine 
the reproducibility and broad clinical applicability of GM/WM 
biomarkers. 

Multimodal AI stratification 

The integration of neuroimaging and plasma biomarkers 
significantly enhances the accuracy of disease staging across 
the Alzheimer continuum (Dark et al., 2024). The distinct 
structural and functional alterations identified during preclinical 
and subjective cognitive decline (SCD) phases oer a potential 
roadmap for stratifying and targeting high-risk individual (Jobin 
et al., 2023; Leandrou et al., 2018). Specifically, individuals 
categorized based on our MRI-based criteria may be directed into 
a tiered management pathway: those exhibiting isolated default 
mode network (DMN) functional alterations (preclinical phase) 
could be enrolled in more frequent cognitive surveillance (Cui 
et al., 2025), whereas those showing additional WMH may be 
prioritized for intensive management of vascular risk factors 
(e.g., hypertension, diabetes) and enrolled in structured lifestyle 
interventions (Skampardoni et al., 2024). 

Looking forward, an AI-augmented clinical workflow 
cholds significant potential to enhance the early diagnosis and 
stratification of patients along the Alzheimer’s disease continuum 
while oering data-driven clinical decision support (Frizzell 
et al., 2022; Yu et al., 2024). In such a setting, clinicians would 
upload patient MRI data including T1-weighted, diusion tensor 
imaging (DTI), and resting-state functional MRI (rs-fMRI) to 
an AI platform integrated with the hospital information system. 
This system would automatically generate a comprehensive report 
within minutes, quantifying AD risk probability, suggesting a 
disease phase, and highlighting key abnormal regions–such as 
entorhinal cortical thinning, hippocampal volume loss, and fornix 
integrity decline–along with actionable clinical next steps, thereby 
establishing AI as a powerful tool for auxiliary screening and triage. 

Limitations and future directions 

Several limitations in the current literature warrant careful 
consideration. First, significant methodological heterogeneity exists 

across studies, including variations in MRI scanner platforms, 
field strengths, acquisition parameters, and processing pipelines, 
which directly impact the comparability and reproducibility 
of structural measurements. Second, the substantial clinical 
and biological heterogeneity within AD spectrum populations– 
including dierences in age at onset, genetic background, 
comorbidities (particularly cerebrovascular disease), and cognitive 
reserve–creates considerable noise that may obscure distinct 
spatiotemporal patterns of GM/WM alterations. Third, many 
studies, particularly those focusing on rare subtypes or deep 
phenotyping, are constrained by limited sample sizes, reducing 
statistical power for robust subgroup analyses. Fourth, the 
potential for publication bias toward positive findings may 
skew our understanding of the true eect sizes and spatial 
distribution of structural changes. Finally, while our review 
highlights the promise of integrated biomarkers, the practical 
implementation of multimodal data fusion presents substantial 
challenges. These include technical issues in data harmonization, 
the need for advanced statistical methods capable of handling 
high-dimensional, non-linear relationships, and the current lack 
of standardized frameworks for validating and interpreting such 
integrated models. 

Conclusion 

In conclusion, this review synthesizes compelling evidence 
that the integration of multimodal neuroimaging with clinical 
assessments and artificial intelligence holds significant potential for 
transforming Alzheimer’s disease diagnosis and management. The 
characteristic spatiotemporal patterns of gray and WM alterations 
across the disease continuum oer valuable biomarkers for early 
detection, stratification, and progression monitoring. However, 
the translation of these advanced methodologies into routine 
clinical practice faces substantial practical challenges that must be 
acknowledged. These include the significant costs associated with 
advanced MRI protocols, the pressing need for standardization 
across imaging platforms and sites, the considerable heterogeneity 
in patient populations that complicates generalizability, and the 
limited accessibility of advanced analytical tools in resource-
constrained settings. Future eorts must therefore focus not only 
on technological refinement but also on developing cost-eective, 
standardized, and accessible implementation frameworks. Only 
through addressing these translational barriers can the full potential 
of integrated neuroimaging and AI approaches be realized in 
diverse clinical contexts, ultimately improving patient care across 
the Alzheimer’s disease spectrum. 
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