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Background: The timely identification of mild cognitive impairment (MCI)
in Parkinson’s disease (PD) is essential for early intervention and clinical
management, yet it remains a challenge in practice.

Methods: We conducted an analysis of 3,154 clinical visits from 896 participants
in the Parkinson’'s Progression Markers Initiative (PPMI) cohort. Participants
were divided into two groups: cognitively normal (PD-NC, MoCA > 26) and
MCI (PD-MCI, 21 < MoCA < 25). To ensure no visit-level information leakage,
subject-level stratified sampling was employed to split the data into training
(70%) and hold-out test (30%) sets. From an initial set of 12 routinely assessed
clinical features, seven were selected using least absolute shrinkage and
selection operator (LASSO) logistic regression: age, sex, years of education,
disease duration, UPDRS-I, UPDRS-IIl, and Geriatric Depression Scale (GDS).
Four machine learning models—logistic regression (LR), support vector machine
(SVM), random forest (RF), and extreme gradient boosting (XGBoost)—were
trained using subject-level stratified 10-fold cross-validation with Bayesian
optimization. Probabilistic outputs were dichotomized using three thresholding
strategies: default 0.5, F1-score maximization, and Youden index maximization.
Results: On the independent test set, SVM achieved the highest overall
performance with AUC-ROC of 0.7252 and AUC-PR of 0.5008. LR also performed
competitively despite its simplicity. RF achieved the top performance in
sensitivity, reaching 0.8150. Feature importance analysis consistently highlighted
age, years of education, and disease duration as the most informative predictors
for distinguishing PD-MCI. Additionally, more stringent site-level split validation
yielded slightly decreased overall performance, with LR showing improved
AUC-PR. Importantly, the core feature importance ranking remained largely
consistent across validation strategies.

Conclusion: This study developed and validated robust machine learning
models for PD-MCI classification using standard clinical assessments alone.
Through subject-level or site-level stratified cross-validation combined with
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Bayesian optimization, we achieved rigorous model evaluation while minimizing
overfitting risk. These findings demonstrate the potential for implementing data-
driven, interpretable diagnostic tools to enhance early cognitive impairment
screening in routine PD care.

KEYWORDS

mild cognitive impairment, Parkinson’s disease, machine learning, stratified sampling,
Bayesian optimization, feature importance

1 Introduction

Parkinson’s disease (PD) is a common degenerative disease
of the central nervous system, pathologically characterized by
progressive loss of dopaminergic neurons in the substantia nigra
and formation of Lewy bodies (Poewe et al, 2017). The global
prevalence of PD has been continuously increasing since the
1980s, with an accelerating trend observed in the recent two
decades (Zhu J. et al, 2024). As of 2021, approximately 11.8
million people worldwide were living with PD (Luo et al., 2025;
Steinmetz et al., 2024). By 2050, the global burden is projected
to reach 25.2 million PD patients (predicted range: 21.7 to 30.1
million) (Su et al., 2025). The clinical manifestations of PD are not
limited to motor symptoms such as resting tremor, bradykinesia,
muscle rigidity, and postural gait disorders, but also include a
series of non-motor symptoms, including sleep disorders, olfactory
dysfunction, autonomic dysfunction, psychiatric symptoms, and
cognitive impairment (Chaudhuri et al., 2006; Postuma et al,
2015).

Among the numerous non-motor symptoms, cognitive
impairment has a particularly substantial impact on the quality of
life and disease prognosis of PD patients, representing one of the
main causes of disability and dependence (Goldman et al., 2018b;
Aarsland et al., 2021). PD presents a broad spectrum of cognitive
impairment, ranging from subjective cognitive decline (SCD)
and mild cognitive impairment (PD-MCI) to Parkinson’s disease
dementia (PDD) (Goldman et al., 2018a).

PD-MCIl is recognized as a significant risk factor and a potential
prodromal stage for PDD (Litvan et al., 2012), with a prevalence
of approximately 20%-26% in PD patients without dementia
(Aarsland et al., 2010; Pedersen et al., 2017). Long-term follow-up
studies demonstrate that patients with PD-MCI have a markedly
increased risk of progressing to PDD. For instance, a 5-year
population-based study found that approximately 39.1% of patients
with early PD-MCI eventually progressed to dementia (Pedersen
etal., 2017).

The progression to PDD severely compromises patients
quality of life, increases caregiver burden (Leroi et al, 2012),
and is associated with elevated mortality rates (Hely et al,
2008). Furthermore, PD-MCI significantly impairs patients’
capacity to manage complex daily activities, including medication
adherence and financial planning. Therefore, early and accurate
identification of PD-MCI is of paramount clinical importance, as it
enables the development of individualized intervention strategies,
implementation of supportive measures, patient and caregiver
education, and enhancement of overall safety and quality of life—all
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while potentially delaying progression to dementia and improving
long-term patient outcomes.

Given the clinical importance of early PD-MCI identification,
numerous studies have attempted to develop predictive models
by integrating diverse multimodal data. These modalities range
from clinical and neuropsychological assessments to advanced
neuroimaging, biofluid and genetic markers, electrophysiological
recordings, and kinematic data (Hosseinzadeh et al, 2023; Zhu
Y. et al., 2024; Amboni et al., 2022; Russo et al., 2023; Parajuli
et al., 2023). However, the development of practical diagnostic
models still faces substantial challenges, as highlighted in recent
systematic reviews (Altham et al., 2024; Guo et al, 2021; Wu
et al,, 2025). One major limitation is the small cohort sizes used in
many studies, which can compromise statistical power and limit the
generalizability of the findings (Altham et al., 2024). Additionally,
a critical methodological flaw is the common use of visit-level
data splits, which can cause longitudinal information leakage. This
occurs when multiple samples from the same subject are included
in both training and testing datasets, leading to overly optimistic
performance estimates that may not hold in real-world clinical
settings (Veetil et al., 2024; Yagis et al., 2021). This issue contributes
to the high risk of bias and lack of external validation frequently
observed in the field (Altham et al., 2024). Furthermore, there is
often limited algorithmic diversity and suboptimal hyperparameter
tuning, with many studies failing to report key details about
model architectures and parameters, which restricts reproducibility
and the exploration of potentially more effective configurations
(Altham et al., 2024).

To address these limitations, this study presents a robust
framework for the classification of PD-MCI using a large-
scale, multi-visit clinical dataset. The primary contributions and
innovations of this work are as follows:

(1) Large-scale data analysis: we leverage the publicly available
Parkinson’s Progression Markers Initiative (PPMI) database,
ensuring sufficient statistical power and enhancing the
reliability of our findings.

(2) Methodological rigor: to prevent information leakage from
multiple visits per patient, we implement a strict subject-level
stratified sampling protocol for splitting data into training and
testing sets, ensuring that all records from a single individual
belong exclusively to one set.

(3) Systematic feature selection: we employ least absolute
shrinkage and selection operator (LASSO) logistic regression
to systematically identify the most predictive clinical features
from a wide array of candidates, promoting model parsimony
and interpretability.
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(4) Optimal model

and rigorously evaluate four distinct machine learning

comparison: we construct, compare,
algorithms: logistic regression (LR), support vector machine
(SVM), random forest (RF), and extreme gradient boosting
(XGBoost). We utilize subject-level stratified cross-validation
with Bayesian optimization for hyperparameter tuning,
ensuring optimal model performance.

(5) Advanced evaluation and interpretability: we assess model
performance using multiple metrics optimized for imbalanced
data and provide clinical insights through various feature
importance analysis techniques (e.g., coefficients, Shapley
additive explanations (SHAP), permutation importance)
to ensure transparent and clinically relevant decision-
making processes.

Through this structured approach, we aim to develop and
validate a practical and accurate classification model that can serve
as areliable tool for clinicians in the early identification of PD-MCI,
potentially improving patient care and clinical decision-making.

2 Materials and methods

The overall experimental workflow is illustrated in Figure 1.
The methodology was designed to ensure robust model
development and validation, with a strong emphasis on preventing
data leakage. Our approach encompasses the following key
stages: (1) dataset preparation and quality control, (2) subject-
level stratified data splitting and Z-score normalization, (3)
LASSO-based feature selection, (4) model construction and
hyperparameter optimization using Bayesian optimization,
(5) comprehensive model evaluation with multiple threshold
optimization strategies, and (6) feature importance analysis for
model interpretability.

2.1 Dataset description

The research data were sourced from the publicly available
Parkinson’s Progression Markers Initiative (PPMI) database
(https://www.ppmi-info.org) (Marek et al., 2011, 2018). The PPMI
study was approved by the institutional review board at each
participating site, and all participants provided written informed
consent. Our study included only data from PD patients, resulting
in a dataset containing records from multiple visits.

From this dataset, we extracted 12 potential predictor
variables covering patients’ demographic information, disease
characteristics, and clinical assessment scores, which have been
widely identified as significant predictors of cognitive decline in
previous prospective cohort studies and meta-analyses (Guo et al.,
2021; Hosseinzadeh et al., 2023; Schrag et al., 2017). These features,
with their full names and abbreviations used hereafter, are: age at
visit (age), sex, years of education (EDUCYRS), disease duration,
Hoehn and Yahr stage (H&Y), Unified Parkinson’s Disease Rating
Scale part I (UPDRS-I), part II (UPDRS-II), part III (UPDRS-
III), part IV (UPDRS-1V), Epworth Sleepiness Scale (ESS), Rapid
Eye Movement Sleep Behavior Disorder Screening Questionnaire
(RBDSQ), and Geriatric Depression Scale (GDS). Disease duration
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was calculated by subtracting the age at onset from the age at
each visit. The patient identifier (PATNO) was used exclusively for
subject-level data splitting.

The target variable for classification was determined based on
the Montreal Cognitive Assessment (MoCA) score, a widely used
screening tool for cognitive impairment in PD (Jeon et al., 2022).
Following the commonly accepted cutoff of 26 for defining normal
cognition (Hosseinzadeh et al., 2023), each visit was assigned to
one of two classes. Class 0 (PD-NC) included patients with normal
cognition, defined by a MoCA score > 26. Class 1 (PD-MCI)
comprised patients with mild cognitive impairment, defined by
a MoCA score between 21 and 25 (inclusive). To maintain a
clear distinction between the PD-MCI and more severe cognitive
impairment or dementia stages, samples with MoCA scores < 20
were excluded, as such scores are typically observed in patients who
have already progressed to dementia (Jeon et al., 2022).

2.2 Data splitting

Longitudinal datasets present inherent challenges due to
multiple visits per patient, creating dependencies between
data points that can lead to information leakage—a critical
methodological issue quantitatively demonstrated in recent
analyses (Veetil et al,, 2024; Yagis et al., 2021). Such leakage
allows models to exploit temporal patterns and individual-specific
characteristics, resulting in artificially inflated performance
estimates that fail to generalize to new patients in real-world
clinical settings.

To address this challenge, we implemented subject-level
stratified sampling to divide the dataset into training (70%) and test
(30%) sets through a strict three-stage process. First, each patient
was assigned a single label based on their visits—“1” if they had
at least one PD-MCI visit, “0” otherwise. The unique patient list
was then stratified by this label and split accordingly. Finally, all
samples from training patients were allocated to the training set,
and all samples from testing patients to the test set, ensuring no
patient’s data appeared in both sets.

Following data splitting, all computational procedures,
including feature selection, model training, and hyperparameter
optimization, exclusively utilized training set information, with
the test set reserved solely for final evaluation to maintain
validation integrity.

2.3 Z-score normalization

Z-score normalization was performed using the mean and
standard deviation calculated exclusively from the training data,
and this transformation was subsequently applied to both the
training and test sets. This approach ensures that no information
from the test set influences the training process, thereby
maintaining the integrity of the hold-out evaluation. Note that this
normalization step was conducted only once after data splitting.
Subsequent cross-validation procedures were conducted on the
standardized training set, and it was not necessary to perform
normalization repeatedly during the cross-validation process.
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Data Collection

Data Screening

Extract Clinical Variables

Remove Samples with
Missing Value

Define Target Variable

Data Splitting and
Normalization

LASSO Feature Selection

Bayesian Optimization
and Model Construction

Model Performance
Evaluation

Model Interpretability
Analysis

FIGURE 1

Experimental workflow. This flowchart outlines the key stages of the study, from data collection and preprocessing to model construction,
hyperparameter optimization, performance evaluation, and interpretability analysis.

Data Source: PPMI Website, Study Data, Curated Data Cuts (2025/03/21)
Sample Size: 15316, Feature Number : 181

Screening Criteria: PD Patients (Cohort=1)
Sample Size: 7021, Feature Number: 181

12 Predictor Variables: Age, Sex, Education Years, Disease Duration, H&Y, UPDRS-I,
UPDRS-Il, UPDRS-IIl, UPDRS-IV, ESS, RBDSQ, GDS

Target Variable: MoCA

Sample Size: 7021, Feature Number : 12

Sample Size: 3362, Feature Number : 12

Normal Cognition (PD-NC, MoCA 2 26), Sample Size: 2325
Mild Cognitive Impairment (PD-MCI, 21 < MoCA < 25), Sample Size: 829
Total Sample Size: 3154, Feature Number : 12

Training Set (70%), Sample Size: 2254, Feature Number : 12
Test Set (30%), Sample Size: 900, Feature Number : 12
Z-Score Normalization

7 Features: Age, Sex, Education Years, Disease Duration, UPDRS-I, UPDRS-III, GDS
Total Sample Size: 3154, Feature Number : 7

Bayesian Optimization for Tuning Parameters
Four Machine Learning Algorithms: LR, SVM, RF, XGBoost

Threshold Optimization: Default (0.5), F1-Score Maximization, Youden Index Maximization
Evaluation Metrics: Confusion Matrix, Accuracy, Balanced Accuracy, Cohen's Kappa
Precision, Recall, Specificity, F1-Score, AUC-ROC, AUC-PR

LR: Feature Coefficients, SHAP (Linear Explainer), Permutation Importance

SVM: Feature Coefficients (Linear SVM), SHAP (Kernel Explainer), Permutation Importance
RF: Impurity Importance, SHAP (Tree Explainer), Permutation Importance

XGBoost: Importance (Weight, Gain, Cover), SHAP (Tree Explainer), Permutation Importance

2.4 Feature selection using LASSO logistic

regression

To identify the most critical predictors of PD-MCI from
the initial 12 clinical variables, we employed least absolute

Frontiersin

shrinkage and selection operator (LASSO) logistic regression
( ). Unlike standard logistic regression, LASSO
logistic regression incorporates an L1 regularization term into
the cost function, which penalizes the absolute magnitude of the
model’s coefficients. A key advantage of this method is its ability
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to shrink the coefficients of less important features to exactly
zero, effectively performing automatic feature selection. This is
particularly suitable for a binary classification task, as it results in
a more parsimonious and interpretable model by retaining only the
features with the strongest predictive power.

The optimal regularization parameter A was determined
through subject-level stratified 10-fold cross-validation conducted
exclusively on the training set. Following the identification of
the optimal A value, the LASSO logistic regression model was
retrained on the complete training dataset using this optimized
regularization parameter. Features exhibiting non-zero coeflicients
in the final LASSO model were identified as the selected feature
subset for subsequent analysis. This carefully curated feature subset
was then employed across all downstream analytical procedures,
including model construction, hyperparameter optimization, and
performance evaluation.

To ensure the robustness of our LASSO-based feature
selection approach and assess potential methodological biases,
we conducted comprehensive validation experiments detailed
in the Supplementary material (Experiments II and IV). These
validation analyses comprised two critical components: (1) training
and evaluating all four machine learning models using the
complete set of 12 initial features without any prior feature
selection, thereby establishing baseline performance metrics
independent of LASSO feature selection, and (2) conducting
a systematic comparison of feature importance rankings across
multiple selection methodologies, including filter, wrapper, and
embedded approaches. This comprehensive validation framework
was specifically designed to demonstrate that our primary findings
and clinical conclusions remain consistent across different feature
selection strategies, thereby confirming that our results are not
artifacts of a single methodological approach.

2.5 Model construction

Using the selected feature subset from LASSO feature selection,
four widely-used machine learning models (Amoroso et al., 2023;
Tan et al, 2025) were constructed for PD-MCI classification:
logistic regression (LR), support vector machine (SVM), random
forest (RF), and extreme gradient boosting (XGBoost). LR
served as the baseline linear model for binary classification,
providing interpretable coefficients and establishing a foundational
performance benchmark. The model employs the logistic function
to map linear combinations of input features to probability
estimates for PD-MCI classification (Hosmer et al., 2013). SVM was
implemented with multiple kernel options to capture both linear
and non-linear decision boundaries, offering flexibility in modeling
complex feature relationships. The algorithm constructs optimal
separating hyperplanes to distinguish between PD-MCI and PD-
NC classes while maximizing the margin between classes (Cortes
and Vapnik, 1995). RE as an ensemble method utilizing multiple
decision trees, was employed to reduce overfitting and improve
generalization through bootstrap aggregation. This algorithm
constructs numerous decision trees using random subsets of
features and training samples, with final predictions determined
by majority voting across all trees (Breiman, 2001). XGBoost, a
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gradient boosting framework, was selected for its demonstrated
effectiveness in handling imbalanced datasets and its optimization
capabilities for classification tasks. The algorithm sequentially
builds weak learners, with each subsequent tree focusing on
correcting the errors made by previous iterations (Chen and
Guestrin, 2016).

To address the inherent class imbalance in the dataset,
where PD-NC samples substantially outnumber PD-MCI samples,
tailored strategies were implemented for each algorithm to ensure
optimal classification performance. For LR, SVM, and RE the
class weight parameter was configured to “balanced,” which
automatically adjusts class weights inversely proportional to their
respective frequencies in the training data, thereby providing
equal importance to both minority and majority classes during
model training (Pedregosa et al., 2011). For XGBoost, the scale
positive weight parameter, which represents the ratio of negative to
positive samples, was treated as a hyperparameter to be optimized
during the hyperparameter tuning process to achieve the most
effective class balance handling strategy for this specific dataset and
classification task (Chen and Guestrin, 2016).

2.6 Hyperparameter optimization

Hyperparameter tuning for each model was conducted using
Bayesian optimization (Snoek et al., 2012) within a subject-level
stratified 10-fold cross-validation scheme on the training set. The
area under the precision-recall curve (AUC-PR) was selected
as the optimization objective, which is particularly appropriate
for imbalanced datasets as it emphasizes performance on the
minority class. This framework ensures robust parameter tuning
without overfitting while maintaining subject-level data separation
integrity. The detailed hyperparameter search spaces for all
algorithms are provided in the Supplementary Table S1.

After identifying the optimal hyperparameter configurations
through the Bayesian optimization process, each algorithm was
retrained on the complete training dataset to produce the final
diagnostic classification models. This final training phase utilized
the entire training set with the selected features from LASSO
logistic regression and the best hyperparameter combinations
determined during the optimization procedure. The resulting
models represent the culmination of the systematic feature
selection and hyperparameter tuning procedures, providing the
most robust and optimized configurations for each algorithm.
These final models were subsequently employed for comprehensive
evaluation on the independent test set to assess their real-
world diagnostic performance and clinical utility for PD-
MCI classification.

2.7 Model performance evaluation

To determine the final clinical utility of each algorithm, the
models equipped with their optimized hyperparameter sets were
deployed for a definitive evaluation on the independent test set.
The primary goal was to assess their efficacy in discriminating

between PD-MCI and PD-NC individuals. Performance was
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quantified using a comprehensive suite of metrics, each providing
unique insights into different aspects of classification performance
in the clinical context of PD-MCI diagnosis. The evaluation
metrics employed in this study are detailed in Table I, which
presents the mathematical formulation and clinical interpretation
of each measure.

Among these metrics, receiver operating characteristic (ROC)
and PR curves are fundamental evaluation tools for binary
classification performance assessment. ROC curves demonstrate a
model’s discriminative ability to distinguish between positive and
negative classes across all classification thresholds, plotting the
true positive rate (sensitivity) against the false positive rate (1-
specificity). In contrast, PR curves illustrate the trade-off between
precision and recall (sensitivity), providing a more informative
evaluation for imbalanced datasets as they focus specifically on
positive class performance and are less influenced by the large
number of true negatives.

In the context of PD-MCI classification tasks, these metrics
assume particular clinical significance. The inherent class
imbalance in PD-MCI datasets makes AUC-PR especially
informative, as it better reflects model performance on the

TABLE 1 Evaluation metrics for PD-MCI classification performance.

Metric Formula Clinical significance in

PD-MCI diagnosis

Accuracy Overall proportion of correctly classified
patients, providing general diagnostic

performance assessment

TP+TN
TP+TN+FP+FN

TP N

Balanced 5 ThEN T TNeFp)

accuracy

Accounts for class imbalance by averaging
sensitivity and specificity, ensuring fair
evaluation despite unequal PD-MCI and
PD-NC sample sizes

TP

Precision TPYFP

Proportion of patients classified as
PD-MCI who truly have cognitive
impairment, indicating diagnostic

reliability and reducing false alarms

TP

Sensitivity TPrEN Proportion of actual PD-MCI patients
correctly identified, crucial for early

detection and timely intervention

N

Specificity TNLTP Proportion of cognitively normal patients
correctly classified, important for avoiding

unnecessary anxiety and overtreatment

2x precision X sensitivity

F1-Score Pprecision-tsensitivity

Harmonic mean balancing precision and
sensitivity, particularly valuable for

imbalanced datasets in clinical screening

Cohen’s BoPe
Kappa

Agreement beyond chance, accounting for
random classification probability,
providing robust performance assessment

AUC-ROC Area under ROC

curve

Overall discriminative ability across all
threshold values, indicating model’s
capacity to distinguish PD-MCI from
PD-NC

AUC-PR Area under PR

curve

Performance measure emphasizing positive
class prediction, particularly informative
for imbalanced PD-MCI classification tasks

TP, true positive; TN, true negative; FP, false positive; FN, false negative; P,, observed
agreement; P, expected agreement by chance; AUC-ROC, area under the receiver operating
characteristic curve; AUC-PR, area under the precision-recall curve. Sensitivity and recall
are essentially the same metric, commonly used in medical and machine learning domains,
respectively.
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minority class of interest. Furthermore, sensitivity and specificity
are critically important in this clinical context, as they directly
measure the model’s ability to correctly identify patients with
cognitive impairment and those who are cognitively normal,
respectively. Accurate classification in this domain has profound
implications for early intervention strategies and patient care
management, making the comprehensive evaluation provided
by both ROC and PR curve analyses essential for validating
diagnostic models.

2.8 Threshold optimization

In clinical machine learning applications, the selection of an
appropriate decision threshold is crucial for translating continuous
probability outputs into binary diagnostic classifications (Freeman
2008). To
performance across different clinical scenarios, we implemented

and Moisen, comprehensively evaluate model
three distinct thresholding strategies.

The first strategy employs the conventional default threshold of
0.5, serving as the standard baseline for binary classification. The
second approach implements a threshold optimized to maximize
the F1-score, which represents the harmonic mean of precision and
sensitivity. This strategy is particularly well-suited for imbalanced
datasets and research settings where overall diagnostic accuracy
across both classes is prioritized. The third strategy employs a
threshold that maximizes Youden’s Index (sensitivity + specificity
- 1), representing standard practice in medical diagnostics where
minimizing both false positives and false negatives is crucial for
optimal patient care.

For each model and thresholding strategy, threshold values
were determined within the subject-level stratified 10-fold cross-
validation procedure on the training set to prevent overfitting.
The median of the optimal thresholds obtained across all cross-
validation folds was calculated and used as the final threshold
for each strategy. These final thresholds were subsequently
applied to the independent test set for performance evaluation.
This systematic multi-threshold comparative approach enables
comprehensive understanding of each model’s behavior across
different clinical scenarios, allowing clinicians to select the
most appropriate threshold configuration based on their specific
diagnostic priorities and the relative importance of minimizing
false positives vs. false negatives in their clinical setting.

2.9 Feature importance analysis

To enhance model interpretability and identify the clinical
that to PD-MCI
prediction, we conducted comprehensive feature importance

variables contribute most significantly
analyses for each algorithm using multiple complementary
methodological approaches. The optimal models obtained from
the hyperparameter optimization process were utilized directly
for feature importance evaluation, ensuring methodological
consistency with the model configurations employed for
performance assessment. Three distinct importance measures

were systematically applied: coefficient weights (Hosmer et al,
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2013; Cortes and Vapnik, 1995), Shapley additive explanations
(SHAP) values (Lundberg and Lee, 2017), and permutation
importance (Breiman, 2001; Altmann et al., 2010).

For LR and linear SVM, three importance measures were
employed. Coefficient weights were calculated as the absolute
values of the learned coeflicients, representing the direct linear
contribution of each feature to classification decisions. SHAP
explainers (linear explainer for LR and kernel explainer for SVM)
were utilized to provide unified feature attribution values that
satisfy efficiency and symmetry axioms. Permutation importance
was computed by measuring the decrease in model performance
when each feature’s values are randomly shuffled.

For RF and XGBoost, both intrinsic and external importance
calculated. RF
importance by measuring the total decrease in node impurity

measures were employed impurity-based
weighted by the probability of reaching each node across all trees.
XGBoost utilized the built-in gain metric, which measures the
average gain across all splits using each feature. Both tree-based
models were analyzed using SHAP tree explainer to provide
exact feature attribution values specifically designed for ensemble
methods. Permutation importance was evaluated for both
algorithms by assessing the impact of feature perturbation on
model performance.

This
understanding of feature contributions across different algorithmic

multi-faceted  approach  enables comprehensive
paradigms and provides robust insights into the clinical variables

most predictive of PD-MCI.

2.10 Software implementation

All analyses were implemented in Python 3.12 using scikit-
learn (Pedregosa et al., 2011) for machine learning algorithms,
XGBoost for gradient boosting (Chen and Guestrin, 2016),
SHAP for interpretability analysis (Lundberg and Lee, 2017),
and Optuna for Bayesian optimization (Akiba et al., 2019). The
hyperparameter optimization employed Gaussian Process-based
Bayesian optimization with expected improvement acquisition
function to efficiently explore the hyperparameter space (Snoek
et al, 2012). Cross-validation procedures utilized stratified
sampling to maintain class distribution across folds, ensuring
robust model evaluation. All experiments were conducted on a
computational platform with reproducible random seeds to ensure
result consistency and facilitate replication. The complete source
code and implementation details are available at: https://github.
com/yuzhounh/PD-MCI- Classification.

3 Experimental results

3.1 Demographic and clinical
characteristics

Following preprocessing and filtering based on MoCA scores,
the final dataset comprised 3,154 valid records from 896 unique
patients. At the visit level, 829 records (26.28%) were classified
as PD-MCI, with the remaining 2,325 classified as PD-NC. This
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proportion of PD-MCI is notably consistent with the 25.8% cross-
sectional prevalence reported in a large multicenter study by
Aarsland et al. (2010). However, when classifying at the subject
level —where a patient was labeled as “1” (PD-MCI) if they had at
least one visit meeting the MCI criteria—the proportion of patients
classified as PD-MCI increased to 42.97%. This resulted in a cohort
of 511 PD-NC and 385 PD-MCI patients for subject-level analyses.

The demographic and clinical characteristics of the study
population are presented in Table 2. Statistical analysis with false
discovery rate (FDR) correction revealed significant between-group
0.051). The PD-
MCI group was significantly older, had a higher proportion of

differences for all variables except ESS (p =

males, fewer years of education, and showed a shorter disease
duration compared to the PD-NC group (all p < 0.05). Clinically,
the PD-MCI group exhibited significantly higher Hoehn and
Yahr stage (H&Y), more severe non-motor symptoms of daily
living (UPDRS-I), motor symptoms of daily living (UPDRS-II),
motor signs (UPDRS-III), motor complications (UPDRS-1V), and
depressive symptoms (GDS), as well as higher rates of REM sleep
behavior disorder symptoms (RBDSQ) (all p < 0.05). In contrast,
daytime sleepiness scores (ESS) showed no significant difference
between groups. These findings highlight a distinct clinical and
demographic profile for patients with PD-MCI, providing a strong
basis for machine learning-based classification.

3.2 Feature correlation and
multicollinearity assessment

To assess potential multicollinearity among predictor variables
and understand the relationships between clinical features,
we examined pairwise correlations using Pearson correlation
coefficients for the complete dataset. The correlation matrix
is presented in Figure 2, revealing the strength and direction
of associations between all predictor variables used in the
classification models.

The correlation analysis demonstrated generally low to
moderate correlations among most clinical features, with the
0.59 between UPDRS-
I and UPDRS-II scores, and the lowest negative correlation of

highest positive correlation being r =

r = —0.09 between sex and UPDRS-IV. Importantly, no feature
> 0.7,
indicating minimal multicollinearity concerns for our machine

pairs exceeded the high correlation threshold of |r|

learning models.

The strongest correlations were observed among UPDRS
subscales, particularly between UPDRS-I (non-motor experiences
of daily living) and UPDRS-II (motor experiences of daily
0.59), and between UPDRS-II and UPDRS-III
(motor examination) (r = 0.49). These moderate correlations

living) (r =

reflect the expected clinical relationships within the unified rating
scale framework while maintaining sufficient independence for
predictive modeling. Disease duration showed meaningful positive
correlations with motor severity measures, including H&Y stage
(r = 0.26), UPDRS-II (r = 0.30), UPDRS-III (r = 0.31), and
notably UPDRS-IV (motor complications) (r = 0.41), consistent
with the progressive nature of PD. Among non-motor features,
UPDRS-I demonstrated moderate associations with sleep-related
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TABLE 2 Demographic and clinical characteristics of the study population.

Variable Range Overall PD-NC PD-MCI p-Value
Sample size 3,154 2,325 829

Age [29.74, 89.93] 65.06 = 9.56 63.82 + 9.44 68.53 £ 9.01 <0.001
Sex (Male %) {0, 1} 1(0.64) 1(0.62) 1(0.69) 0.001
EDUCYRS [0, 20] 15.77 + 3.10 16.07 + 2.92 14.94 +3.42 <0.001
Duration [0.15, 26.30] 6.96 = 3.69 7.10+£3.76 6.57 +3.48 0.001
H&Y {0-5} 2(0.77) 2(0.78) 2(0.75) 0.014
UPDRS-1 [0, 35] 8.84 £ 5.61 8.50 £ 5.46 9.78 £5.92 <0.001
UPDRS-1I [0, 48] 9.56 & 6.28 929 £6.13 1031 £ 6.63 <0.001
UPDRS-III 2, 96] 30.03 +13.75 29.54 £ 13.51 314141433 0.001
UPDRS-1V [0,19] 238+3.16 248 +£321 2.12£3.01 0.004
ESS [0, 24] 7.15+4.44 7.08 + 4.46 7.36 +£437 0.051
RBDSQ [0, 13] 4.84£3.24 476 £3.24 5.06 +3.22 0.014
GDS [0, 15] 279 £2.87 257 £275 3.40£3.12 <0.001

Continuous variables are presented as mean + standard deviation; categorical variables as mode (proportion). The p values were calculated using Mann-Whitney U-tests for continuous
variables and Chi-square tests for categorical variables, with FDR correction applied.

Age -
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FIGURE 2
Correlation matrix of clinical features. The heatmap displays Pearson correlation coefficients between all predictor variables in the complete dataset.
The color scale ranges from blue (negative correlations) to red (positive correlations). Only the lower triangular matrix is shown to avoid redundancy.

measures (ESS: r = 0.38; RBDSQ: » = 0.34) and mood assessment The overall pattern of correlations supports the inclusion of
(GDS: r = 0.54), reflecting the interconnected nature of non-motor  all selected variables in subsequent machine learning analyses
symptoms in PD-MCI development. without substantial redundancy, while providing clinically
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FIGURE 3

coefficients of RBDSQ remained zero throughout the regularization path.
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LASSO logistic regression feature selection. (a) Mean AUC-PR (+ standard deviation) from subject-level stratified 10-fold cross-validation across a
range of A values, with the optimal » = 15.8489 indicated. (b) Coefficient paths for each feature as a function of A obtained by retraining on the
complete training set. As  increases, coefficients of less important features are progressively shrunk to zero. Only eleven features are shown as the

interpretable relationships that align with our understanding of
PD pathophysiology.

3.3 Feature selection results

The LASSO logistic regression process, optimized via subject-
level stratified 10-fold cross-validation on the training set to
maximize AUC-PR, was used to identify the most salient
predictors from the initial 12 features. Figure 3 illustrates both
the performance curve derived from cross-validation and the
coefficient paths obtained by retraining the model on the complete
training set across a range of regularization parameters.

The cross-validation procedure identified an optimal
regularization parameter of A 15.8489, which maximized
the mean AUC-PR across all folds. At this optimal regularization
strength, the LASSO algorithm selected a parsimonious subset of
seven key features while shrinking the coefficients of the remaining
five features (H&Y, UPDRS-II, UPDRS-IV, ESS, and RBDSQ) to
zero, effectively excluding them from the final model.

While seemingly counterintuitive, the exclusion of these
variables commonly associated with Parkinson’s disease offers
insights into the specific drivers of cognitive decline within this
dataset. The exclusion of H&Y and UPDRS-II suggests that
once more direct motor examination findings (UPDRS-III) and
overarching demographic factors (like age and years of education)
are considered, these measures of disease stage and motor disability
may offer redundant or less potent predictive information for
the specific task of classifying cognitive status. Similarly, while
sleep disturbances measured by ESS and RBDSQ are known non-
motor symptoms of PD, their predictive signal may have been
overshadowed by the Geriatric Depression Scale (GDS). Given
the strong interplay between depression, apathy, and cognitive
function, it is plausible that GDS serves as a more powerful and
direct proxy for the underlying neurobiological changes that impact
cognition, thereby diminishing the independent contribution of the
sleep-related features in the final LASSO model.
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FIGURE 4

LASSO feature weights for PD-MCI classification. The horizontal bar
chart displays the absolute weights of the seven selected features
from the LASSO model trained on the complete training set with the
optimal A value. Blue bars represent positive coefficients (features
associated with increased PD-MCI likelihood, i.e., risk features),
while red bars represent negative coefficients (protective features).
Features are ordered by their absolute weight magnitude, with age
(0.5395) being the most influential predictor, followed by EDUCYRS
(-0.4093) and Duration (-0.2498).

When the final LASSO model was trained on the complete
training set using A = 15.8489, the selected features demonstrated
varying contributions to PD-MCI classification. The selected
features, ranked by the absolute magnitude of their coeflicients,
are visualized in Figure 4. Age emerged as the most influential
predictor with a positive coeflicient of 0.5395, indicating that
older patients have substantially higher odds of developing
PD-MCI. Years of education (EDUCYRS) showed the second-
largest magnitude but with a negative coefficient of -0.4093,
confirming its protective role against cognitive decline. Disease
duration exhibited a negative coeflicient of -0.2498, suggesting that
longer disease duration may be associated with better cognitive
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preservation in this cohort. Among the clinical severity measures,
depressive symptoms (GDS) demonstrated a positive coefficient
of 0.1571, while non-motor experiences of daily living (UPDRS-
I) and sex showed smaller positive contributions of 0.0983
and 0.0924, respectively. Motor examination scores (UPDRS-III)
had the smallest coefficient of 0.0087, indicating minimal direct
contribution to the classification decision. These seven features
were used for the construction and comparison of all subsequent
machine learning models.

3.4 Hyperparameter optimization

To ensure optimal model performance prior to final
testing, all machine learning algorithms underwent systematic
hyperparameter optimization on the training set using subject-
level stratified 10-fold cross-validation. Hyperparameters for
each algorithm were optimized using Bayesian optimization with
Optuna, where AUC-PR was used as the objective function to
identify the optimal parameter configurations that maximize
predictive performance while maintaining generalizability. The
resulting optimal hyperparameters for each model are summarized
in the Supplementary Table S2.

The
characteristics of the models that provide insights into the

hyperparameter  optimization revealed  distinct
underlying structure of the classification problem. For LR,
the optimal parameter configuration favored an L2 penalty
(Ridge regularization), indicating that modest regularization was
beneficial for preventing overfitting while maintaining model
stability. SVM achieved optimal performance with a linear kernel,
demonstrating that the decision boundary between PD-MCI
and PD-NC classes can be effectively captured through linear
separation in the feature space. These findings collectively suggest
that the relationship between the selected clinical features and the
classification target is largely linear in nature.

For the tree-based models, both RF and XGBoost favored
conservative parameters designed to prevent overfitting, reflecting
the complexity constraints of the dataset. RF optimization selected
a moderate maximum tree depth and relatively high minimum
samples per leaf, indicating that shallow, well-regularized trees
were most effective for generalization. Similarly, XGBoost’s optimal
configuration included a maximum tree depth of only 2, further
reinforcing that effective classification could be achieved with
relatively simple decision rules rather than complex tree structures.
The preference for conservative tree parameters across both
ensemble methods suggests that the underlying patterns in
the clinical data are sufficiently captured by simple decision
boundaries, consistent with the linear nature of the classification
problem identified through the linear model optimization results.

3.5 Cross-validated performance on
training data

Following hyperparameter optimization, each model was
evaluated on the training set using subject-level stratified
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10-fold cross-validation with the obtained optimal parameters
to assess their intrinsic discriminative capacity. The evaluation
initially computed threshold-independent metrics (AUC-ROC
and AUC-PR) that assess the model’s fundamental ability
to distinguish between PD-MCI and non-MCI cases across
all possible decision thresholds. Subsequently, three different
threshold optimization strategies were systematically applied to
determine optimal decision boundaries: the default threshold (0.5),
Fl-score maximization, and Youden index maximization. These
threshold optimization strategies specifically influence threshold-
dependent metrics such as accuracy, precision, sensitivity, and
F1-score. The comprehensive cross-validation performance results
using the optimized hyperparameters across all threshold strategies
are presented in Table 3.
The comprehensive cross-validation analysis revealed
distinct performance patterns across the four machine learning
three

Regarding threshold-independent metrics, XGBoost demonstrated

algorithms under threshold optimization strategies.
superior discriminative capability, achieving the highest AUC-ROC
and AUC-PR scores. Nevertheless, the performance differences
among all algorithms were relatively modest, with all models
achieving similar AUC-ROC and AUC-PR ranges, suggesting
comparable inherent discriminative capacity across models for
PD-MCI classification tasks.

The default threshold (0.5) strategy revealed substantial
performance variations across algorithms. SVM achieved the
highest accuracy and specificity, but demonstrated markedly poor
sensitivity, resulting in the lowest Fl-score and Cohen’s kappa.
This pattern indicates that the default threshold is excessively
conservative for SVM in PD-MCI detection, leading to substantial
underdiagnosis. In contrast, LR with the default threshold achieved
more balanced performance with notably higher sensitivity, FI1-
score, and Cohen’s kappa.

Both optimized threshold strategies demonstrated superior
balance between sensitivity and specificity compared to the
default threshold. The F1-score optimization strategy consistently
improved sensitivity across all models while maintaining
XGBoost achieved the best

performance under Fl-score optimization with the highest scores

reasonable precision. overall
across most key metrics including accuracy, balanced accuracy,
precision, and Cohen’s kappa. LR exhibited the highest sensitivity
under this strategy. The Youden index optimization provided a
similar balanced performance profile to Fl-score optimization.
XGBoost again demonstrated the strongest performance across
most metrics, while LR maintained the highest sensitivity under
Youden index optimization.

The optimal thresholds derived from cross-validation varied
substantially across algorithms and optimization criteria. SVM
consistently required the lowest thresholds, reflecting its tendency
to produce conservative probability estimates. XGBoost required
intermediate thresholds, while LR and RF showed higher and more
variable threshold requirements.

Based on these comprehensive cross-validation results,
XGBoost emerged as the most promising algorithm across both
optimized threshold strategies, consistently achieving the highest
Fl-scores and Cohen’s kappa values. The optimized threshold
strategies (Fl-score and Youden index) demonstrated clear
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TABLE 3 Cross-validation performance comparison on training data across different threshold strategies.

10.3389/fnagi.2025.1687925

Threshold Metric LR SVM RF XGBoost
AUC-ROC 0.6948 4 0.0441 0.6946 4 0.0453 0.6952 4 0.0427 0.7076 % 0.0442
AUC-PR 0.4443 + 0.0843 0.4462 + 0.0850 0.4408 + 0.0833 0.4529 =+ 0.0807
Default (0.5) Accuracy 0.6406 + 0.0427 0.7507 = 0.0355 0.6252 + 0.0390 0.7098 + 0.0415
Balanced accuracy 0.6487 =+ 0.0435 0.5548 + 0.0411 0.6219 + 0.0382 0.6142 + 0.0500
Precision 0.3833 = 0.0740 0.5073 = 0.2208 0.3616 = 0.0619 0.4300 + 0.1048
Sensitivity 0.6633 =+ 0.0835 0.1534 + 0.0840 0.6145 + 0.0858 0.4174 + 0.0858
Specificity 0.6340 + 0.0547 0.9562 =+ 0.0212 0.6293 =+ 0.0580 0.8110 + 0.0433
Fl-score 0.4820 + 0.0702 0.2300 + 0.1174 0.4520 + 0.0589 0.4192 + 0.0839
Cohen’s Kappa 0.2393 £ 0.0806 0.1393 + 0.1042 0.1969 + 0.0687 0.2280 =+ 0.1050
F1-Score Optimal threshold 0.4636 & 0.0474 0.2217 4 0.0467 0.4372 4 0.1239 0.3570 + 0.1099
Accuracy 0.6015 + 0.0701 0.6008 + 0.0644 0.6203 + 0.1138 0.6474 = 0.1051
Balanced accuracy 0.6723 %+ 0.0366 0.6711 % 0.0366 0.6673 % 0.0294 0.6836 = 0.0475
Precision 0.3781 + 0.0757 0.3762 + 0.0723 0.4028 + 0.0920 0.4201 = 0.1038
Sensitivity 0.8145 % 0.0812 0.8113 4 0.0850 0.7705 4 0.1860 0.7615 + 0.1187
Specificity 0.5301 + 0.1184 0.5309 + 0.1089 0.5640 + 0.2152 0.6058 =+ 0.1880
Fl-score 0.5100 4 0.0615 0.5078 4 0.0592 0.5092 4 0.0520 0.5278 % 0.0630
Cohen’s Kappa 0.2511 + 0.0819 0.2483 + 0.0764 0.2620 + 0.0879 0.2937 + 0.1140
Youden Index Optimal threshold 0.4784 + 0.0253 0.2441 + 0.0496 0.4495 + 0.1044 0.3643 £ 0.0770
Accuracy 0.6187 + 0.0620 0.6304 + 0.0614 0.6262 + 0.0887 0.6528 = 0.0830
Balanced accuracy 0.6732 + 0.0357 0.6721 % 0.0354 0.6692 + 0.0282 0.6859 = 0.0452
Precision 0.3865 + 0.0785 0.3920 + 0.0707 0.4001 + 0.0952 0.4166 = 0.0966
Sensitivity 0.7765 = 0.0881 0.7512 +0.1314 0.7540 + 0.1439 0.7539 + 0.0738
Specificity 0.5700 + 0.0979 0.5930 + 0.1097 0.5844 + 0.1670 0.6179 + 0.1368
Fl-score 0.5080 + 0.0612 0.5052 + 0.0594 0.5067 + 0.0536 0.5276 = 0.0629
Cohen’s Kappa 0.2595 + 0.0783 0.2625 + 0.0673 0.2628 + 0.0825 0.2950 = 0.1051

Values are presented as mean + standard deviation across 10-fold cross-validation. Bold values indicate the best performance for each metric across the four models.

superiority over the default threshold for PD-MCI classification,
providing more clinically relevant sensitivity-specificity trade-
offs. For subsequent test set evaluation, the median optimized
thresholds from cross-validation were adopted to ensure robust
and generalizable performance estimates.

3.6 Model evaluation

The performance of the four machine learning models
was evaluated on the independent test set using the median
optimized thresholds derived from cross-validation. Figure 5
illustrates the corresponding ROC and PR curves for all
models, providing visual representation of their discriminative
performance. Table 4 presents a detailed comparison of model
performance across different threshold strategies, providing
both threshold-independent metrics (AUC-ROC and AUC-PR)
and threshold-dependent metrics under various optimization
criteria. The comprehensive evaluation of the four models
revealed important insights into their discriminative abilities
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and the critical role of threshold optimization in imbalanced
classification scenarios.

In terms of overall discriminative ability, SVM demonstrated
superior performance, achieving the highest AUC-ROC and AUC-
PR scores. LR followed closely with comparable AUC scores,
indicating robust classification potential. These results suggest that
linear models possess excellent discriminative power for PD-MCI
classification in this dataset, likely due to their ability to capture
the linear relationships between the selected clinical features
and cognitive impairment status. While showing respectable
performance, RF and XGBoost achieved lower AUC values,
suggesting that the additional complexity of ensemble methods
may not provide substantial benefits for this particular feature set
and dataset.

The default threshold of 0.5 again proved suboptimal, as
exemplified by the SVM’s performance: while achieving high
specificity and precision, its sensitivity was extremely low, resulting
in an unacceptably low F1-score. Such performance characteristics
would be problematic in clinical scenarios where high sensitivity
is crucial for detecting cognitive impairment, as missing PD-
MCI cases could delay appropriate interventions and patient care
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FIGURE 5
ROC and PR curves for the different machine learning models on the test set. (a) ROC curves illustrate the trade-off between sensitivity and
1-specificity. (b) PR curves show the trade-off between precision and recall (sensitivity).

planning. This underscores the fundamental necessity of threshold
optimization when dealing with imbalanced datasets to achieve
an effective trade-off between sensitivity and specificity that aligns
with clinical priorities.

The two threshold optimization strategies, i.e., maximizing the
Fl-score and maximizing the Youden Index, yielded substantially
more balanced performance across all models. Under Fl-score
optimization, the LR model demonstrated superior performance
across the majority of evaluation metrics, achieving the highest
balanced accuracy, Fl-score, and Cohen’s Kappa. Similarly, under
Youden Index optimization, the LR model again secured the
best performance in most metrics. The SVM model consistently
achieved competitive performance under both optimization
strategies, particularly showing strong results in Fl-score
optimization. This consistent performance highlights the strength
of both linear models, particularly the LR model, in achieving
well-rounded and balanced overall performance for PD-MCI
classification. The LR model’s interpretability, combined with
its robust performance, makes it particularly suitable for clinical
applications where understanding the contribution of individual
features is important for clinical decision-making.

However, two notable exceptions emerged from the threshold
optimization results that merit careful consideration. When the
threshold was optimized to maximize the Fl-score, RF achieved
the highest sensitivity, while under Youden Index optimization,
the RF model secured the top performance in sensitivity again.
These findings indicate that if the primary clinical objective is to
identify the maximum number of PD-MCI cases (i.e., maximizing
sensitivity to minimize missed diagnoses), appropriately optimized
RF models might be more suitable choices than linear models.
The RF model’s ability to achieve high sensitivity values suggests
that for clinical applications where the cost of false negatives
is particularly high—such as screening scenarios where missing
cognitive impairment could lead to delayed treatment—ensemble
models with optimized thresholds could be preferred despite their
lower overall discriminative ability.

These findings highlight the fundamental importance of
aligning model selection and threshold optimization with
specific clinical objectives. For applications prioritizing the
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minimization of false positives (high specificity) or seeking the best
overall diagnostic accuracy, LR and SVM demonstrate superior
performance. Conversely, for scenarios where maximizing the
detection of PD-MCI patients is paramount, RF models with
appropriately optimized thresholds may provide better clinical
utility despite potentially higher false positive rates.

3.7 Feature importance analysis

To gain deeper insights into the decision-making processes
of our models and identify the most influential clinical factors
for PD-MCI classification, we conducted a comprehensive feature
importance analysis after training each of the four models
(LR, SVM, RE, XGBoost) on the complete training dataset
using the seven selected features and optimized hyperparameters.
We employed multiple complementary analytical approaches
to ensure robust and comprehensive assessment: model-specific
importance measures (coefficients for linear models, impurity-
based scores for RE, and Gain for XGBoost), SHAP values for
understanding individual feature contributions, and the model-
agnostic permutation importance method to corroborate our
findings from multiple perspectives.

As illustrated in Figure 6, a remarkably uniform pattern
emerges across all models and analytical methodologies. Three
clinical variables consistently rank as the most salient predictors
of cognitive status: age, years of education, and disease duration,
which respectively reflect the natural progression of cognitive
decline, cognitive reserve capacity, and cumulative pathological
burden. Additionally, GDS frequently appears among the top
four important features, underscoring the significant relationship
between depressive symptoms and PD-MCI. Although each
of the seven selected features contributes to overall model
performance, UPDRS-III (motor examination scores) and sex
exhibited consistently lower importance rankings across multiple
models and evaluation metrics. This finding indicates that while
these features retain predictive value, their direct contribution to
PD-MCI classification is more modest relative to the predominant
demographic, educational, and mood-related variables.
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TABLE 4 Performance comparison on test data across different threshold
strategies.

Threshold  Metric LR  SVM RF  XGBoost
AUC-ROC 0.7241 0.7252 0.6882 0.6967
AUC-PR 0.4923 0.5008 0.4417 0.4375

Default (0.5) Accuracy 0.6689 0.7356 0.6344 0.6889
Balanced 0.6774 0.5614 0.6522 0.6256
accuracy
Precision 0.4447 0.6212 0.4122 0.4519
Sensitivity 0.6969 0.1614 0.6929 0.4803
Specificity 0.6579 0.9613 0.6115 0.7709
F1-score 0.5429 0.2563 0.5169 0.4656
Cohen’s 0.3027 0.1583 0.2522 0.2465
Kappa

F1-Score Optimal 0.4769 0.2452 0.4465 0.3942
threshold
Accuracy 0.6244 0.6300 0.5578 0.6222
Balanced 0.6667 0.6634 0.6358 0.6449
accuracy
Precision 0.4110 0.4132 0.3710 0.4023
Sensitivity 0.7638 0.7402 0.8150 0.6969
Specificity 0.5697 0.5867 0.4567 0.5929
F1-score 0.5344 0.5303 0.5099 0.5101
Cohen’s 0.2645 0.2636 0.1993 0.2371
Kappa

Youden Index Optimal 0.4840 0.2495 0.4629 0.3767
threshold
Accuracy 0.6433 0.6356 0.5722 0.6111
Balanced 0.6751 0.6649 0.6351 0.6431
accuracy
Precision 0.4251 0.4170 0.3757 0.3957
Sensitivity 0.7480 0.7323 0.7795 0.7165
Specificity 0.6022 0.5975 0.4907 0.5696
F1-score 0.5421 0.5314 0.5070 0.5098
Cohen’s 0.2846 0.2683 0.2038 0.2297
Kappa

Bold values indicate the best performance for each metric across the four models.

The SHAP summary plots, presented in Figure 7, provide
granular insights into both the magnitude and directionality of each
feature’s contribution to model predictions. These visualizations
reveal that higher values for age and GDS (represented by red
points) are consistently associated with positive SHAP values,
indicating an increased probability of PD-MCI classification (Guo
et al, 2021; Schrag et al, 2017). Conversely, higher EDUCYRS
values are associated with negative SHAP values, demonstrating
the protective effect of education against cognitive decline. This
pattern aligns with established neurological literature suggesting
that educational attainment may contribute to cognitive reserve,
potentially delaying the onset or manifestation of cognitive
impairment in neurodegenerative diseases (Nie et al., 2019; Galtier
et al., 2016).
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4 Discussion

4.1 Principal findings

In this study, we systematically developed and validated
machine learning models for the classification of PD-MCI using a
large-scale clinical dataset from the PPMI. Our principal findings
demonstrate that a parsimonious set of seven clinical features can
effectively distinguish between PD patients with and without MCI.
The linear models, SVM and LR, demonstrated superior overall
discriminative ability with AUC-ROC scores of 0.7252 and 0.7241,
respectively, accompanied by AUC-PR values of 0.5008 and 0.4923,
respectively. The feature importance analysis revealed consistent
patterns across all models and analytical methodologies, with age,
years of education, and disease duration emerging as the most
salient predictors of cognitive status.

A critical observation from our results is the severe
performance imbalance exhibited by the SVM model when
using the default 0.5 decision threshold, where it achieved
exceptionally high specificity (0.9613) but clinically unacceptable
sensitivity (0.1614). This pattern exemplifies a classic pitfall in
which standard machine learning defaults prove inadequate for
imbalanced clinical datasets. The model exhibited a pronounced
bias toward the majority class (PD-NC), consequently failing to
identify the vast majority of PD-MCI cases. Importantly, this
finding does not reflect an inherent failure of the SVM algorithm
but rather highlights the fundamental inadequacy of applying
fixed, arbitrary thresholds in clinical contexts. This observation
strongly reinforces the rationale underlying our study’s emphasis
on threshold optimization. By systematically adjusting the decision
threshold to maximize clinically relevant metrics like the F1-score
or Youden’s Index, we successfully recalibrated the SVM model
to achieve substantially more balanced and clinically meaningful
performance, with marked improvements in sensitivity while
maintaining reasonable specificity levels.

4.2 Comparison with prior work

Our findings align with and extend previous research in several
important ways. The critical role of age, years of education, and
disease duration as key predictors confirms established risk factors
identified in prior studies (Guo et al., 2021; Schrag et al., 2017;
Sollinger et al., 2010; Nie et al., 2019). Specifically, age has been
consistently identified as a primary risk factor for cognitive decline
in PD, with older patients demonstrating significantly higher rates
of cognitive impairment progression (Hely et al., 2008). Similarly,
educational attainment has been recognized as a protective factor,
with higher education levels associated with delayed onset of
cognitive symptoms, likely through enhanced cognitive reserve
mechanisms (Stern, 2002; Monastero et al., 2018; Galtier et al,,
2016; Nie et al., 2019). Disease duration, while presenting complex
relationships in longitudinal cohorts, has been established as
a fundamental predictor of cognitive deterioration in multiple
prospective studies (Guo et al., 2021; Schrag et al., 2017).

However, our work distinguishes itself through two key
advantages: the utilization of a large-scale dataset and rigorous
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XGBoost) using three different evaluation metrics (columns). The metrics
RF, and Gain for XGBoost), mean absolute SHAP values, and permutation

methodological approaches. First, our study leverages the
comprehensive PPMI database (Marek et al., 2011, 2018), which
provides a substantially larger sample size compared to most
previous investigations in this field (Altham et al., 2024), thereby
enhancing the statistical power and generalizability of our findings.
Second, we employed methodologically rigorous approaches,
particularly the use of subject-level data splitting to ensure realistic
performance estimates and avoid the inflated results that can
arise from data leakage in longitudinal datasets (Veetil et al,
20245 Yagis et al., 2021). Additionally, our comprehensive feature
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selection methodology, extensive hyperparameter optimization,
and multifaceted model evaluation framework contribute to the
methodological rigor of this investigation (Altham et al., 2024; Wu
etal., 2025).

While our purely clinical model achieved a moderate
AUC-ROC of 0.7252, this performance should be evaluated
within the context of its intended application as an accessible
screening tool. This level of discriminative ability, derived
exclusively from readily available clinical variables, represents
meaningful performance for initial risk stratification and early
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FIGURE 7
SHAP summary plots for (a) LR, (b) SVM, (c) RF, and (d) XGBoost models. Each point represents a single observation. The horizontal position indicates
the feature’s impact on the model output (SHAP value), while the color denotes the feature’s magnitude (red for high, blue for low). Features are
ranked vertically by their global importance, providing a detailed view of both the direction and consistency of their effects.

detection purposes, though it remains insufficient for standalone
definitive diagnosis.

Our results inevitably fall below the performance benchmarks
established by
approaches—including neuroimaging, biofluid markers, and

studies incorporating complex multimodal
kinematic analysis—which have reported AUC-ROC values
ranging from 0.79 to 0.84 (Zhu Y. et al, 2024; Hosseinzadeh
et al, 2023; Amboni et al., 2022). However, this performance
gap reflects a fundamental trade-off between diagnostic accuracy
and practical accessibility. While complex multimodal models
offer superior discriminative performance, our approach provides
a highly scalable and immediately implementable solution
that can be deployed across diverse clinical settings without
specialized equipment or expertise. This contribution aligns with
the growing emphasis on machine learning approaches in PD-MCI
detection highlighted in recent systematic reviews (Altham et al.,
2024; Wu et al, 2025), demonstrating that methodologically
rigorous analysis of clinical data with sufficient sample size can
achieve clinically meaningful screening performance for routine
healthcare applications.

4.3 Robustness of findings

A major potential limitation of this study is the reliance on a
single cohort (PPMI). To evaluate the generalizability of our models
in the absence of independent external datasets, we conducted
a rigorous “pseudo-external” validation by splitting the dataset
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at the clinical site level, ensuring that training and testing data
originated from completely different medical institutions (detailed
in Supplementary ExperimentI). Under this more challenging
validation scenario, model performance showed modest decreases
but maintained meaningful discriminative ability across sites.
Remarkably, the LR model demonstrated enhanced performance
on the critical precision-recall metric, with AUC-PR improving
from 0.4923 to 0.5134, providing compelling evidence for its
robust cross-site generalizability. The consistent performance
across diverse clinical sites, despite the more stringent evaluation
conditions, strengthens confidence in the real-world applicability
of our approach.

Cross-methodological validation analyses rigorously confirmed
the robustness of our LASSO-selected seven-feature subset
(detailed in Supplementary Experiments II, IV). When evaluated
using the complete 12-feature set, three core predictors—
age, years of education, and disease duration—consistently
emerged as the most critical variables across diverse models and
importance metrics. This finding was further reinforced through
systematic comparison across different feature selection families
(filter, wrapper, and embedded methods), which demonstrated
remarkable consensus in identifying these three variables as
the most dominant predictors. Crucially, both supplementary
with
our primary LASSO-selected seven-feature subset, providing

validation experiments showed perfect concordance
compelling evidence that these features represent genuine
predictive relationships rather than methodological artifacts. The

convergence of findings across multiple independent analytical
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frameworks establishes strong confidence in the clinical relevance
and diagnostic utility of our identified predictors, supporting their
potential for practical implementation in PD-MCI screening.

Feature importance analysis indicated that UPDRS-III and sex
consistently showed lower relative importance compared to the
other five features across the majority of models and analytical
approaches. To explore whether a more streamlined model could
sustain similar performance, we conducted a systematic ablation
study by excluding these two less significant features (detailed in
Supplementary Experiments I1T). However, the results revealed a
significant decline in the performance of LR and SVM. Therefore,
these two relatively less important features are necessary for
maximizing model performance.

4.4 Clinical implications

Our findings have direct relevance for routine clinical practice
across multiple dimensions. The robust performance achieved
using only readily available clinical data provides compelling
evidence for the utility of these models as accessible, low-
cost, and non-invasive first-line screening tools. This advantage
is particularly valuable in clinical settings where advanced
neuroimaging or biomarker testing may not be readily available—
a critical need highlighted by recent reviews and expert consensus
reports calling for practical, scalable tools to address unmet needs
in PD cognitive care and facilitate implementation of predictive
models into routine practice (Goldman et al., 2018b; Altham et al.,
2024).

4.4.1 Threshold optimization and clinical
trade-offs

The threshold optimization results reveal crucial insights
regarding the inherent trade-offs between performance metrics in
PD-MCI classification. When optimized to maximize F1-score, the
RF model achieved the highest sensitivity of 0.8150, successfully
identifying over 80% of all cognitive impairment cases. Under
Youden Index optimization, the RF model maintained exceptional
sensitivity (0.7795), demonstrating consistent capability in
capturing a substantial proportion of PD-MCI patients across
different optimization strategies.

These consistently high sensitivity values carry profound
clinical significance. The primary objective of a screening tool
is typically to minimize false negatives (missed diagnoses),
even at the cost of higher false positive rates—a principle
underlying many clinical diagnostic criteria (Postuma et al,
2015; Litvan et al, 2012). From a clinical perspective, such
high sensitivity translates to enhanced screening effectiveness
and improved patient outcomes, ensuring that the vast majority
of patients with cognitive impairment are identified and can
receive timely neuropsychological assessment and appropriate
therapeutic intervention.

However, high sensitivity must be balanced against increased
false positive rates, which could lead to unnecessary patient anxiety
and additional healthcare resource utilization for confirmatory
testing. The optimal choice between linear models (offering better
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overall discriminative ability) and ensemble models (providing
higher sensitivity) should be guided by specific clinical context,
available resources, and the relative costs of false negatives vs. false
positives in the particular healthcare setting.

4.4.2 Clinical decision framework

To facilitate clinical decision-making, Table5 provides a
practical framework for model selection based on specific
clinical scenarios:

Screening and early detection programs: for settings
prioritizing identification of as many PD-MCI cases as possible (a
“better safe than sorry” approach), RF with optimized thresholds
is recommended due to superior sensitivity performance (0.8150
under Fl-score optimization). This approach is particularly
valuable in primary care settings, specialty movement disorder
clinics conducting routine cognitive assessments, and research
cohorts requiring comprehensive cognitive phenotyping.

Precision diagnostic assistance: for contexts where balanced
accuracy and overall discriminative ability are prioritized, LR and
SVM are more suitable, offering superior AUC-ROC performance
(0.7241 and 0.7252, respectively) and better balance across multiple
evaluation metrics. This approach is appropriate for confirmatory
diagnostic processes, specialist referral decisions, and clinical
contexts where false positives carry significant consequences for
patient care or resource allocation.
cost-effectiveness  and
LR model
the optimal choice. It provides transparent decision-making

Resource-limited ~ settings: where

interpretability are paramount, the represents
processes that clinicians can easily understand and implement
while maintaining sufficient predictive accuracy for practical
screening  applications ~ without  requiring  sophisticated
computational infrastructure.

This stratified approach aligns with personalized medicine
goals, where predictive tools are tailored to specific clinical needs,
from broad-based screening to targeted diagnostic support (Guo

etal., 2021).

4.4.3 Model transparency and clinical trust

The SHAP analysis enhances model transparency by illustrating
the specific impact of individual factors on predictions, which
can increase clinical trust and aid in patient communication.
By clearly visualizing how factors like higher age increase
MCI risk while more years of education decrease it, the

TABLE 5 Clinical decision framework for model selection in PD-MCI
classification.

Clinical scenario Primary objective Model

Screening & Early detection Maximize case identification RF

Research & Cohort studies Comprehensive cognitive RF
phenotyping

Precision diagnostic Balanced accuracy & overall LR or SVM

assistance discrimination

Resource-limited settings Cost-effective, interpretable LR
screening
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analysis provides valuable insights for shared decision-making
processes and patient education about modifiable and non-
modifiable risk factors influencing cognitive health trajectory. Such
interpretability is particularly valuable, as model transparency is
considered a key factor for fostering clinical trust and facilitating
adoption of machine learning tools in healthcare (Amann et al.,
2020).

4.5 Strengths and limitations

This study demonstrates several key strengths that enhance
the reliability and clinical applicability of our findings. First, we
utilized a large-scale, high-quality dataset from the PPMI with
standardized assessment protocols and rigorous quality control
measures, providing a robust foundation for model development.
Second, our methodological framework incorporated subject-level
data splitting to prevent information leakage, comprehensive
feature selection using multiple complementary techniques, and
extensive hyperparameter optimization to ensure reliable model
performance. Third, we conducted systematic feature importance
analysis through multiple approaches—including model-specific
SHAP values,
provide comprehensive insights into model decision-making

measures, and permutation importance—to
processes. Finally, our focus on readily available clinical features
enhances practical implementation feasibility across diverse
clinical settings.

Several important limitations warrant consideration. First, our
analysis relied exclusively on clinical data which, while accessible
and cost-effective, may not fully capture the complexity of PD-
MCI progression. Second, we observed an unexpected finding
where disease duration appeared protective against cognitive
impairment—contradicting established clinical knowledge that
longer disease duration typically increases MCI risk. This
counterintuitive result likely reflects selection bias inherent in
longitudinal cohort designs, where patients with rapid cognitive
decline may develop MCI early and subsequently withdraw from
long-term studies, while those maintaining cognitive function
despite longer disease duration represent a selected population
of “cognitive survivors.” Third, our two-stage methodological
approach performed LASSO feature selection followed by Bayesian
optimization on the selected features, both using subject-level
stratified 10-fold cross-validation. While nesting LASSO within
the Bayesian optimization process might theoretically improve
generalization performance, such complexity would substantially
compromise model interpretability and practical implementation.
Our current pipeline effectively mitigates information leakage
while maintaining clinical utility through rigorous cross-validation
procedures. Fourth, this study addressed longitudinal data through
subject-level splitting to effectively prevent data leakage, but
did not model the trajectory of cognitive changes over time.
Future research could employ longitudinal data analysis methods
such as mixed-effects models or survival analysis to explore the
dynamic processes of disease progression more comprehensively.
Finally, despite the PPMI dataset’s high quality, external validation
across truely independent datasets from diverse populations, ethnic
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groups, and healthcare systems remains essential to establish
broader generalizability.

4.6 Future work

Several promising avenues for future research emerge
from this study. First, integrating multimodal data sources
could substantially enhance predictive accuracy. This includes
incorporating fluid biomarkers (e.g., cerebrospinal fluid or
plasma «-synuclein, tau, and neurofilament light chain), genetic
markers (e.g., APOE genotype and GBA mutations), and advanced
neuroimaging features (e.g., structural MRI volumetrics, diffusion
tensor imaging metrics, and functional connectivity patterns), a
strategy validated in numerous high-impact studies (Zhu et al,
2021; Zhu Y. et al,, 2024; Hosseinzadeh et al., 2023; Schrag et al,,
2017).

Second, investigating the underlying pathophysiological
mechanisms linking clinical variables to cognitive decline
represents a critical research priority. Such investigations could
leverage network connectivity analyses to probe circuit-level
dysfunction or examine neuroinflammatory and synaptic
dysfunction indicators to elucidate the biological pathways driving
PD-MCI development (Baggio et al., 2014; Aarsland et al., 2021;
Wang et al., 2025).

Third, addressing the methodological challenges highlighted by
our counterintuitive disease duration findings requires analytical
approaches specifically designed for time-dependent data and
participant attrition. Advanced statistical methods like survival
analysis or mixed-effects models for longitudinal data could better
account for these complexities and provide more robust insights
into disease progression patterns (Liu et al., 2017).

Finally, developing dynamic prediction models represents
a paramount future direction. Such models would incorporate
longitudinal changes in clinical and biomarker features over time,
enabling more accurate, updated risk assessments as patients
progress through disease stages. This approach would facilitate the
prediction of individual cognitive decline trajectories rather than
static point-in-time classification, ultimately providing clinicians
with personalized, time-sensitive predictions to guide treatment
and counseling (Schrag et al.,, 2017).

5 Conclusion

This study successfully developed and validated machine
learning models for the classification of PD-MCI using
PPMI.  Our
investigation demonstrates that a parsimonious set of seven

a comprehensive clinical dataset from the
readily available clinical features can achieve meaningful
discriminative performance for PD-MCI classification, with
linear models (SVM and LR) demonstrating superior overall
performance with AUC-ROC of 0.7252 and AUC-PR of 0.5008.
The consistent identification of age, years of education, and disease
duration as the most salient predictors across all models and
analytical methodologies confirms established risk factors while

providing robust evidence for their clinical utility in screening
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applications. Notably, the role of certain clinical indicators
(such as disease duration) in our models reveals potential data
selection biases inherent in longitudinal cohort studies, warranting
further investigation.

The methodological rigor of our approach, including subject-
level data splitting to prevent data leakage, comprehensive feature
selection, and extensive hyperparameter optimization, ensures
the reliability and generalizability of our findings. Through
multiple validation strategies, including pseudo-external validation
by clinical site splitting and cross-validation of feature selection
results using diverse methodological approaches (filter, wrapper
and embedded methods), we confirmed the robustness of our
models and the reliability of our conclusions. The high sensitivity
values achieved through threshold optimization (up to 0.8150
for RF under Fl-score optimization) demonstrate the potential
clinical utility of these models as effective screening tools for
early identification of PD-MCI patients. The integration of SHAP
analysis enhances model interpretability and clinical trust by
providing transparent insights into individual feature contributions
to predictions.

While our purely clinical approach offers practical advantages
in terms

of accessibility and cost-effectiveness compared

to multimodal approaches incorporating neuroimaging or
biomarker data, future research should focus on integrating
these complementary data sources to further enhance predictive
accuracy. The development of dynamic prediction models
incorporating longitudinal changes and the validation of these
models in diverse clinical populations represent important
next steps toward implementing these tools in routine clinical
practice. Ultimately, this work provides a solid foundation
for the development of clinical decision support systems that
can facilitate early detection and intervention for PD-MCI,
potentially improving patient outcomes through timely therapeutic
interventions and care planning.
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