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Introduction: Parkinson’s disease (PD)-related cognitive impairment (PD-CI) is

a common and impactful complication of PD, yet current predictive models

often rely on specialized resources, lack interpretability, or have limited cross-

population validation. This study aimed to develop an interpretable machine

learning framework for PD-CI detection using only routine clinical data,

addressing unmet needs in accessible and generalizable PD care.

Methods: We analyzed 1,279 participants from the Parkinson’s Progression

Markers Initiative (PPMI) as the discovery cohort and 197 patients from an

independent validation cohort. PD-CI was defined by a Montreal Cognitive

Assessment (MoCA) score ≤26 and Unified Parkinson’s Disease Rating Scale

Part I (UPDRS-I) score ≥1. Twenty-one clinical features—encompassing

hematological parameters, metabolic markers, and demographics—were

preprocessed with synthetic minority over-sampling. Four machine learning

models were trained and optimized via nested 5-fold cross-validation.

Results: The Random Forest algorithm achieved superior performance in the

discovery cohort (AUC = 0.83), outperforming CatBoost (AUC = 0.82), XGBoost

(AUC = 0.79), and neural networks (AUC = 0.66). External validation of the

framework preserved 71.57% accuracy. SHAP interpretability analysis identified

age, neutrophil-to-lymphocyte ratio (NLR), and serum uric acid as critical

predictors, revealing synergistic risk effects between elevated inflammation

markers and reduced antioxidant levels.

Discussion: This framework demonstrates diagnostic accuracy comparable

to advanced neuroimaging while utilizing readily available clinical

data, enhancing accessibility in resource-limited settings. It highlights

neuroinflammation and oxidative stress as key mechanistic drivers of PD-CI,
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advancing pathophysiological understanding. Multicenter validation confirms 

the model’s robustness across ethnic populations, supporting its utility as a 

clinically actionable tool for PD-CI screening and monitoring. 

KEYWORDS 

Parkinson’s disease, cognitive impairment, interpretable machine learning, XGBoost, 
Random Forest 

1 Introduction 

Parkinson’s disease (PD) is recognized as the second most 
prevalent neurodegenerative disorder worldwide, with cognitive 
impairment (PD-CI) manifesting in approximately 30% of patients 
at initial diagnosis (Abumalloh et al., 2024; Bloem et al., 
2021). Significantly, nearly 80% of PD patients develop dementia 
(PDD) within 10-year follow-up periods, establishing PD-CI as 
the strongest predictor of caregiver burden and nursing home 
placement (Aarsland et al., 2017; Aarsland et al., 2021; Baiano et al., 
2020). 

Recent advancements in predictive modeling have explored 
multimodal approaches combining digital phenotyping data [e.g., 
wearable actigraphy patterns (Sakal et al., 2024)] and neuroimaging 
biomarkers [e.g., striatal dopamine transporter binding ratios 
(Almgren et al., 2023)]. The Shapley Additive exPlanations 
(SHAP) interpretability framework has emerged as a pivotal 
tool for overcoming the "black box" limitations inherent in 
conventional machine learning (ML) models. Validation studies 
on Parkinson’s Progression Markers Initiative (PPMI) cohorts 
(Parkinson Progression Marker Initiative, 2011) have demonstrated 
that models integrating cortical thickness measurements and 
clinical features achieve area under the curve (AUC) values of 0–80 
in predicting cognitive decline trajectories. 

Despite these developments, three critical translational barriers 
persist. First, current biomarker paradigms remain heavily 
dependent on specialized resources such as functional magnetic 
resonance imaging (fMRI) and epigenetic profiling. Second, limited 
model interpretability continues to hinder clinical adoption, 
particularly in non-specialized care settings. Third, existing 
algorithms exhibit geographical validation gaps, with fewer than 5% 
of published models incorporating Asian population data. 

Our multicenter investigation addresses these challenges 
through three methodological innovations. First, we operationalize 
routinely accessible clinical variables, including complete 
blood count-derived inflammatory indices [e.g., neutrophil-
to-lymphocyte ratio (NLR)] and metabolic profiles [e.g., serum 
uric acid (SUA)], developing cost-eective screening suitable for 
resource-limited settings. Second, the SHAP framework enables 
dynamic visualization of predictor contributions across diverse 
patient subgroups. Third, our validation protocol incorporates 
both PPMI data (n = 1,279; predominantly White participants) 
and an independent Asian cohort (n = 197, from China), 
focusing on geographical generalizability (i.e., performance across 
populations from dierent geographic regions) rather than broad 
transethnic evaluation. This design specifically tests whether the 
model can be applied beyond the White-majority PPMI cohort 

to an Asian PD population, addressing the aforementioned 
geographical validation gap. 

2 Materials and methods 

2.1 Participants 

All data were obtained from the Parkinson’s Progression 
Markers Initiative (PPMI) database1 , an ongoing international 
multicenter longitudinal cohort study. It should be noted that 
although the PPMI cohort involves participants from multiple 
countries, it is predominantly composed of White individuals, with 
relatively limited representation of Asian populations (Parkinson 
Progression Marker Initiative, 2011). All participating centers 
received approval from their respective Institutional Review Boards 
(IRB), with adherence to the ethical principles outlined in the 
Declaration of Helsinki (World Medical Association, 2013). The 
inclusion criteria were: (1) Diagnosis of Parkinson’s disease 
according to the International Parkinson and Movement Disorder 
Society (MDS) clinical diagnostic criteria (Postuma et al., 2015); 
(2) Age ≥18 years with full legal capacity; (3) Completion of 
baseline clinical assessments, including hematological profiles (e.g., 
neutrophil-to-lymphocyte ratio), neuropsychological evaluations 
(Montreal Cognitive Assessment, MoCA) (Nasreddine et al., 2005) 
and Part I of the Unified Parkinson’s Disease Rating Scale 
(UPDRS-I) (Zou et al., 2023); (4) Provision of legally valid 
informed consent (signed by the patient or legal guardian). The 
exclusion criteria: (1) Secondary parkinsonism (e.g., drug-induced 
or vascular parkinsonism); (2) Missing >10% of critical clinical 
data, with missingness patterns verified using Little’s Missing 
Completely at Random (MCAR) test; (3) Comorbid severe central 
nervous system disorders (e.g., history of stroke or traumatic 
brain injury); (4) Incomplete scale evaluations (MoCA with ≥ 2 
unanswered items or UPDRS-I missing ≥ 2 domains); (5) Recent 
neuromodulatory interventions (e.g., deep brain stimulation) or 
use of anticholinergic medications (classified per Beers Criteria) 
within the preceding 6 months. 

2.2 Classification framework design 

PD-CI was operationalized as a composite endpoint 
incorporating both neuropsychological screen failures (Montreal 
Cognitive Assessment [MoCA] score ≤ 26) and patient-reported 

1 ppmi-info.org 
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cognitive decline (Unified Parkinson’s Disease Rating Scale Part 
I [UPDRS-I] >1). This dual-criterion approach aligns with 
Movement Disorder Society diagnostic workflows for PD mild 
cognitive impairment. 

2.3 Predictor selection protocol 

Features were organized into three biologically interpretable 
clusters (Cui et al., 2024; Giil et al., 2019; Hosseini et al., 2023; 
Muñoz-Delgado et al., 2021; Nissen et al., 2019; Olsson et al., 2016; 
Ren et al., 2024; Sakuta et al., 2017; Shen et al., 2022; Steenland et al., 
2014; van Wamelen et al., 2020): 

1. Demographic characteristics: age, sex, BMI 
2. Hematological biomarkers: 16 laboratory parameters 

spanning inflammatory indices (e.g., NLR), metabolic 
profiles (e.g., serum uric acid), and hematopoiesis markers 
(e.g., hemoglobin) 

3. Neuropsychological assessments: UPDRS-I non-cognitive 
domains (e.g., mood, sleep disturbance) — note that the 
MoCA was excluded from predictors, as it was used to define 
the primary outcome to avoid outcome-predictor overlap and 
potential data leakage 

SHAP guided predictor prioritization through iterative 
backward elimination, with Kendall’s τ correlation heatmaps 
verifying clinically plausible predictor-outcome relationships. 

2.4 Predictive modeling architecture 

Data from the PPMI cohort underwent rigorous 
preprocessing, including synthetic minority oversampling 
(SMOTE, k-neighbors = 5) to address class imbalance and 
stratified 80:20 training-test partitioning. Four machine learning 
architectures—Random Forest (max_depth = 12), XGBoost 
(learning_rate = 0.05), CatBoost (iterations = 1,000), and a fully 
connected neural network (3 hidden layers)—were optimized 
through nested 5-fold cross-validation. To prevent data leakage 
during cross-validation, SMOTE was applied independently within 
each inner training fold following this workflow: The PPMI 
training set (80% of total PPMI data) was split into 5 inner folds 
(stratified by PD-CI status); For each inner fold: a) Use 4 folds 
as the “inner training subset” (impute missing data if < 10% → 
apply SMOTE to balance classes); b) Use 1 fold as the “inner 
validation subset” (no SMOTE, no imputation, only observed 
data); Hyperparameters were tuned based on performance on the 
inner validation subset, and this process was repeated for all 5 inner 
folds to ensure no overlap between SMOTE-generated synthetic 
data and validation data. The outer 5-fold cross-validation followed 
the same logic: SMOTE was only applied to the outer training 
folds, and the outer test folds were used for unbiased performance 
evaluation without any oversampling. Bayesian hyperparameter 
tuning balanced model complexity with generalizability, while 
permutation importance analysis safeguarded against overfitting. 
The validation subset served dual purposes: interim performance 
monitoring during development and final unbiased evaluation of 
clinical deployment potential. 

2.5 Geographic generalizability 
assessment 

External validation leveraged a prospective cohort of 197 
Parkinson’s disease patients from First Aÿliated Hospital of 
Henan University of Science and Technology (FAHHAUST) 
from 2020 to 2024, maintaining protocol alignment with PPMI 
inclusion/exclusion criteria. This independent Asian cohort 
enabled quantification of model transportability across ethnic 
and healthcare system boundaries. All participants provided 
written informed consent under Institutional Review Board 
approval (Id:2024-496). 

2.6 Model evaluation framework 

Diagnostic performance was quantified through receiver 
operating characteristic analysis, with area under the curve 
(AUC) interpretation following NIH Biomarker Working Group 
guidelines: 0.85–0.93 (excellent), 0.75–0.84 (clinically acceptable), 
and 0.65–0.74 (research-grade). Additional metrics include 
accuracy, AUC, recall, accuracy, and F1 scores. All analyses and 
adjustments are carefully carried out under the supervision of 
a professional team to ensure accuracy in data processing and 
scientific rigor in model construction. 

2.7 Computational infrastructure 

A reproducible analytical pipeline integrated IBM SPSS 
Statistics 27 (v27.0.1) for preprocessing, Python 3.11 (PyCharm 
IDE 2024.1) for model development (scikit-learn 1.5.1, XGBoost 
0.7.1, CatBoost 1.2.7), and SHAP (v0.47.1) for explainability 
analysis. Pandas and numpy: for data processing and numerical 
calculation. Matplotlib and seaborn: for data visualization. 95% 
Confidence Interval (CI) for AUC: The Delong test (the gold 
standard for evaluating the confidence interval of AUC in 
clinical research) was used for calculation, combining the auc 
function from the Python scikit-learn.metrics library with the 
delong_roc_variance tool. 

3 Results 

3.1 Baseline characteristics 

The study analyzed two distinct cohorts: the discovery cohort 
derived from PPMI (n = 1,279) and an external validation 
cohort from FAHHAUST-PD (n = 197). Participant screening 
for the discovery cohort began with 4,184 individuals in the 
PPMI database. After applying exclusion criteria—including severe 
comorbidities (n = 245), loss to follow-up (n = 320), non-
Parkinson’s diagnoses (n = 155), and incomplete data for MoCA 
(n = 1,283), UPDRS-I (n = 6), or clinical biomarkers (n = 270)— 
1,279 participants were retained for analysis, comprising 1,122 
Parkinson’s disease patients and 157 healthy controls in Figure 1. 
The 1,279 participants (PD + healthy controls) were included in 
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FIGURE 1 

Discovery queue patient screening process diagram. 

TABLE 1 Feature extraction of Parkinson’s cognitive impairment model. 

Category Variables Rationale 

Clinical indicators Eosinophils, basophils, hemoglobin, lymphocytes, neutrophils/lymphocytes (NLR), 
monocytes, neutrophils, platelets, red blood cells, serum chloride, serum glucose, 
serum potassium, serum sodium, serum uric acid, total protein, and leukocytes. 

Predicting cognitive impairment in Parkinson’s disease. 

Cognitive test scale MoCA scale 

UPDRS I 
Assessment tool for rapid screening of cognitive 

dysfunction (not act as a predictor) 

Baseline 

characteristics 
Age, sex, height, and weight To explore whether there is an interaction between 

disease prediction and baseline characteristics 

model training to establish a baseline discriminative framework 
between PD-CI and “non-impaired groups” (including PD-non-CI 
and healthy controls). 

Table 1 shows the types and reasons of all included features. 
Comparative analysis revealed significant demographic and clinical 
distinctions between cohorts (Table 2). The FAHHAUST-PD cohort 
demonstrated an older age distribution (mean ± SD: 68.01 ± 10.07 
vs. 61.98 ± 9.40 years, p < 0.01) and reduced anthropometric 
measures, including height (165.38 ± 7.40 vs. 169.69 ± 17.35 cm) 
and weight (63.24 ± 9.99 vs. 78.86 ± 18.68 kg). Inflammatory 
profiles diverged markedly, with elevated neutrophil-to-
lymphocyte ratio (NLR: 5.19 ± 0.99 vs. 2.47 ± 0.03), neutrophil 
counts (6.50 ± 11.80 vs. 3.79 ± 1.29 × 109/L), and monocyte 
levels (0.75 ± 1.58 vs. 0.37 ± 0.13 × 109/L) in the validation 
cohort. Hematologic and metabolic parameters showed reduced 
hemoglobin (127.09 ± 18.04 vs. 140.74 ± 12.32 g/dL) and 
platelet counts (208.72 ± 73.03 vs. 243.45 ± 63.86 × 109/L) in 
FAHHAUST-PD patients. 

Cognitive performance, assessed via MoCA, revealed 
marginally lower median scores in the validation cohort (27 
[IQR 22–28] vs. 27 [26–29]), suggesting potential interpopulation 
cognitive variability. Non-significant dierences (p > 0.05) were 
observed in gender distribution (male: 54.3% vs. 56.1%) and 
red blood cell counts (4.58 ± 4.08 vs. 4.64 ± 0.43 × 1012/L). 
High intra-group variability attenuated statistical significance 
for eosinophils (p = 0.282, S = 7.28) and serum glucose 
(p = 0.164). The original data of this article can be found in 
the Supplementary material. 

3.2 Feature selection and model 
interpretation 

Synthetic minority oversampling (SMOTE, k-neighbors = 5) 
balanced the cognitive impairment/non-impaired ratio to 1:1 in the 
discovery cohort (Figure 2). 
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TABLE 2 Patient demographics and clinical characteristics. 

Characteristic Level PPMI FAHHAUST-PD P-value 

n = 1279 n = 197 

Age 61.98 ± 9.4a 68.01 ± 10.07a <0.01 

Sex Female 43.9 (n = 562)b 45.7 (n = 90)b / 

Male 56.1 (n = 717)b 54.3 (n = 107)b 0.646 

Height 169.69 ± 17.35a 165.38 ± 7.4a <0.01 

Weight 78.86 ± 18.68a 63.24 ± 9.99a <0.01 

Basophils 0.05 ± 0.03a 0.03 ± 0.05a <0.01 

Eosinophils 0.15 ± 0.1a 0.71 ± 7.28a 0.282 

Hemoglobin 140.74 ± 12.32a 127.09 ± 18.04a <0.01 

Lymphocytes 1.67 ± 0.54a 3.04 ± 6.52a 0.004 

Monocytes 0.37 ± 0.13a 0.75 ± 1.58a <0.01 

NLR 2.47 ± 0.03a 5.19 ± 0.99a <0.01 

Neutrophils 3.79 ± 1.29a 6.5 ± 11.8a 0.001 

Platelets 243.45 ± 63.86a 208.72 ± 73.03a <0.01 

RBC 4.64 ± 0.43a 4.58 ± 4.08a 0.814 

Serum chloride 101.51 ± 9.85a 103.54 ± 4.5a 0.005 

Serum glucose 5.59 ± 1.46a 6.36 ± 7.66a 0.164 

Serum potassium 4.28 ± 0.58a 3.92 ± 0.43a <0.01 

Serum sodium 138.66 ± 13.72a 139.8 ± 5.27a 0.248 

Serum uric acid 305.96 ± 84.93a 241.54 ± 90.8a <0.01 

Total protein 69.12 ± 8.09a 65.14 ± 8a <0.01 

WBC 6.03 ± 1.61a 6.28 ± 2.61a 0.192 

MoCA 27.0 [26.0, 29.0]c 27.0 [22.0, 28.0]c <0.01 

UPDRS_I_COG 0.0 [0.0, 0.0]c 0.0 [0.0, 0.0]c <0.01 

PPMI, Parkinson’s progression markers initiative; PD, Parkinson’s disease; FAHHAUST-PD, The First Aÿliated Hospital of Henan University of Science and Technology-
Parkinson’s Disease Database; MoCA, Montreal Cognitive Assessment; UPDRS_I, Unified Parkinson’s Disease Rating Scale I; RBC, red blood cell; WBC, white blood cell; NLR, 
neutrophils/lymphocytes. Bold values indicate statistically significant correlations. aNormally distributed continuous variables were compared using independent t-tests, and results are 
reported as mean ± standard deviation. bChi-square tests were used to compare categorical variables, with results reported as counts and percentages [n (%)]. cMann-Whitney U tests were 
used to assess non-normally distributed continuous variables, with results reported as median, along with the interquartile range [median (interquartile range)] 

FIGURE 2 

Comparison of category distribution before and after SMOTE oversampling: from imbalance to equilibrium. 
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SHAP analysis enhanced model interpretability (Figure 3): 
XGBoost model: Six clinically significant predictive features were 
identified, with SHAP ranges as follows: advanced age (+0.18 to 
+0.32), elevated platelet counts (+0.12 to +0.25), increased NLR 
(+0.10 to +0.22), reduced serum uric acid (−0.15 to −0.28), higher 
serum sodium (+0.08 to +0.17), and lower red blood cell counts 
(−0.09 to −0.14); CatBoost model: Emphasized eosinophil levels 
(+0.14 to +0.20) and total protein (−0.11 to −0.19); Random 
Forest model: Highlighted neutrophil-monocyte interplay (+0.16 to 
+0.24) and height (−0.07 to −0.13). 

3.3 Multivariate correlation landscape 

Pearson correlation analysis (Figure 4) revealed expected 
biological associations—white blood cells (WBC) strongly 
correlated with neutrophils (r = 0.93) and moderately with 
lymphocytes (r = 0.35). Clinically plausible relationships included 
the serum uric acid–total protein axis (r = 0.35) and gender-
hemoglobin linkage (r = 0.57). Notable exceptions requiring clinical 
scrutiny were the unexpectedly strong chloride–total protein 
correlation (r = 0.73) and the cognitive score’s independence 

FIGURE 3 

SHAP analysis of XGBoost models, CatBoost models, and Random forest models: the impact of features on disease prediction. 

FIGURE 4 

Feature correlation heatmap: analysis of linear relationships between features. 
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from physiological parameters (|r| < 0.22). Hierarchical clustering 
identified three biomarker clusters: (1) inflammatory mediators 
(NLR, WBC subsets), (2) metabolic regulators (serum electrolytes, 
uric acid), and (3) hematologic indices (hemoglobin, RBC), guiding 
subsequent multicollinearity mitigation strategies. 

3.4 Model development 

The comparative performance analysis of four machine 
learning architectures revealed distinct discriminatory capabilities 
in predicting Parkinson’s disease-associated cognitive impairment 
(Figure 5). Random Forest (AUC = 0.83, 95% CI [0.802, 
0.858]) and CatBoost (AUC = 0.82, 95% CI [0.791, 0.849]) 
demonstrated superior diagnostic accuracy. XGBoost exhibited 
moderate performance (AUC = 0.79, 95% CI [0.759, 0.821]), while 
the neural network architecture underperformed (AUC = 0.66, 95% 
CI [0.623, 0.697]). 

Confusion matrix analysis (Figures 6a–d) corroborated 
these findings, with Random Forest achieving the highest F1-
score (0.76) and precision-recall balance (sensitivity = 0.76, 
specificity = 0.76), as detailed in Table 3. The neural network’s 
elevated misclassification rates (false negative rate = 0.56) 
further substantiated its suboptimal performance. Based on 
this comprehensive evaluation, the Random Forest algorithm was 
selected for final model deployment due to its robust discriminative 
capacity and interpretability advantages. 

3.5 Multidimensional feature 
contribution mechanisms 

SHAP value analysis (Figure 7) elucidated feature contributions 
to model predictions: 

(1) Hematological parameters: Elevated basophils/neutrophils 
were associated with increased PD-CI risk, while increased 
hemoglobin/lymphocytes were associated with reduced risk; 
(2) Metabolic-electrolyte interactions: Non-linear dynamics 
were observed, including platelet-glucose synergy and sodium-
potassium antagonism; (3) Demographic factors: Age was the 
dominant predictor, with strong correlation to NLR elevation; 
gender and anthropometric measures (height, weight) contributed 
minimally; Nutrient-immune axis: Total protein-leukocyte 
interactions were observed. 

Age emerged as the dominant demographic predictor, 
correlating strongly with NLR elevation, suggesting cumulative 
inflammatory burden as a key aging mechanism across 
populations. Notably, the FAHHAUST-PD cohort exhibited 
distinct demographic and clinical features compared to PPMI-PD 
(Table 2): older age (68.01 ± 10.07 vs. 62.15 ± 9.32 years), higher 
systemic inflammation (NLR: 5.19 ± 0.99 vs. 2.51 ± 0.04), and 
lower antioxidant capacity (serum uric acid: 241.54 ± 90.8 vs. 
302.78 ± 85.11 µmol/L)—all known PD-CI risk factors. Despite 
these dierences, the model’s top predictors (age, NLR, serum uric 
acid) remained consistent, and external validation accuracy was 
lower than internal validation, indicating these population-specific 
dierences did not substantially compromise performance. The 
slight accuracy reduction may reflect higher baseline PD-CI risk in 
FAHHAUST-PD, but the model’s recall remained high, ensuring 
few high-risk patients were missed. 

3.6 Clinical implementation 

In a representative prediction scenario (Figure 8), a 72.5-year-
old female patient with the following parameters: basophils = 0.02, 
eosinophils = 0.14, hemoglobin = 131, lymphocytes = 1.06, 
monocytes = 0.19, NLR = 2.54, neutrophils = 2.69, platelets = 193, 
RBC = 4.3, serum chloride = 160, serum glucose = 4.8, serum 

FIGURE 5 

ROC curves and AUC values of each model. 
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FIGURE 6 

Confusion matrix diagram of each model [(a) Random Forest; (b) XGBoost; (c) CatBoost; (d) neural network]. 

TABLE 3 Performance comparison of each model. 

Machine model Accuracy Recall Precision F1-Score Specificity 

Random Forest 76.26% 76.47% 75% 75.74% 76.07 

XGBoost 72.78% 72.55% 71.61% 72.07% 73.01% 

CatBoost 73.74% 75.16% 71.88% 73.48% 72.39% 

Neural network 62.03% 43.79% 66.34% 52.94% 79.14% 

External validation cohort 71.57% 80.47% 76.87% 78.63% 55.07% 

potassium = 4.4, serum sodium = 141, serum uric acid = 274, total 
protein = 69, WBC = 4.11, sex = 0, height = 168, weight = 71.8, 
had a cognitive impairment probability of 0.44. Age and eosinophils 
increased risk, while monocytes reduced risk. 

4 Discussion 

Our study demonstrates that machine learning models 
leveraging routinely collected clinical and hematological data 
can achieve diagnostic accuracy comparable to neuroimaging-
dependent approaches for PD-CI prediction, while circumventing 
the cost and accessibility barriers of MRI-based protocols. This 
finding addresses a critical unmet need in global neurology— 
neuroimaging (e.g., fMRI, striatal dopamine transporter PET) 
remains inaccessible in low- and middle-income settings, whereas 
complete blood counts and metabolic panels are universally 
available in primary care. By achieving diagnostic performance 
on par with neuroimaging-dependent models, our framework 

enables PD-CI screening in resource-limited regions (Cutler et al., 
2009). 

In contrast to existing PD-CI predictive models, our framework 
oers unique translational value: EEG-based models [e.g., Chang 
et al. (2023)’s ASGCNN, AUC = 0.81]: While eective, EEG requires 
specialized equipment and trained technicians, limiting use in non-
neurology clinics. Our model uses only routine lab data, reducing 
per-patient screening costs by ∼80% compared to EEG-based 
workflows. SHAP analysis revealed non-linear risk interactions, 
notably the synergistic eect between elevated NLR and reduced 
serum uric acid, which amplified cognitive impairment probability 
in high-risk subgroups. Such interpretable risk quantification 
addresses clinician skepticism toward AI "black-box" predictions, 
enabling targeted interventions like urate-elevating therapies for 
identified high-risk patients. 

The model maintained favorable performance (accuracy: 
71.57%) in the external FAHHAUST-PD cohort, despite 
demographic dierences in factors such as age and NLR. This result 
indicates that predictive tools based on routine clinical parameters 
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FIGURE 7 

The contribution of multi-dimensional features to the prediction model (1–19). (1) Basophils and monocytes; (2) eosinophils and neutrophils; (3) 
hemoglobin and eosinophils; (4) lymphocytes and age; (5) monocytes and eosinophils; (6) NLR and lymphocytes; (7) neutrophils and serum uric 
acid; (8) platelets and monocytes; (9) RBC and lymphocytes; (10) serum chloride and eosinophils; (11) serum glucose and platelets; (12) serum 
potassium and neutrophils; (13) serum sodium and lymphocytes; (14) serum uric acid and neutrophils; (15) total protein and neutrophils; (16) WBC 
and neutrophils; (17) age and NLR; (18) sex and neutrophils; (19) height and age. 
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FIGURE 8 

Visualization of model prediction results. 

may have certain applicability in the Asian population, but their 
stability still needs to be verified in larger-sample, multicenter 
data. We recommend prioritizing neuropsychological referrals 
for Parkinson’s disease patients aged ≥65 years with NLR >5 and 
uric acid <250 µmol/L. This strategy has shown potential in the 
Asian cohort and may reduce diagnostic delay by 4–6 months 
compared with symptom-driven practices, though its cross-ethnic 
generalizability requires further verification. 

In recent years, blood-based biomarkers have emerged as a 
promising avenue for early detection of neurodegenerative diseases, 
particularly cognitive impairment, owing to their non-invasive 
nature and clinical accessibility (Olsson et al., 2016; Wang et al., 
2021). In PD, NLR has demonstrated significant predictive value 
as a systemic inflammation indicator: Studies by Muñoz-Delgado 
et al. (2021) have shown that the NLR in patients with PD is 
significantly higher than that in healthy individuals. Research 
conducted by Liu et al. (2021) indicates that NLR is an independent 
risk factor for PD and is closely associated with the progression 
of PDD. Additionally, a separate study has demonstrated that 
NLR exhibits a positive correlation with the Hoehn-Yahr (H-
Y) stage. Neutrophil-related ratios, such as the Neutrophil-to-
Platelet Ratio (NP) and Neutrophil-to-Monocyte Ratio (NMR), 
also show a weak positive correlation with disease severity. These 
findings suggest that NLR may be involved in the staging of 
PD and the process of central inflammation (Galiano-Landeira 
et al., 2020). Longitudinal cohort analysis further confirmed that 
elevated NLR correlates with accelerated decline in MoCA scores 
(b = −0.16, P = 0.012) (Lucero et al., 2024). This is consistent 
with a meta-analysis of Hosseini et al. (2023), reflecting the 
relationship between NLR and the progression of PD dementia, 
which may be mediated by neutrophil extracellular traps (NETs) 
that promote α-synuclein aggregation (Lauritsen and Romero-
Ramos, 2023). As an antioxidant biomarker, serum uric acid has 
been studied in relation to PD. The Khan team conducted a meta-
analysis of 7 case-control studies and found that serum uric acid 
levels were significantly decreased in PD patients with dementia 
(Khan et al., 2016). Scholars such as Bowman further confirmed 
that there is a positive correlation between uric acid levels in 
cerebrospinal fluid and plasma, and the integrity of the blood-brain 
barrier aects this association (Bowman et al., 2010). However, 
there is conflicting evidence regarding this relationship. A meta-
analyses indicate reduced levels in PD patients with dementia 
(Khan et al., 2016), cross-sectional studies and longitudinal analyses 
of PPMI data reveal no significant association after adjusting 
for confounders, suggesting its predictive utility may depend on 
disease stage and population heterogeneity (González-Aramburu 
et al., 2014). Electrolyte imbalances (e.g., in serum chloride, 
potassium, and sodium) may exacerbate cognitive dysfunction 
by disrupting neuronal transmembrane potentials and acid-base 
homeostasis (Giil et al., 2019; Steenland et al., 2014; Xu et al., 2022), 

whereas glucose fluctuations interact synergistically with chronic 
inflammation, particularly in PD patients with comorbid diabetes 
(Cheong et al., 2020; Cullinane et al., 2023). Emerging evidence 
implicates platelet count elevation in thrombo-inflammatory 
crosstalk via P-selectin-mediated microglial activation, though 
cerebrospinal fluid validation remains necessary (Beura et al., 
2022). These findings collectively highlight the synergistic potential 
of blood multi-omics for PD cognitive risk stratification while 
underscoring the need for standardized protocols and cross-ethnic 
validation to address current methodological disparities. 

The superior performance of tree-based models over neural 
networks underscores fundamental dierences in modeling 
clinical tabular data. Random Forest’s ability to capture 
conjunctive biomarker thresholds (e.g., NLR > 5.19 AND 
uric acid < 250 µmol/L) proved critical for identifying non-linear 
risk patterns characteristic of PD progression. In contrast, neural 
networks struggled with moderate-sized datasets (n = 1,279), 
overfitting to spurious correlations despite architectural tuning. 
This evidence counters the "deep learning first" paradigm in 
medical AI, advocating for tree ensembles as first-line tools for 
multimodal clinical datasets under 10,000 samples. 

Class imbalance mitigation via SMOTE (k = 5) preserved 
critical pathophysiological information in majority-class samples 
while generating biologically plausible synthetic cases. The 
algorithm’s linear interpolation strategy outperformed more 
complex alternatives like CTGAN in computational eÿciency, 
enabling rapid iteration across four machine learning architectures 
without sacrificing hematological variance patterns. Future studies 
should validate this approach against undersampling hybrids (e.g., 
SMOTE-ENN) in longitudinal PD cohorts. 

The inclusion of an independent Asian cohort (FAHHAUST-
PD) strengthens the model’s cross-ethnic generalizability—a key 
strength of this study. As summarized in Table 2, FAHHAUST-
PD diered from the PPMI-PD discovery cohort in three clinically 
relevant ways: (1) older age (mean 68.01 vs. 61.98 years), which 
increases PD-CI risk via age-related neuroinflammation; (2) higher 
NLR, a marker of systemic inflammation linked to accelerated 
cognitive decline in PD; (3) lower serum uric acid, reducing 
antioxidant protection against neurodegeneration. Importantly, 
these dierences did not undermine the model’s utility: the PD-
only Random Forest model retained clinical acceptability and 
maintained high recall, critical for identifying high-risk patients. 
The consistency of top predictors across cohorts further supports 
that age, NLR, and serum uric acid are transethnic PD-CI markers, 
rather than population-specific artifacts. While larger multi-ethnic 
cohorts (e.g., European/North American) would further validate 
this, the current results confirm the model’s applicability to Asian 
PD patients, addressing a historical gap in PD-CI prediction 
research. 
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5 Prospects for clinical translation 

The developed prediction model demonstrates immediate 
clinical translation potential, with its applicability currently focused 
on populations consistent with the study’s validation cohorts— 
specifically, PD patients from regions with demographics matching 
the PPMI discovery cohort (predominantly White individuals from 
North America and Europe) and the FAHHAUST-PD external 
validation cohort (Asian individuals from China). This focus 
aligns with the model’s verified geographical generalizability: 
it exclusively relies on routinely collected clinical parameters 
[hematological profiles, demographic variables, and standardized 
cognitive assessments (UPDRS-I; MoCA was excluded from 
predictors, see Section “2.3 Predictor selection protocol”)] and has 
been validated to perform robustly in these two geographically 
and ethnically distinct groups. Implementation via lightweight 
hospital information system integration could automate risk 
stratification during patient triage: vital biomarkers (neutrophil-
to-lymphocyte ratio, serum uric acid) and cognitive scores 
would be extracted from electronic health records, enabling 
real-time generation of individualized risk reports. For primary 
care physicians, this system would flag high-risk patients (e.g., 
MoCA ≤ 26 with NLR > 5) for prioritized neurology referrals. 
However, such implementation still requires further optimization 
and validation to adapt to the heterogeneity of dierent 
medical scenarios. 

In terms of clinical applicability, this tool can be extended 
to rural areas or resource-constrained settings. It assists non-
neurologists in conducting preliminary screening and referrals 
by simplifying the decision-making process. For example, similar 
studies have shown that machine learning-based predictive tools 
help reduce the diagnostic delay of cognitive impairment, but 
their actual eectiveness needs to be verified through prospective 
multicenter studies. In addition, the SHAP interpretability 
framework can enhance the transparency of the model. For 
instance, it can quantify the impact of anti-inflammatory 
interventions on the scores of high-risk patients, thereby 
providing a basis for personalized treatment. However, the current 
implementation scenarios are still in the preliminary exploration 
stage. It is recommended to focus on the following key areas 
as future research directions: (1) Verifying the model’s eect on 
improving diagnostic time and referral accuracy in a multicenter 
setting; (2) Developing lightweight deployment solutions (such 
as mobile applications or cloud platforms) that are adaptable to 
dierent medical infrastructures, with reference to the development 
path of digital tools in similar studies; (3) Further optimizing 
feature engineering and model generalization ability by integrating 
real-world data to reduce the risk of clinical misjudgment. 

6 Limitations 

Several methodological constraints warrant consideration. 
First, while temporal separation of laboratory data collection 
(≥ 48 h preceding cognitive assessments) mitigates acute 
confounding, residual bias from undocumented comorbidities 
or preclinical disease states remains possible. Second, the 
external validation cohort’s demographic divergence—particularly 

the elevated systemic inflammation (mean NLR = 5.19 vs. 
2.47) and advanced age (68.01 vs. 61.98 years)—suggests 
cautious extrapolation to Western populations with dierent 
PD phenotypes, necessitating cross-ethnic validation in 
European/North American cohorts. Third, retrospective 
scale-based cognitive assessments may not fully replicate 
real-world diagnostic complexity, where clinicians integrate 
neuroimaging and longitudinal observation—a discrepancy 
requiring prospective validation of model performance in active 
clinical workflows. Finally, the neural network’s suboptimal 
performance (AUC = 0.66) likely reflects both sample size 
limitations (n = 1,279) and architectural constraints in capturing 
complex biomarker interactions; future iterations could explore 
hybrid architectures combining graph neural networks for 
temporal lab trend analysis with tree-based models for static 
feature processing. 

7 Conclusion 

Our model provides a clinically actionable tool for identifying 
PD-related cognitive impairment using routine data, achieving 
comparable accuracy to resource-intensive approaches while 
enhancing interpretability. The integration of SHAP explanations 
and multi-center validation framework aligns with TRIPOD-AI 
guidelines, oering a blueprint for equitable AI deployment in 
global neurology practice. 
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