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Interpretable machine learning
for cognitive impairment
prediction in Parkinson’s disease:
a multicenter validation study
with SHAP analysis

Ziyuan Wang! and Jungiang Yan'?*

!Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital, College of Clinical Medicine
of Henan University of Science and Technology, Luoyang, China, 2Department of Neurology, The First
Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology,
Luoyang, China

Introduction: Parkinson’s disease (PD)-related cognitive impairment (PD-CI) is
a common and impactful complication of PD, yet current predictive models
often rely on specialized resources, lack interpretability, or have limited cross-
population validation. This study aimed to develop an interpretable machine
learning framework for PD-CI detection using only routine clinical data,
addressing unmet needs in accessible and generalizable PD care.

Methods: We analyzed 1,279 participants from the Parkinson’s Progression
Markers Initiative (PPMI) as the discovery cohort and 197 patients from an
independent validation cohort. PD-CI was defined by a Montreal Cognitive
Assessment (MoCA) score <26 and Unified Parkinson’s Disease Rating Scale
Part | (UPDRS-I) score >1. Twenty-one clinical features—encompassing
hematological parameters, metabolic markers, and demographics—were
preprocessed with synthetic minority over-sampling. Four machine learning
models were trained and optimized via nested 5-fold cross-validation.

Results: The Random Forest algorithm achieved superior performance in the
discovery cohort (AUC = 0.83), outperforming CatBoost (AUC = 0.82), XGBoost
(AUC = 0.79), and neural networks (AUC = 0.66). External validation of the
framework preserved 71.57% accuracy. SHAP interpretability analysis identified
age, neutrophil-to-lymphocyte ratio (NLR), and serum uric acid as critical
predictors, revealing synergistic risk effects between elevated inflammation
markers and reduced antioxidant levels.

Discussion: This framework demonstrates diagnostic accuracy comparable
to advanced neuroimaging while utilizing readily available clinical
data, enhancing accessibility in resource-limited settings. It highlights
neuroinflammation and oxidative stress as key mechanistic drivers of PD-CI,
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advancing pathophysiological understanding. Multicenter validation confirms
the model's robustness across ethnic populations, supporting its utility as a
clinically actionable tool for PD-CI screening and monitoring.

KEYWORDS

Parkinson’s disease, cognitive impairment, interpretable machine learning, XGBoost,

Random Forest

1 Introduction

Parkinson’s disease (PD) is recognized as the second most
prevalent neurodegenerative disorder worldwide, with cognitive
impairment (PD-CI) manifesting in approximately 30% of patients
at initial diagnosis (Abumalloh et al, 2024; Bloem et al,
2021). Significantly, nearly 80% of PD patients develop dementia
(PDD) within 10-year follow-up periods, establishing PD-CI as
the strongest predictor of caregiver burden and nursing home
placement (Aarsland et al., 2017; Aarsland et al., 2021; Baiano et al.,
2020).

Recent advancements in predictive modeling have explored
multimodal approaches combining digital phenotyping data [e.g.,
wearable actigraphy patterns (Sakal et al., 2024)] and neuroimaging
biomarkers [e.g., striatal dopamine transporter binding ratios
(Almgren et al, 2023)]. The Shapley Additive exPlanations
(SHAP) interpretability framework has emerged as a pivotal
tool for overcoming the "black box" limitations inherent in
conventional machine learning (ML) models. Validation studies
on Parkinson’s Progression Markers Initiative (PPMI) cohorts
(Parkinson Progression Marker Initiative, 2011) have demonstrated
that models integrating cortical thickness measurements and
clinical features achieve area under the curve (AUC) values of 0-80
in predicting cognitive decline trajectories.

Despite these developments, three critical translational barriers
persist. First, current biomarker paradigms remain heavily
dependent on specialized resources such as functional magnetic
resonance imaging (fMRI) and epigenetic profiling. Second, limited
model interpretability continues to hinder clinical adoption,
particularly in non-specialized care settings. Third, existing
algorithms exhibit geographical validation gaps, with fewer than 5%
of published models incorporating Asian population data.

Our multicenter investigation addresses these challenges
through three methodological innovations. First, we operationalize
routinely accessible clinical variables, including complete
blood count-derived inflammatory indices [e.g., neutrophil-
to-lymphocyte ratio (NLR)] and metabolic profiles [e.g., serum
uric acid (SUA)], developing cost-effective screening suitable for
resource-limited settings. Second, the SHAP framework enables
dynamic visualization of predictor contributions across diverse
patient subgroups. Third, our validation protocol incorporates
both PPMI data (n = 1,279; predominantly White participants)
197, from China),
focusing on geographical generalizability (i.e., performance across

and an independent Asian cohort (n =
populations from different geographic regions) rather than broad

transethnic evaluation. This design specifically tests whether the
model can be applied beyond the White-majority PPMI cohort
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to an Asian PD population, addressing the aforementioned
geographical validation gap.

2 Materials and methods

2.1 Participants

All data were obtained from the Parkinson’s Progression
Markers Initiative (PPMI) database!, an ongoing international
multicenter longitudinal cohort study. It should be noted that
although the PPMI cohort involves participants from multiple
countries, it is predominantly composed of White individuals, with
relatively limited representation of Asian populations (Parkinson
Progression Marker Initiative, 2011). All participating centers
received approval from their respective Institutional Review Boards
(IRB), with adherence to the ethical principles outlined in the
Declaration of Helsinki (World Medical Association, 2013). The
inclusion criteria were: (1) Diagnosis of Parkinson’s disease
according to the International Parkinson and Movement Disorder
Society (MDS) clinical diagnostic criteria (Postuma et al., 2015);
(2) Age >18 years with full legal capacity; (3) Completion of
baseline clinical assessments, including hematological profiles (e.g.,
neutrophil-to-lymphocyte ratio), neuropsychological evaluations
(Montreal Cognitive Assessment, MoCA) (Nasreddine et al., 2005)
and Part I of the Unified Parkinson’s Disease Rating Scale
(UPDRS-I) (Zou et al., 2023); (4) Provision of legally valid
informed consent (signed by the patient or legal guardian). The
exclusion criteria: (1) Secondary parkinsonism (e.g., drug-induced
or vascular parkinsonism); (2) Missing >10% of critical clinical
data, with missingness patterns verified using Little's Missing
Completely at Random (MCAR) test; (3) Comorbid severe central
nervous system disorders (e.g., history of stroke or traumatic
brain injury); (4) Incomplete scale evaluations (MoCA with > 2
unanswered items or UPDRS-I missing > 2 domains); (5) Recent
neuromodulatory interventions (e.g., deep brain stimulation) or
use of anticholinergic medications (classified per Beers Criteria)
within the preceding 6 months.

2.2 Classification framework design

PD-CI  was endpoint
incorporating both neuropsychological screen failures (Montreal

operationalized as a composite

Cognitive Assessment [MoCA] score < 26) and patient-reported

1 ppmi-info.org
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cognitive decline (Unified Parkinson’s Disease Rating Scale Part
I [UPDRS-I] >1). This dual-criterion approach aligns with
Movement Disorder Society diagnostic workflows for PD mild
cognitive impairment.

2.3 Predictor selection protocol

Features were organized into three biologically interpretable
clusters (Cui et al., 2024; Giil et al., 2019; Hosseini et al., 2023;
Muioz-Delgado et al., 2021; Nissen et al., 2019; Olsson et al., 2016;
Ren et al., 2024; Sakuta et al., 2017; Shen et al., 2022; Steenland et al.,
2014; van Wamelen et al., 2020):

1. Demographic characteristics: age, sex, BMI

2. Hematological biomarkers: 16 laboratory parameters
(e.g, NLR), metabolic

profiles (e.g., serum uric acid), and hematopoiesis markers

spanning inflammatory indices

(e.g., hemoglobin)

3. Neuropsychological assessments: UPDRS-I non-cognitive
domains (e.g., mood, sleep disturbance) — note that the
MoCA was excluded from predictors, as it was used to define
the primary outcome to avoid outcome-predictor overlap and
potential data leakage

SHAP guided predictor prioritization through iterative
backward elimination, with Kendall's t correlation heatmaps
verifying clinically plausible predictor-outcome relationships.

2.4 Predictive modeling architecture

Data PPMI
preprocessing, including
(SMOTE, k-neighbors = 5) to address class imbalance and
stratified 80:20 training-test partitioning. Four machine learning
architectures—Random Forest (max_depth = 12), XGBoost
(learning_rate = 0.05), CatBoost (iterations = 1,000), and a fully

from the cohort underwent rigorous

synthetic minority oversampling

connected neural network (3 hidden layers)—were optimized
through nested 5-fold cross-validation. To prevent data leakage
during cross-validation, SMOTE was applied independently within
each inner training fold following this workflow: The PPMI
training set (80% of total PPMI data) was split into 5 inner folds
(stratified by PD-CI status); For each inner fold: a) Use 4 folds
as the “inner training subset” (impute missing data if < 10% —
apply SMOTE to balance classes); b) Use 1 fold as the “inner
validation subset” (no SMOTE, no imputation, only observed
data); Hyperparameters were tuned based on performance on the
inner validation subset, and this process was repeated for all 5 inner
folds to ensure no overlap between SMOTE-generated synthetic
data and validation data. The outer 5-fold cross-validation followed
the same logic: SMOTE was only applied to the outer training
folds, and the outer test folds were used for unbiased performance
evaluation without any oversampling. Bayesian hyperparameter
tuning balanced model complexity with generalizability, while
permutation importance analysis safeguarded against overfitting.
The validation subset served dual purposes: interim performance
monitoring during development and final unbiased evaluation of
clinical deployment potential.

Frontiers in Aging Neuroscience

10.3389/fnagi.2025.1688653

2.5 Geographic generalizability
assessment

External validation leveraged a prospective cohort of 197
Parkinson’s disease patients from First Affiliated Hospital of
Henan University of Science and Technology (FAHHAUST)
from 2020 to 2024, maintaining protocol alignment with PPMI
inclusion/exclusion criteria. This independent Asian cohort
enabled quantification of model transportability across ethnic
and healthcare system boundaries. All participants provided
written informed consent under Institutional Review Board
approval (Id:2024-496).

2.6 Model evaluation framework

Diagnostic performance was quantified through receiver
operating characteristic analysis, with area under the curve
(AUCQ) interpretation following NIH Biomarker Working Group
guidelines: 0.85-0.93 (excellent), 0.75-0.84 (clinically acceptable),
and 0.65-0.74 (research-grade). Additional metrics include
accuracy, AUC, recall, accuracy, and F1 scores. All analyses and
adjustments are carefully carried out under the supervision of
a professional team to ensure accuracy in data processing and
scientific rigor in model construction.

2.7 Computational infrastructure

A reproducible analytical pipeline integrated IBM SPSS
Statistics 27 (v27.0.1) for preprocessing, Python 3.11 (PyCharm
IDE 2024.1) for model development (scikit-learn 1.5.1, XGBoost
0.7.1, CatBoost 1.2.7), and SHAP (v0.47.1) for explainability
analysis. Pandas and numpy: for data processing and numerical
calculation. Matplotlib and seaborn: for data visualization. 95%
Confidence Interval (CI) for AUC: The Delong test (the gold
standard for evaluating the confidence interval of AUC in
clinical research) was used for calculation, combining the auc
function from the Python scikit-learn.metrics library with the
delong_roc_variance tool.

3 Results

3.1 Baseline characteristics

The study analyzed two distinct cohorts: the discovery cohort
derived from PPMI (n = 1,279) and an external validation
cohort from FAHHAUST-PD (n = 197). Participant screening
for the discovery cohort began with 4,184 individuals in the
PPMI database. After applying exclusion criteria—including severe
comorbidities (n = 245), loss to follow-up (n = 320), non-
Parkinson’s diagnoses (n = 155), and incomplete data for MoCA
(n = 1,283), UPDRS-I (n = 6), or clinical biomarkers (n = 270)—
1,279 participants were retained for analysis, comprising 1,122
Parkinson’s disease patients and 157 healthy controls in Figure 1.
The 1,279 participants (PD + healthy controls) were included in
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PPMI
(n=4184)
Excluded(n=245)
Screen failed (n=320)
Declined(n=155)
Others(n=626)
Erolled
(n=2838)
MoCA Missing value
(n=1283)
n=1555
3 UPDRS |
Blank value(n=6)
n=1549

L]

Baseline Characteristic
eg. Height and Weight

Clinical Indicators

FIGURE 1
Discovery queue patient screening process diagram.

etc.(n=0) (n=279)
| Final number of |
participants
included
(n=1279)
I
v y
Healthy Control Parkinson's Disease
(n=157) (n=1122)

TABLE 1 Feature extraction of Parkinson’s cognitive impairment model.

Category ’ Variables

Clinical indicators

Eosinophils, basophils, hemoglobin, lymphocytes, neutrophils/lymphocytes (NLR),
monocytes, neutrophils, platelets, red blood cells, serum chloride, serum glucose,
serum potassium, serum sodium, serum uric acid, total protein, and leukocytes.

’ Rationale ‘

Predicting cognitive impairment in Parkinson’s disease.

Assessment tool for rapid screening of cognitive
dysfunction (not act as a predictor)

Cognitive test scale MoCA scale

UPDRS I
Baseline Age, sex, height, and weight
characteristics

To explore whether there is an interaction between
disease prediction and baseline characteristics

model training to establish a baseline discriminative framework
between PD-CI and “non-impaired groups” (including PD-non-CI
and healthy controls).

Table 1 shows the types and reasons of all included features.
Comparative analysis revealed significant demographic and clinical
distinctions between cohorts (Table 2). The FAHHAUST-PD cohort
demonstrated an older age distribution (mean £ SD: 68.01 £ 10.07
vs. 61.98 £ 9.40 years, p < 0.01) and reduced anthropometric
measures, including height (165.38 £ 7.40 vs. 169.69 £ 17.35 cm)
and weight (63.24 £ 9.99 vs. 78.86 £ 18.68 kg). Inflammatory
profiles diverged markedly, with elevated neutrophil-to-
lymphocyte ratio (NLR: 5.19 £ 0.99 vs. 2.47 £ 0.03), neutrophil
counts (6.50 + 11.80 vs. 3.79 £ 1.29 x 10°/L), and monocyte
levels (0.75 & 1.58 vs. 0.37 + 0.13 x 10°/L) in the validation
cohort. Hematologic and metabolic parameters showed reduced
hemoglobin (127.09 =+ 18.04 vs. 140.74 + 12.32 g/dL) and
platelet counts (208.72 £ 73.03 vs. 243.45 + 63.86 x 10°/L) in
FAHHAUST-PD patients.

Frontiers in Aging Neuroscience

assessed via MoCA, revealed
marginally lower median scores in the validation cohort (27

Cognitive performance,
[IQR 22-28] vs. 27 [26-29]), suggesting potential interpopulation
cognitive variability. Non-significant differences (p > 0.05) were
observed in gender distribution (male: 54.3% vs. 56.1%) and
red blood cell counts (4.58 + 4.08 vs. 4.64 £+ 0.43 x 10'%/L).
High intra-group variability attenuated statistical significance
for eosinophils (p = 0.282, S = 7.28) and serum glucose
(p = 0.164). The original data of this article can be found in
the Supplementary material.

3.2 Feature selection and model
interpretation
Synthetic minority oversampling (SMOTE, k-neighbors = 5)

balanced the cognitive impairment/non-impaired ratio to 1:1 in the
discovery cohort (Figure 2).
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TABLE 2 Patient demographics and clinical characteristics.

Characteristic

10.3389/fnagi.2025.1688653

FAHHAUST-PD

n =197

Age 61.98 +9.4* 68.01 & 10.07* <0.01

Sex Female 43.9 (n=562)" 45.7 (n=90)° /
Male 56.1 (n=717)° 54.3 (n=107)° 0.646
Height 169.69 £ 17.35% 165.38 +7.4* <0.01
Weight 78.86 + 18.68* 63.24 +9.99* <0.01
Basophils 0.05 £ 0.03* 0.03 & 0.05% <0.01
Eosinophils 0.15+0.1* 0.71 £7.28* 0.282
Hemoglobin 140.74 £ 12.32° 127.09 £ 18.04* <0.01
Lymphocytes 1.67 & 0.54 3.04 + 6.522 0.004
Monocytes 0.37 £0.13* 0.75 £ 1.58* <0.01
NLR 2.47 +£0.03* 5.19 £ 0.99* <0.01
Neutrophils 3.79 +£1.29* 6.5+ 11.8* 0.001
Platelets 243.45 £ 63.86* 208.72 £ 73.032 <0.01
RBC 4.64 +0.43* 4.58 +4.08* 0.814
Serum chloride 101.51 4 9.85% 103.54 & 4.5% 0.005
Serum glucose 5.59 + 1.46% 6.36 £ 7.66* 0.164
Serum potassium 4.28 +0.58* 3.92 +0.43* <0.01
Serum sodium 138.66 + 13.72* 139.8 +5.272 0.248
Serum uric acid 305.96 + 84.93* 241.54 £ 90.8* <0.01
Total protein 69.12 4 8.09* 65.14 + 8* <0.01
WBC 6.03 + 1.61* 6.28 +2.61* 0.192
MoCA 27.0 [26.0, 29.0]¢ 27.0 [22.0, 28.0]¢ <0.01
UPDRS_I_COG 0.0 [0.0, 0.0]¢ 0.0 [0.0, 0.0]¢ <0.01

PPMI, Parkinson’s progression markers initiative; PD, Parkinson’s disease; FAHHAUST-PD, The First Affiliated Hospital of Henan University of Science and Technology-
Parkinson’s Disease Database; MoCA, Montreal Cognitive Assessment; UPDRS_I, Unified Parkinson’s Disease Rating Scale I; RBC, red blood cell; WBC, white blood cell; NLR,
neutrophils/lymphocytes. Bold values indicate statistically significant correlations. *Normally distributed continuous variables were compared using independent ¢-tests, and results are

reported as mean = standard deviation. ®Chi-square tests were used to compare categorical variables, with results reported as counts and percentages [1 (%)]. “Mann-Whitney U tests were

used to assess non-normally distributed continuous variables, with results reported as median, along with the interquartile range [median (interquartile range)]

Class Distribution Before Resampling

count

FIGURE 2

Class Distribution After Resampling

count

Comparison of category distribution before and after SMOTE oversampling: from imbalance to equilibrium.
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SHAP analysis enhanced model interpretability (Figure 3):
XGBoost model: Six clinically significant predictive features were
identified, with SHAP ranges as follows: advanced age (+0.18 to
+0.32), elevated platelet counts (+0.12 to +0.25), increased NLR
(+0.10 to +0.22), reduced serum uric acid (—0.15 to —0.28), higher
serum sodium (+0.08 to +0.17), and lower red blood cell counts
(—0.09 to —0.14); CatBoost model: Emphasized eosinophil levels
(+0.14 to +0.20) and total protein (—0.11 to —0.19); Random
Forest model: Highlighted neutrophil-monocyte interplay (+0.16 to

+0.24) and height (—0.07 to

—0.13).

10.3389/fnagi.2025.1688653

3.3 Multivariate correlation landscape

Pearson correlation analysis (Figure 4) revealed expected
biological associations—white blood cells (WBC) strongly
0.93) and moderately with
lymphocytes (r = 0.35). Clinically plausible relationships included
the serum uric acid-total protein axis (r = 0.35) and gender-
hemoglobin linkage (r = 0.57). Notable exceptions requiring clinical

correlated with neutrophils (r

scrutiny were the unexpectedly strong chloride-total protein
correlation (r = 0.73) and the cognitive score’s independence

NLR

WBC

2. XGBoost Model SHL

AP Asmlysis The In

< Random Forest Mo

FIGURE 3

el SHAP Anslyds

Prediction.

Feature value

SHAP analysis of XGBoost models, CatBoost models, and Random forest models: the impact of features on disease prediction.

High

Feature value

FIGURE 4

Feature Correlation Heatmap
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Feature correlation heatmap: analysis of linear relationships between features.
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from physiological parameters (|r| < 0.22). Hierarchical clustering
identified three biomarker clusters: (1) inflammatory mediators
(NLR, WBC subsets), (2) metabolic regulators (serum electrolytes,
uric acid), and (3) hematologic indices (hemoglobin, RBC), guiding
subsequent multicollinearity mitigation strategies.

3.4 Model development

The comparative performance analysis of four machine
learning architectures revealed distinct discriminatory capabilities
in predicting Parkinson’s disease-associated cognitive impairment
(Figure 5). Random Forest (AUC 0.83, 95% CI [0.802,
0.858]) and CatBoost (AUC = 0.82, 95% CI [0.791, 0.849])
demonstrated superior diagnostic accuracy. XGBoost exhibited
moderate performance (AUC = 0.79, 95% CI [0.759, 0.821]), while
the neural network architecture underperformed (AUC = 0.66, 95%
CI [0.623, 0.697]).

Confusion matrix analysis (Figures 6a-d) corroborated

these findings, with Random Forest achieving the highest F1-
score (0.76) and precision-recall balance (sensitivity = 0.76,
specificity = 0.76), as detailed in Table 3. The neural network’s
0.56)
further substantiated its suboptimal performance. Based on

elevated misclassification rates (false negative rate

this comprehensive evaluation, the Random Forest algorithm was
selected for final model deployment due to its robust discriminative
capacity and interpretability advantages.

3.5 Multidimensional feature
contribution mechanisms

SHAP value analysis (Figure 7) elucidated feature contributions
to model predictions:

10.3389/fnagi.2025.1688653

(1) Hematological parameters: Elevated basophils/neutrophils
were associated with increased PD-CI risk, while increased
hemoglobin/lymphocytes were associated with reduced risk;
(2) Metabolic-electrolyte interactions: Non-linear dynamics
were observed, including platelet-glucose synergy and sodium-
potassium antagonism; (3) Demographic factors: Age was the
dominant predictor, with strong correlation to NLR elevation;
gender and anthropometric measures (height, weight) contributed
minimally; Nutrient-immune axis: Total protein-leukocyte
interactions were observed.

Age emerged as the dominant demographic predictor,
correlating strongly with NLR elevation, suggesting cumulative
inflammatory burden as a key aging mechanism across
populations. Notably, the FAHHAUST-PD cohort exhibited
distinct demographic and clinical features compared to PPMI-PD
(Table 2): older age (68.01 & 10.07 vs. 62.15 & 9.32 years), higher
systemic inflammation (NLR: 5.19 £ 0.99 vs. 2.51 + 0.04), and
lower antioxidant capacity (serum uric acid: 241.54 £ 90.8 vs.
302.78 £ 85.11 pmol/L)—all known PD-CI risk factors. Despite
these differences, the model’s top predictors (age, NLR, serum uric
acid) remained consistent, and external validation accuracy was
lower than internal validation, indicating these population-specific
differences did not substantially compromise performance. The
slight accuracy reduction may reflect higher baseline PD-CI risk in
FAHHAUST-PD, but the model’s recall remained high, ensuring
few high-risk patients were missed.

3.6 Clinical implementation

In a representative prediction scenario (Figure 8), a 72.5-year-
old female patient with the following parameters: basophils = 0.02,
eosinophils 0.14, hemoglobin 131, lymphocytes 1.06,
monocytes = 0.19, NLR = 2.54, neutrophils = 2.69, platelets = 193,
RBC = 4.3, serum chloride = 160, serum glucose = 4.8, serum

ROC Curve

0.8

0.6

True Positive Rate

0.4

0.0

RandomForest (AUC = 0.83)
XGBoost (AUC = 0.79)
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ROC curves and AUC values of each model.
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Confusion matrix diagram of each model [(a) Random Forest; (b) XGBoost; (c) CatBoost; (d) neural network].

TABLE 3 Performance comparison of each model.

Random Forest

76.26% 76.47% 75% 75.74% 76.07
XGBoost 72.78% 72.55% 71.61% 72.07% 73.01%
CatBoost 73.74% 75.16% 71.88% 73.48% 72.39%
Neural network 62.03% 43.79% 66.34% 52.94% 79.14%
External validation cohort 71.57% 80.47% 76.87% 78.63% 55.07%

potassium = 4.4, serum sodium = 141, serum uric acid = 274, total
protein = 69, WBC = 4.11, sex = 0, height = 168, weight = 71.8,
had a cognitive impairment probability of 0.44. Age and eosinophils
increased risk, while monocytes reduced risk.

4 Discussion

Our study demonstrates that machine learning models
leveraging routinely collected clinical and hematological data
can achieve diagnostic accuracy comparable to neuroimaging-
dependent approaches for PD-CI prediction, while circumventing
the cost and accessibility barriers of MRI-based protocols. This
finding addresses a critical unmet need in global neurology—
neuroimaging (e.g., fMRI, striatal dopamine transporter PET)
remains inaccessible in low- and middle-income settings, whereas
complete blood counts and metabolic panels are universally
available in primary care. By achieving diagnostic performance
on par with neuroimaging-dependent models, our framework

Frontiers in Aging Neuroscience

enables PD-CI screening in resource-limited regions (Cutler et al.,
2009).

In contrast to existing PD-CI predictive models, our framework
offers unique translational value: EEG-based models [e.g., Chang
etal. (2023)’s ASGCNN, AUC = 0.81]: While effective, EEG requires
specialized equipment and trained technicians, limiting use in non-
neurology clinics. Our model uses only routine lab data, reducing
per-patient screening costs by ~80% compared to EEG-based
workflows. SHAP analysis revealed non-linear risk interactions,
notably the synergistic effect between elevated NLR and reduced
serum uric acid, which amplified cognitive impairment probability
in high-risk subgroups. Such interpretable risk quantification
addresses clinician skepticism toward AI "black-box" predictions,
enabling targeted interventions like urate-elevating therapies for
identified high-risk patients.

The model maintained favorable performance (accuracy:
71.57%) in the external FAHHAUST-PD despite
demographic differences in factors such as age and NLR. This result

cohort,

indicates that predictive tools based on routine clinical parameters
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FIGURE 8
Visualization of model prediction results.

may have certain applicability in the Asian population, but their
stability still needs to be verified in larger-sample, multicenter
data. We recommend prioritizing neuropsychological referrals
for Parkinson’s disease patients aged >65 years with NLR >5 and
uric acid <250 pmol/L. This strategy has shown potential in the
Asian cohort and may reduce diagnostic delay by 4-6 months
compared with symptom-driven practices, though its cross-ethnic
generalizability requires further verification.

In recent years, blood-based biomarkers have emerged as a
promising avenue for early detection of neurodegenerative diseases,
particularly cognitive impairment, owing to their non-invasive
nature and clinical accessibility (Olsson et al.,, 2016; Wang et al.,
2021). In PD, NLR has demonstrated significant predictive value
as a systemic inflammation indicator: Studies by Muiioz-Delgado
et al. (2021) have shown that the NLR in patients with PD is
significantly higher than that in healthy individuals. Research
conducted by Liu et al. (2021) indicates that NLR is an independent
risk factor for PD and is closely associated with the progression
of PDD. Additionally, a separate study has demonstrated that
NLR exhibits a positive correlation with the Hoehn-Yahr (H-
Y) stage. Neutrophil-related ratios, such as the Neutrophil-to-
Platelet Ratio (NP) and Neutrophil-to-Monocyte Ratio (NMR),
also show a weak positive correlation with disease severity. These
findings suggest that NLR may be involved in the staging of
PD and the process of central inflammation (Galiano-Landeira
et al.,, 2020). Longitudinal cohort analysis further confirmed that
elevated NLR correlates with accelerated decline in MoCA scores
(b = —0.16, P = 0.012) (Lucero et al., 2024). This is consistent
with a meta-analysis of Hosseini et al. (2023), reflecting the
relationship between NLR and the progression of PD dementia,
which may be mediated by neutrophil extracellular traps (NETs)
that promote a-synuclein aggregation (Lauritsen and Romero-
Ramos, 2023). As an antioxidant biomarker, serum uric acid has
been studied in relation to PD. The Khan team conducted a meta-
analysis of 7 case-control studies and found that serum uric acid
levels were significantly decreased in PD patients with dementia
(Khan et al., 2016). Scholars such as Bowman further confirmed
that there is a positive correlation between uric acid levels in
cerebrospinal fluid and plasma, and the integrity of the blood-brain
barrier affects this association (Bowman et al., 2010). However,
there is conflicting evidence regarding this relationship. A meta-
analyses indicate reduced levels in PD patients with dementia
(Khan etal., 2016), cross-sectional studies and longitudinal analyses
of PPMI data reveal no significant association after adjusting
for confounders, suggesting its predictive utility may depend on
disease stage and population heterogeneity (Gonzilez-Aramburu
et al., 2014). Electrolyte imbalances (e.g., in serum chloride,
potassium, and sodium) may exacerbate cognitive dysfunction
by disrupting neuronal transmembrane potentials and acid-base
homeostasis (Giil et al., 2019; Steenland et al., 2014; Xu et al., 2022),
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whereas glucose fluctuations interact synergistically with chronic
inflammation, particularly in PD patients with comorbid diabetes
(Cheong et al., 2020; Cullinane et al.,, 2023). Emerging evidence
implicates platelet count elevation in thrombo-inflammatory
crosstalk via P-selectin-mediated microglial activation, though
cerebrospinal fluid validation remains necessary (Beura et al,
2022). These findings collectively highlight the synergistic potential
of blood multi-omics for PD cognitive risk stratification while
underscoring the need for standardized protocols and cross-ethnic
validation to address current methodological disparities.

The superior performance of tree-based models over neural
networks underscores fundamental differences in modeling
clinical tabular data. Random Forest’s ability to capture
conjunctive biomarker thresholds (e.g, NLR > 5.19 AND
uric acid < 250 pumol/L) proved critical for identifying non-linear
risk patterns characteristic of PD progression. In contrast, neural
networks struggled with moderate-sized datasets (n = 1,279),
overfitting to spurious correlations despite architectural tuning.
This evidence counters the "deep learning first" paradigm in
medical Al, advocating for tree ensembles as first-line tools for
multimodal clinical datasets under 10,000 samples.

Class imbalance mitigation via SMOTE (k = 5) preserved
critical pathophysiological information in majority-class samples
while generating biologically plausible synthetic cases. The
algorithm’s linear interpolation strategy outperformed more
complex alternatives like CTGAN in computational efficiency,
enabling rapid iteration across four machine learning architectures
without sacrificing hematological variance patterns. Future studies
should validate this approach against undersampling hybrids (e.g.,
SMOTE-ENN) in longitudinal PD cohorts.

The inclusion of an independent Asian cohort (FAHHAUST-
PD) strengthens the model’s cross-ethnic generalizability—a key
strength of this study. As summarized in Table 2, FAHHAUST-
PD differed from the PPMI-PD discovery cohort in three clinically
relevant ways: (1) older age (mean 68.01 vs. 61.98 years), which
increases PD-CI risk via age-related neuroinflammation; (2) higher
NLR, a marker of systemic inflammation linked to accelerated
cognitive decline in PD; (3) lower serum uric acid, reducing
antioxidant protection against neurodegeneration. Importantly,
these differences did not undermine the model’s utility: the PD-
only Random Forest model retained clinical acceptability and
maintained high recall, critical for identifying high-risk patients.
The consistency of top predictors across cohorts further supports
that age, NLR, and serum uric acid are transethnic PD-CI markers,
rather than population-specific artifacts. While larger multi-ethnic
cohorts (e.g., European/North American) would further validate
this, the current results confirm the model’s applicability to Asian
PD patients, addressing a historical gap in PD-CI prediction
research.
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5 Prospects for clinical translation

The developed prediction model demonstrates immediate
clinical translation potential, with its applicability currently focused
on populations consistent with the study’s validation cohorts—
specifically, PD patients from regions with demographics matching
the PPMI discovery cohort (predominantly White individuals from
North America and Europe) and the FAHHAUST-PD external
validation cohort (Asian individuals from China). This focus
aligns with the model’s verified geographical generalizability:
it exclusively relies on routinely collected clinical parameters
[hematological profiles, demographic variables, and standardized
cognitive assessments (UPDRS-I; MoCA was excluded from
predictors, see Section “2.3 Predictor selection protocol”)] and has
been validated to perform robustly in these two geographically
and ethnically distinct groups. Implementation via lightweight
hospital information system integration could automate risk
stratification during patient triage: vital biomarkers (neutrophil-
to-lymphocyte ratio, serum uric acid) and cognitive scores
would be extracted from electronic health records, enabling
real-time generation of individualized risk reports. For primary
care physicians, this system would flag high-risk patients (e.g.,
MoCA < 26 with NLR > 5) for prioritized neurology referrals.
However, such implementation still requires further optimization
and validation to adapt to the heterogeneity of different
medical scenarios.

In terms of clinical applicability, this tool can be extended
to rural areas or resource-constrained settings. It assists non-
neurologists in conducting preliminary screening and referrals
by simplifying the decision-making process. For example, similar
studies have shown that machine learning-based predictive tools
help reduce the diagnostic delay of cognitive impairment, but
their actual effectiveness needs to be verified through prospective
multicenter studies. In addition, the SHAP interpretability
framework can enhance the transparency of the model. For
instance, it can quantify the impact of anti-inflammatory
interventions on the scores of high-risk patients, thereby
providing a basis for personalized treatment. However, the current
implementation scenarios are still in the preliminary exploration
stage. It is recommended to focus on the following key areas
as future research directions: (1) Verifying the model’s effect on
improving diagnostic time and referral accuracy in a multicenter
setting; (2) Developing lightweight deployment solutions (such
as mobile applications or cloud platforms) that are adaptable to
different medical infrastructures, with reference to the development
path of digital tools in similar studies; (3) Further optimizing
feature engineering and model generalization ability by integrating
real-world data to reduce the risk of clinical misjudgment.

6 Limitations

Several methodological constraints warrant consideration.
First, while temporal separation of laboratory data collection
(> 48 h preceding cognitive assessments) mitigates acute
confounding, residual bias from undocumented comorbidities
or preclinical disease states remains possible. Second, the
external validation cohort’s demographic divergence—particularly
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5.19 wvs.
2.47) and advanced age (68.01 vs. 61.98 years)—suggests
cautious extrapolation to Western populations with different

the elevated systemic inflammation (mean NLR

cross-ethnic  validation in
Third,

may not fully replicate

PD phenotypes, necessitating

European/North  American  cohorts. retrospective
scale-based cognitive assessments
real-world diagnostic complexity, where clinicians integrate
neuroimaging and longitudinal observation—a discrepancy
requiring prospective validation of model performance in active

clinical workflows. Finally, the neural networks suboptimal

performance (AUC 0.66) likely reflects both sample size
limitations (n = 1,279) and architectural constraints in capturing
complex biomarker interactions; future iterations could explore
hybrid architectures combining graph neural networks for
temporal lab trend analysis with tree-based models for static

feature processing.

7 Conclusion

Our model provides a clinically actionable tool for identifying
PD-related cognitive impairment using routine data, achieving
comparable accuracy to resource-intensive approaches while
enhancing interpretability. The integration of SHAP explanations
and multi-center validation framework aligns with TRIPOD-AI
guidelines, offering a blueprint for equitable AI deployment in
global neurology practice.
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