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Objective: This study aimed to develop a machine learning model based 
on multimodal radiomics features from cerebellar subregions, utilizing the 
complementarity of cerebellar structural and metabolic imaging data for 
accurate diagnosis of Alzheimer’s disease (AD).
Methods: A total of 164 cognitively normal (CN) subjects and 146 AD patients 
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database were 
included. All participants had 3DT1-weighted magnetic resonance imaging 
(3DT1W MRI) and [18F]fluorodeoxyglucose positron emission tomography ([18F]
FDG PET) imaging data. The cerebellum was divided into 26 subregions, and 
radiomics features were extracted from different cerebellar regions of these 
two modality images, respectively. After feature selection, single-modality ([18F]
FDG PET, 3DT1W MRI) and multimodal ([18F]FDG PET + 3DT1W MRI) random 
forest classification models were constructed. Model performance and clinical 
value were assessed using area under the curve (AUC), calibration curves, 
and decision curve analysis (DCA). In addition, we also used Shapley Additive 
exPlanations (SHAP) to clarify the contributions of features, thereby enhancing 
the interpretability of the model.
Results: All three models could effectively diagnose AD, with the multimodal 
model showing the best performance. In the independent test set, the multimodal 
model achieved an AUC of 0.903, which was higher than the single-modality 
models based on [18F]FDG PET (AUC = 0.842) and 3DT1W MRI (AUC = 0.804). 
The calibration curves and DCA demonstrated that all three models had good 
calibration and clinical applicability, especially the multimodal model. SHAP 
analysis of the multimodal model revealed that among the 15 selected features, 
the top seven features with the highest SHAP values were derived from [18F]FDG 
PET images, with R_FDG_CER_III_original_firstorder_90Percentile and R_FDG_
CER_VI_original_firstorder_Median being the two most important features for 
distinguishing AD from CN.
Conclusion: The multimodal radiomics model based on cerebellar subregions, 
which integrates [18F]FDG PET and 3DT1W MRI data, can effectively diagnose AD 
and provide potential biomarkers for clinical applications.
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1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease 
characterized by progressive cognitive decline. With the aging of the 
population, the incidence of AD continues to rise, posing a significant 
threat to global public health (Knopman et al., 2021). The definitive 
diagnosis of AD relies on invasive autopsy or pathological biopsy. 
Currently, there is no effective cure for AD, but early intervention can 
delay disease progression (Crous-Bou et  al., 2017). Therefore, the 
development of non-invasive, highly sensitive biomarkers for the early 
identification of AD and intervention has become a major focus of 
current research.

In recent years, the role of the cerebellum in cognitive regulation 
and emotional responses has received increasing attention, and it may 
be involved in AD pathology through multiple mechanisms (Lin and 
Kuo, 2024; Iskusnykh et al., 2024). Structural magnetic resonance 
imaging (MRI) studies have shown specific cerebellar gray matter 
atrophy in AD patients, which correlates negatively with cognitive 
abilities (Toniolo et al., 2018). Functional MRI has further revealed 
significant disruption in cerebellar-cortical functional connectivity in 
AD patients, particularly within the default mode network and fronto-
parietal networks (Tang et  al., 2021). Basic research has provided 
direct evidence for the cerebellum’s critical role in early AD events; for 
example, abnormal cerebellar electroencephalogram power spectra in 
APPswe/PS1ΔE9 transgenic mice precede cerebral amyloid-beta (Aβ) 
deposition and cognitive deficits (Yu et  al., 2023). Furthermore, 
approximately 10 years before the clinical onset of autosomal 
dominant AD patients, specific deposition of cerebellar Aβ plaques 
has already occurred in PSEN1 E280A mutation carriers with 
unimpaired cognition (Ghisays et al., 2021). These findings underscore 
the potential importance of the cerebellum in AD pathology and 
suggest it may provide a novel perspective for early diagnosis.

Radiomics involves the high-throughput extraction of quantitative 
features from medical images, which can reveal pathological changes 
hidden in traditional imaging and uncover a large amount of deep 
biological information (Pirozzi et al., 2025). In recent years, radiomics 
combined with artificial intelligence algorithms has been successfully 
applied to the diagnosis, differentiation, and prognosis prediction of 
AD (Kale et  al., 2024; Bevilacqua et  al., 2023). However, existing 
studies primarily focus on the whole brain or hippocampus, 
overlooking the cerebellum, and have the following limitations: (1) the 
high dimensionality and heterogeneity of whole brain features; (2) 
most studies are based on single-modality MRI or positron emission 
tomography (PET), making it difficult to capture multi-dimensional 
pathological information (Shi et al., 2024). Recent radiomics based on 
cerebellar 3DT1-weighted MRI (3DT1W MRI) has shown advantages 
in AD diagnosis (Chen et  al., 2025), but it primarily reflects the 
macrostructural remodeling of brain tissue and may lag behind early 
pathological events at the molecular level. In contrast, [18F] 
fluorodeoxyglucose positron emission tomography ([18F]FDG PET) 
can directly reflect the functional status of neuronal activity by 
assessing glucose metabolism in brain regions. Studies have shown 
that the cerebellar FDG metabolic pattern exhibits dynamic 
complexity during the AD pathological process: cerebellar metabolism 
is significantly reduced in severe AD patients (Ishii et al., 1997), while 
it is compensatorily enhanced in mild to moderate AD patients, 
contributing to the formation of the characteristic AD metabolic 
pattern, and shows a high degree of accuracy in distinguishing 

cognitively normal individuals from other types of dementia 
(Perovnik et al., 2022a; Perovnik et al., 2022b). Longitudinal studies 
have further confirmed that cerebellar FDG metabolism is an effective 
indicator for predicting the conversion of mild cognitive impairment 
(MCI) to AD (Blazhenets et al., 2019). However, studies on cerebellar 
FDG metabolism are still limited, and metabolic heterogeneity in 
different subregions of the cerebellum and its role in AD diagnosis 
have not been fully explored. It is also unclear whether combining 
radiomics features of cerebellar metabolism and structure improves 
the accuracy of early diagnosis.

This study aims to develop a multimodal radiomics model based 
on the cerebellum, integrating [18F]FDG PET and 3DT1W MRI 
images radiomic features to explore the potential of the cerebellum in 
AD diagnosis. By segmenting the cerebellum into different subregions 
and using model visualization techniques, we aim to evaluate the 
importance of these subregional structural and metabolic radiomics 
features in diagnostic accuracy. Through this multimodal approach, 
we hope to provide more comprehensive and sensitive biomarkers for 
the early diagnosis of AD and provide new insights into the cerebellar 
pathophysiology of AD.

2 Materials and methods

Figure  1 shows the general framework of this study, which 
primarily includes the following steps: (1) image collection and 
preprocessing; (2) feature extraction and selection; (3) classification 
model construction and evaluation, as detailed in the following steps.

2.1 Participants

The data used in this study were obtained from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI)1. ADNI is a large-scale, 
multicenter study aimed at monitoring the progression of MCI and 
AD through a series of neuroimaging techniques, neuropsychological 
assessments, and biomarker analyses. ADNI has received approval 
from the ethics committees of each participating site, and all 
participants provided written informed consent.

In this study, 310 ADNI participants were included, consisting of 
164 CN and 146 AD subjects from the ADNI1, ADNI2/GO and 
ADNI3 cohorts. For data collection, all participants were required to 
have both [18F]FDG PET and 3DT1W MRI imaging data, with a scan 
interval not exceeding 2 weeks to avoid time-related pathological and 
physiological changes, ensuring the consistency and comparability of 
the data. Additionally, demographic and genetic information, 
including sex, age, education level, and APOE genotype, were also 
collected for these participants.

2.2 Image acquisition

The ADNI project online information provides detailed 
descriptions of [18F]FDG PET and 3DT1W MRI acquisition 

1  http://adni.loni.usc.edu/
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procedures. For the PET images, subjects underwent dynamic 3D 
scanning in six frames of 5 min each, starting 30–60 min after 
intravenous injection of 185 MBq (5 mCi) of [18F]FDG, with a 30-min 
interval between frames. For MRI images, T1-weighted structural 
imaging was acquired using 3DT1 MPRAGE or equivalent protocols 
with slightly different resolutions. Parameters are slightly different 
between scanners. The Siemens scanner parameters were: repetition 
time (TR) = 2,300 ms, matrix = 240 × 256 × 176, slice 
thickness = 1.2 mm; the General Electric scanner parameters were: 
TR = 7 ms, matrix = 256 × 256 × 166, slice thickness = 1.2 mm; and 
the Philips scanner parameters were: TR = 6.8 ms, 
matrix = 256 × 256 × 170, slice thickness = 1.2 mm.

2.3 Imaging preprocessing

To ensure optimal differentiation of imaging features across 
different subjects, standardized image preprocessing was performed 
using Statistical Parametric Mapping (SPM12) software (Wellcome 
Department of Imaging Neuroscience, Institute of Neurology, 
London, United  Kingdom), implemented in MATLAB R2018a 
(MathWorks Inc., Sherborn, MA, United States). First, MRI and PET 
images were converted from DICOM format to Neuroimaging 

Informatics Technology Initiative (NIFTI, nii) format using dcm2niix 
in MRIcron2 for SPM12 compatibility.

For MRI images, Computational Anatomy Toolbox (CAT12) was 
used to perform skull stripping, N4 bias field correction, normalization 
to the Montreal Neurological Institute (MNI) space, and smoothing 
for noise reduction, followed by automatic segmentation into gray 
matter, white matter, and cerebrospinal fluid. PET images were 
coregistered with the corresponding MRI images, normalized to the 
MNI space, and smoothed using an 8 mm isotropic Gaussian kernel. 
Finally, the normalized PET and MRI images were prepared for input, 
with a voxel size of 1.0 mm3 and dimensions of 161 × 197 × 161.

2.4 Cerebellar segmentation and feature 
extraction

To obtain more detailed cerebellar features, 26 cerebellar regions 
from the MNI-provided Anatomical Automatic Labeling atlas were 
used as regions of interest (ROI). These include bilateral cerebellar 

2  https://www.nitrc.org/projects/mricron/

FIGURE 1

Radiomics workflow. 3DT1W MRI, 3DT1-weighted magnetic resonance imaging; [18F]FDG PET, [18F]fluorodeoxyglucose positron emission tomography; 
MNI, Montreal Neurological Institute.
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lobules Crus I, Crus II, III, IV-V, VI, VIIB, VIII, IX, X, as well as 
vermal lobules I-II, III, IV-V, VI, VII, VIII, IX, X. A total of 200 
radiomic features were extracted from each ROI in both [18F]FDG 
PET and 3DT1W MRI images, including 14 shape features, 18 first-
order features, 24 gray-level co-occurrence matrix (GLCM) features, 
14 gray-level dependence matrix (GLDM) features, 16 gray-level size 
zone matrix (GLSZM) features, 16 gray-level run length matrix 
(GLRLM) features, 5 neighboring gray-tone difference matrix 
(NGTDM) features, and 93 Laplacian of Gaussian (LoG) features. 
Therefore, a total of 5,200 (200 × 26 = 5,200) features were extracted 
from each modality.

2.5 Feature selection

Systematic preprocessing was performed before feature selection, 
including addressing outliers and missing values, and eliminating the 
magnitude differences of multimodal radiomics features by Z-score 
normalization. To ensure the generalization performance of the 
classification model, the complete dataset was randomly split into 
training and test subsets at an 8:2 ratio, with 80% for training and 20% 
for independent validation. Feature selection was performed on the 
training set using Python 3.9 software. First, statistically significant 
differences between groups were characterized by the Mann–Whitney 
U test (p < 0.05). Subsequently, the Maximum Relevance Minimum 
Redundancy (mRMR) algorithm was employed to remove redundant 
or irrelevant features, enhancing feature independence. Next, recursive 
feature elimination (RFE) was used to iteratively eliminate the least 
contributive features through stepwise backward elimination. Finally, 
least absolute shrinkage and selection operator (LASSO) regression 
with 10-fold cross-validation was applied to optimize the 
regularization parameter λ, retaining features with non-zero 
coefficients to construct the final classification model. Radiomics 
scores (Rad-Score) were calculated for each subject.

2.6 Model construction and evaluation

Using the features selected from the training set, the classification 
model to discriminate AD from CN was developed using the Random 
Forest (RF) algorithm, and the generalization performance of the 
models was evaluated by the independent test set. To investigate the 
synergistic diagnostic value of multimodal imaging, three distinct 
classification models were constructed: [18F]FDG PET model, 3DT1W 
MRI model, and multimodal model combining [18F]FDG PET and 
3DT1W MRI. Model performances were assessed by the following 
metrics, including the receiver operating characteristic (ROC) curve 
with calculated area under the curve (AUC), accuracy, sensitivity, 
specificity, positive predictive value, negative predictive value, and F1 
score. The stability of the AUC values was further evaluated using 
bootstrap resampling to calculate 95% confidence intervals. To further 
validate reliability, calibration curves were generated to evaluate the 
consistency of the predicted probabilities with the true labels, while 
decision curve analysis (DCA) quantified clinical net benefits across 
risk thresholds. Finally, the Shapley Additive exPlanations (SHAP) 
interpretability framework was introduced to parse the key feature 
contributions, thereby revealing the impact of imaging markers on 
classification decisions.

In addition, to rigorously evaluate whether the model performance 
was driven by the radiomics features themselves rather than the 
specific architecture of the Random Forest classifier, we conducted 
comprehensive robustness validation. Using the same radiomics 
features and training/test set split, we  performed a comparative 
analysis using seven additional machine learning algorithms, 
including Logistic Regression (LR), Support Vector Machine (SVM), 
k-Nearest Neighbors (KNN), Decision Tree (DT), Light Gradient 
Boosting Machine (LightGBM), eXtreme Gradient Boosting 
(XGBoost), and Gaussian Naive Bayes (GNB).

2.7 Statistical analysis

Demographic differences were analyzed using SPSS 25.0 (IBM 
SPSS, Chicago, IL, USA). The Shapiro–Wilk test was conducted to 
assess the normality of the data. Normally distributed continuous 
variables were compared using independent-sample t-tests, while 
non-normally distributed continuous variables were analyzed via 
Mann–Whitney U tests. Categorical data were compared using the 
chi-square test. p < 0.05 was considered statistically significant.

Radiomics machine learning model construction and evaluation 
were carried out using Python (version 3.9)3. Radiomics features were 
extracted with the pyradiomics package, and machine learning models 
were developed using scikit-learn. The matplotlib and scikit-learn 
libraries were used to plot ROC curves, calibration curves, and 
DCA. Feature importance was calculated and visualized by the shap 
package, producing SHAP value heatmaps and summary plots.

3 Results

3.1 Demographic characteristics

A total of 310 participants were included in this study. There were 
no statistically significant differences in gender (p = 0.545) and age 
(p = 0.485) between the two groups. However, significant differences 
were found between the groups in education (p = 0.008), APOE ε4 
allele carrier status (p < 0.001), and Mini-Mental State Examination 
(MMSE) scores (p < 0.001). Specifically, the AD group exhibited 
shorter education duration, higher prevalence of APOE ε4 carriers, 
and lower MMSE scores compared to the CN group. Detailed 
information is shown in Table 1.

The AD and CN groups were randomly divided 8 to 2 into the 
training and test sets, and Table 2 provides demographic differences 
within the training and test set groups.

3.2 Feature selection result

5,200 features were extracted from 26 cerebellar subregions for 
each modality. After feature selection using the Mann–Whitney U 
test, mRMR, and RFE, the [18F]FDG PET model, 3DT1W MRI model, 
and multimodal model retained 15, 15, and 20 features, respectively. 

3  https://www.python.org/
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Finally, LASSO regression identified 10, 13, and 15 non-zero 
coefficient features for the construction of the final machine learning 
models for each modality. The LASSO cross-validation error curve 
and coefficient profiles were presented in Supplementary Figure S1. 
The correlation heatmap and feature weight distribution were shown 
in Figure  2. The Rad-Score between AD and CN was statistically 
significant in all three modalities, as shown in Figure 3.

3.3 Model diagnostic performance

Performance evaluation was conducted for cerebellar single-
modality ([18F]FDG PET, 3DT1W MRI) and multimodal ([18F]FDG 
PET combined with 3DT1W MRI) classification models. The results 
demonstrated that all three models effectively distinguish AD from 
CN subjects, and the multimodal model showed superior 
discriminative ability. As shown in Table  3 and Figure  4, the 
multimodal model achieved an AUC of 0.918 and an accuracy of 
84.3% in the training set, and an AUC of 0.903 and an accuracy of 
82.3% in the test set, both of which were higher than those of the [18F]
FDG PET model (training set: AUC = 0.887, accuracy = 81.0%; test 
set: AUC = 0.842, accuracy = 79.0%) and the 3DT1WI MRI model 
(training set: AUC = 0.878, accuracy = 78.6%; test set: AUC = 0.804, 
accuracy = 74.2%). To statistically compare these results, we conducted 
DeLong’s test on the test set predictions. The AUC of the multimodal 
model was significantly higher than that of the [18F]FDG PET model 
(z = −2.536, p = 0.011). The improvement over the 3DT1W MRI 
model showed a strong trend toward significance (z = −1.735, 
p = 0.083). No significant difference was found between the two 
single-modality models (z = −0.557, p = 0.577).

Model performance was further assessed by calibration curves 
and DCA, as shown in Figures 5, 6. The calibration curves showed that 
the predicted probabilities of the three models were in well agreement 

with the true observations in both the training and test sets (Hosmer-
Lemeshow statistic, p > 0.05). The DCA indicated that all three models 
showed high clinical net benefit across the clinical application 
threshold range. Notably, the multimodal model seemed to exhibit 
stronger calibration ability and better clinical applicability compared 
to the single-modality models in the test set. These results suggested 
that the multimodal integration strategy can enhance the accuracy 
and practicality of early AD diagnosis.

3.4 Feature interpretation and visualization

We interpreted and visualized the radiomics features in the 
multimodal model by plotting SHAP bar plot, bee-swarm plot, and 
heatmap, as shown in Figure  7. Among the 15 features used for 
modeling, we found 7 features based on 3DT1W MRI and 8 features 
based on [18F]FDG PET, where the features from PET are more 
important for modeling. Specifically, R_FDG_CER_III_original_
firstorder_90Percentile and R_FDG_CER_VI_original_firstorder_
Median were the top two features, playing a key role in distinguishing 
AD from CN.

3.5 Robustness validation with multiple 
algorithms

Overall, the diagnostic performance achieved using different 
machine learning algorithms was highly consistent with our primary 
results. All models constructed with these algorithms exhibited 
excellent performance, and multimodal models consistently 
outperformed single-modality models, with their AUC values ranging 
from 0.867 to 0.900 (Supplementary Table S1). Figure  8 and 
Supplementary Figure S2, respectively, present the ROC curves 
corresponding to all multimodal and single-modality models. The 
consistency in performance across different algorithms—from simple 
linear models to complex ensemble learning methods—provides 
strong evidence that the multimodal cerebellar radiomic features 
identified in our study inherently possess high discriminative power, 
thereby supporting robust and high diagnostic accuracy.

4 Discussion

This study is the first to comprehensively extract multimodal 
radiomic features from distinct cerebellar subregions, integrating 

TABLE 2  Demographic data of the training and test set.

Training set (n = 248) Test set (n = 62)

CN (n = 131) AD (n = 117) p CN (n = 33) AD (n = 29) p

Age (years) 76.95 ± 6.56 77.57 ± 7.29 0.192 77.61 ± 6.45 75.52 ± 6.86 0.243

Gender (M/F) 72/59 60/57 0.562 19/14 16/13 0.849

Education (years) 16.34 ± 2.81 15.49 ± 2.93 0.026* 16.36 ± 2.97 14.97 ± 2.81 0.045*

APOE ε4 (+/−) 46/85 84/33 <0.001* 5/28 22/7 <0.001*

MMSE score 28.97 ± 1.20 22.22 ± 4.14 <0.001* 29.24 ± 1.06 22.79 ± 3.69 <0.001*

CN, cognitively normal; AD, Alzheimer’s disease; MMSE, Mini-Mental State Examination. *p < 0.05.

TABLE 1  Demographic data of the CN and AD groups.

CN (n = 164) AD (n = 146) p

Age (years) 77.09 ± 6.52 77.16 ± 7.23 0.485

Gender (M/F) 91/73 76/70 0.545

Education 

(years)
16.35 ± 2.83 15.45 ± 2.92 0.008*

APOE ε4 (+/−) 51/113 106/40 <0.001*

MMSE score 29.02 ± 1.17 22.34 ± 4.05 <0.001*

CN, cognitively normal; AD, Alzheimer’s disease. *p < 0.05.
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FIGURE 2

Relationship graphs of radiomics features used for modeling. Correlation heatmap of radiomics features in the [18F]FDG PET model (A), 3DT1W MRI 
model (B), and multimodal model (C). Weight distribution map of the radiomics features in the [18F]FDG PET model (D), 3DT1W MRI model (E) and 
multimodal model (F).
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TABLE 3  Performance of the single-modality and multimodal machine learning models.

[18F]FDG PET 3DT1W MRI Multimodal

Training set Test set Training set Test set Training set Test set

AUC 0.887 0.842 0.878 0.804 0.918 0.903

95% CI 0.888–0.939 0.820–0.863 0.874–0.931 0.734–0.826 0.922–0.967 0.852–0.913

Accuracy 0.810 0.790 0.786 0.742 0.843 0.823

Sensitivity 0.769 0.828 0.735 0.586 0.821 0.793

Specificity 0.847 0.758 0.832 0.879 0.863 0.849

PPV 0.818 0.750 0.796 0.810 0.842 0.821

NPV 0.804 0.833 0.779 0.707 0.843 0.824

F1 score 0.793 0.787 0.764 0.680 0.831 0.807

3DT1W MRI, 3DT1-weighted magnetic resonance imaging; [18F]FDG PET, [18F]fluorodeoxyglucose positron emission tomography; AUC, the area under the curve; CI, confidence interval; 
NPV, negative predictive value; PPV, positive predictive value.

FIGURE 3

Comparison of Rad-Score between AD and CN groups. Rad-Scores of [18F]FDG PET model for AD and CN in the training set (A) and test set (B). Rad-
Scores of 3DT1W MRI model for AD and CN in the training set (C) and test set (D). Rad-Scores of multimodal model for AD and CN in the training set 
(E) and test set (F).
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FIGURE 4

ROC curves for each model in the training (A) and test set (B).

FIGURE 5

Calibration curves for each model in the training (A) and test set (B).

FIGURE 6

DCA for each model in the training (A) and test set (B).
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complementary information from both metabolic and structural 
imaging to establish an objective machine learning classification 
model for distinguishing between CN and AD. Compared to the 
single-modality model, the multimodal model significantly 
improved the accuracy of AD recognition, achieving an AUC of 

0.918 and an accuracy of 84.3% in the training set, and an AUC 
of 0.903 and an accuracy of 82.3% in the test set. SHAP analysis 
of the multimodal model showed that among the 15 selected 
features, the top seven features with the highest contribution all 
originated from the [18F]FDG PET images. Among them, 

FIGURE 7

SHAP analysis of the multimodal model for distinguishing CN and AD. (A) Bar plot of mean SHAP values for radiomics features, ranking their average 
impact on the model’s AD - CN classification and showing direction of influence (Class 0: CN; Class 1: AD); (B) Bee - swarm plot of SHAP values for AD 
patients, illustrating how feature values affect the model’s output, with positive SHAP values driving AD classification and negative ones favoring CN; 
(C) Heatmap of SHAP values for key features across AD patients, visualizing the combined influence of features on individual instances, where red/blue 
intensity reflects the strength of promoting/inhibiting AD prediction.

FIGURE 8

ROC curves for the multimodal model across all machine learning algorithms in the training (A) and test set (B).
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R_FDG_CER_III_original_firstorder_90Percentile and R_FDG_
CER_VI_original_firstorder_Median were the two most 
important features for distinguishing CN and AD, underscoring 
the unique value of cerebellar metabolic feature 
heterogeneity in AD.

Traditionally, the cerebellum has been considered primarily 
responsible for coordinating voluntary movements, maintaining postural 
balance, and regulating muscle tone. However, recent studies have 
demonstrated its extensive involvement in various cognitive processes, 
including executive function, language processing, working memory, and 
emotional regulation (Guell et  al., 2018; Biondi et  al., 2024). Direct 
damage to the cerebellum can lead to cerebellar cognitive affective 
syndrome, further emphasizing its critical role in higher cognitive 
functions and emotional modulation (Hoche et al., 2018). Anatomically, 
the cerebellum is divided into the anterior lobe (I-V), posterior lobe 
(VI-X), and the vermis. Among these, the anterior lobe primarily 
regulates motor functions, while the posterior lobe is involved in cognitive 
processing (Manto, 2022; Yang et al., 2024). This functional heterogeneity 
manifests as a specific pattern of impairment under disease conditions. 
Significant differences in cerebellar glucose metabolism patterns were 
found in patients with vascular cognitive impairment, with posterior lobe 
metabolism levels positively correlating with cognitive performance, 
while metabolism in the anterior lobe and vermis showed negatively 
correlated with cognition (Weng et  al., 2025). In patients with AD, 
significant atrophy occurred in the vermis and paravermal regions of the 
anterior cerebellar lobe (I-V) and the posterior lobe (VI) during the MCI 
stage. However, as the disease progressed, the posterior lobe hemisphere 
(VII lobule) and Crus I were more prominently affected (Toniolo et al., 
2018). Additionally, autopsy findings have confirmed significant atrophy 
of the granule cell layer in the lateral regions of the cerebellum in AD 
patients, with the degree of synaptic loss closely correlated with Braak 
stages (Samstag et al., 2025). These findings suggest that AD patients 
exhibit cerebellar-specific pathological changes and imaging 
abnormalities, which display regional heterogeneity. This provides a 
theoretical basis for the use of radiomics techniques to quantitatively 
analyze the structural and metabolic features of cerebellar subregions and 
subsequently develop a diagnostic model for AD. Our results 
demonstrated that the cerebellar subregion radiomics model, based on 
[18F]FDG PET combined with 3DT1W MRI, achieved excellent 
diagnostic performance for AD. The synergistic integration of multimodal 
data significantly improved model performance. Furthermore, the 
varying contributions of subregional features further highlighted the 
critical value of cerebellar subregional heterogeneity in the early 
diagnosis of AD.

SHAP analysis showed that the contribution of [18F]FDG PET 
metabolic image features was significantly higher than that of 3DT1W 
MRI structural image features in the multimodal model (all of the top 
seven features were derived from PET). The above indicates that 
cerebellar metabolic features extracted from PET images are more 
sensitive for AD diagnosis than structural features derived from 
MRI. Notably, most of the AD patients included in this study were at 
an early disease stage (MMSE score: 22.34 ± 4.05), further supporting 
the hypothesis that metabolic disturbances precede macrostructural 
changes (Jagust et al., 2006). This may be attributed to the ability of 
PET imaging to directly reflect the functional state of neuronal glucose 
metabolism, thereby capturing early pathophysiological activities such 
as synaptic dysfunction more effectively (Chételat et al., 2020). In 
contrast, structural MRI primarily captures gray matter atrophy, 
which often represents a later morphological consequence resulting 

from sustained neuronal injury (Pini et  al., 2016). Consequently, 
during the early stages of the disease, PET-derived radiomic features 
can earlier and more directly detect AD-related neuronal 
abnormalities, which likely constitutes the fundamental reason for 
their superior discriminative power. These findings align with 
previous AD studies reporting that metabolic abnormalities in the 
temporoparietal cortex and hippocampus are early predictors for the 
conversion from CN to AD, exhibiting greater sensitivity than 
structural MRI (Ewers et al., 2014).

On the other hand, we  identified two important radiomics 
features for AD diagnosis in the right cerebellar III and VI lobules on 
[18F]FDG PET images, namely R_FDG_CER_III_original_
firstorder_90Percentile and R_FDG_CER_VI_original_firstorder_
Median. The original first-order features are mainly used to capture the 
voxel intensity distribution within the region of interest, quantifying 
cerebellar metabolic levels from multiple dimensions and thereby 
indicating alterations in neuronal activity or synaptic function (Lambin 
et al., 2017). Lobule III, traditionally regarded as part of the anterior 
cerebellum that projects to the primary motor cortex, participates in 
motor regulation (Kelly and Strick, 2003). Metabolic abnormalities in 
this lobule may serve as a potential underlying cause of motor deficits 
(e.g., gait instability, bradykinesia) observed in AD patients, and 
patients with these motor symptoms have been shown to experience 
more rapid cognitive decline (Oveisgharan et al., 2024; Shaw et al., 
2025). Notably, a recent large-scale multicenter study demonstrated 
that texture features in the right lobule III can predict the conversion 
from CN to MCI, and are significantly correlated with the severity of 
cognitive impairment across different levels of Aβ and p-tau pathology 
(Chen et al., 2025). Therefore, we speculate that metabolic abnormalities 
in lobule III not only reflect the early involvement of motor-related 
circuits in AD but also indicate that this region may serve as a motor–
cognitive integration hub, playing a critical role in the multisystem 
dysfunction of AD. As a core cognitive subregion in the posterior 
cerebellar lobe, lobule VI participates extensively in higher cognitive 
functions via extensive connections with the default mode network and 
fronto-parietal control network (Henschke and Pakan, 2020; Buckner 
et al., 2011). fMRI studies have consistently demonstrated that bilateral 
lobule VI activation supports working memory, with the left 
hemisphere predominating in socioemotional processing and the right 
in language tasks, corresponding closely to the clinical manifestations 
of AD (Stoodley et al., 2012; Guell et al., 2018). Large-scale meta-
analyses have further identified lobule VI as the most consistently 
reported cerebellar region exhibiting functional abnormalities and gray 
matter atrophy in both MCI and AD (Bernard et al., 2025; Gellersen 
et al., 2021; Colloby et al., 2014). The metabolic alterations of this lobule 
observed in our study provide new evidence for the essential role of 
Lobule VI in AD from the perspective of energy metabolism. This 
mechanism may result from direct damage to local neurons by AD 
pathology, or secondary metabolic decline due to weakened functional 
connectivity caused by degeneration of upstream associative cortices.

It is worth noting that in previous [18F]FDG PET studies, the 
cerebellum has commonly been used as a reference region for the 
normalization of cortical metabolism, leading to the long-term neglect 
of its intrinsic metabolic pattern in AD (Yan et al., 2020). Our findings 
raise an important question: does the cerebellum remain a scientifically 
appropriate reference region for metabolic normalization? Future 
studies should explore more deeply the specific metabolic patterns of 
subregions within the cerebellum in AD. On the other hand, the 
results of this study also reveal its potential for clinical application. The 
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DCA curve showed that our model provides favorable clinical net 
benefit across a wide range of threshold probabilities, aiding the 
distinction between CN and AD and potentially optimizing diagnostic 
workflows. More importantly, the model is based on [18F]FDG PET 
and 3DT1W MRI—two modalities routinely acquired in clinical 
practice for AD—and requires no additional scanning sequences or 
equipment, which lowers the barrier for clinical translation. Although 
still at the research stage, this strategy points to a clear direction: 
in-depth secondary analysis of routine imaging can transform such 
imaging into high-value quantitative diagnostic biomarkers. The core 
of future work will be the development of standardized and automated 
analysis tools, with the ultimate goal of providing effective decision 
support for the early identification and intervention in AD.

Nevertheless, our study has some limitations. First, the relatively 
small sample size, with all data obtained from the ADNI database, may 
limit the generalizability of the model. Specifically, the small sample size 
may be  insufficient to fully capture the inherent pathological 
heterogeneity of AD and might compromise the detection of 
low-abundance features in small cerebellar subregions. These factors 
may lead to imprecise estimation of model performance, and the stability 
of key features in a broader population requires further validation. While 
rigorous feature selection, independent test set partitioning, and cross-
algorithm validation ensure internal robustness, external validation with 
independent multi-center cohorts remains essential. Second, the cross-
sectional design limits the ability to analyze the dynamic evolution of 
cerebellar subregional features during AD progression or to evaluate 
their predictive value for conversion from MCI to AD, which requires 
follow-up studies using longitudinal cohorts. Finally, though the 
radiomics features showed strong diagnostic performance, their 
correlation with key AD molecular pathologies (such as Aβ deposition 
and tau tangles) remains unexplored and warrants further investigation.

5 Conclusion

In conclusion, this study is the first to integrate [18F]FDG PET 
metabolic images with 3DT1W MRI structural images to 
innovatively extract multimodal radiomics features from different 
cerebellar subregions, successfully constructing a highly accurate 
machine learning model for AD diagnosis. The model has 
demonstrated excellent performance and holds great potential for 
future clinical applications. Meanwhile, this study breaks the 
traditional paradigm of AD research centered on the cortex-
hippocampus and holds promise for providing cerebellar-based 
potential biomarkers for clinical use.
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