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Multimodal radiomics of
cerebellar subregions for
machine learning-driven
Alzheimer’s disease diagnosis
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the Alzheimer’s Disease Neuroimaging Initiative

!Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian,
China, ?Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, China, *Department
of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China

Objective: This study aimed to develop a machine learning model based
on multimodal radiomics features from cerebellar subregions, utilizing the
complementarity of cerebellar structural and metabolic imaging data for
accurate diagnosis of Alzheimer's disease (AD).

Methods: A total of 164 cognitively normal (CN) subjects and 146 AD patients
from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were
included. All participants had 3DT1-weighted magnetic resonance imaging
(3DTIW MRI) and [®F]fluorodeoxyglucose positron emission tomography ([*¢F]
FDG PET) imaging data. The cerebellum was divided into 26 subregions, and
radiomics features were extracted from different cerebellar regions of these
two modality images, respectively. After feature selection, single-modality ([*®F]
FDG PET, 3DT1IW MRI) and multimodal ([**FIFDG PET + 3DT1W MRI) random
forest classification models were constructed. Model performance and clinical
value were assessed using area under the curve (AUC), calibration curves,
and decision curve analysis (DCA). In addition, we also used Shapley Additive
exPlanations (SHAP) to clarify the contributions of features, thereby enhancing
the interpretability of the model.

Results: All three models could effectively diagnose AD, with the multimodal
modelshowing the best performance. Inthe independent test set, the multimodal
model achieved an AUC of 0.903, which was higher than the single-modality
models based on [*FIFDG PET (AUC = 0.842) and 3DT1W MRI (AUC = 0.804).
The calibration curves and DCA demonstrated that all three models had good
calibration and clinical applicability, especially the multimodal model. SHAP
analysis of the multimodal model revealed that among the 15 selected features,
the top seven features with the highest SHAP values were derived from [®®FIFDG
PET images, with R_LFDG_CER_III_original_firstorder_90Percentile and R_FDG_
CER_VI_original_firstorder_Median being the two most important features for
distinguishing AD from CN.

Conclusion: The multimodal radiomics model based on cerebellar subregions,
which integrates [*®FIFDG PET and 3DT1W MRI data, can effectively diagnose AD
and provide potential biomarkers for clinical applications.
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Alzheimer's disease, cerebellum, radiomics, machine learning, 3DT1W MRI, [**FIFDG
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1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease
characterized by progressive cognitive decline. With the aging of the
population, the incidence of AD continues to rise, posing a significant
threat to global public health (Knopman et al., 2021). The definitive
diagnosis of AD relies on invasive autopsy or pathological biopsy.
Currently, there is no effective cure for AD, but early intervention can
delay disease progression (Crous-Bou et al., 2017). Therefore, the
development of non-invasive, highly sensitive biomarkers for the early
identification of AD and intervention has become a major focus of
current research.

In recent years, the role of the cerebellum in cognitive regulation
and emotional responses has received increasing attention, and it may
be involved in AD pathology through multiple mechanisms (Lin and
Kuo, 2024; Iskusnykh et al., 2024). Structural magnetic resonance
imaging (MRI) studies have shown specific cerebellar gray matter
atrophy in AD patients, which correlates negatively with cognitive
abilities (Toniolo et al., 2018). Functional MRI has further revealed
significant disruption in cerebellar-cortical functional connectivity in
AD patients, particularly within the default mode network and fronto-
parietal networks (Tang et al., 2021). Basic research has provided
direct evidence for the cerebellum’s critical role in early AD events; for
example, abnormal cerebellar electroencephalogram power spectra in
APPswe/PS1AEY transgenic mice precede cerebral amyloid-beta (Ap)
deposition and cognitive deficits (Yu et al., 2023). Furthermore,
approximately 10 years before the clinical onset of autosomal
dominant AD patients, specific deposition of cerebellar Ap plaques
has already occurred in PSEN1 E280A mutation carriers with
unimpaired cognition (Ghisays et al., 2021). These findings underscore
the potential importance of the cerebellum in AD pathology and
suggest it may provide a novel perspective for early diagnosis.

Radiomics involves the high-throughput extraction of quantitative
features from medical images, which can reveal pathological changes
hidden in traditional imaging and uncover a large amount of deep
biological information (Pirozzi et al., 2025). In recent years, radiomics
combined with artificial intelligence algorithms has been successfully
applied to the diagnosis, differentiation, and prognosis prediction of
AD (Kale et al., 2024; Bevilacqua et al., 2023). However, existing
studies primarily focus on the whole brain or hippocampus,
overlooking the cerebellum, and have the following limitations: (1) the
high dimensionality and heterogeneity of whole brain features; (2)
most studies are based on single-modality MRI or positron emission
tomography (PET), making it difficult to capture multi-dimensional
pathological information (Shi et al., 2024). Recent radiomics based on
cerebellar 3DT1-weighted MRI (3DT1W MRI) has shown advantages
in AD diagnosis (Chen et al., 2025), but it primarily reflects the
macrostructural remodeling of brain tissue and may lag behind early
pathological events at the molecular level. In contrast, ['*F]
fluorodeoxyglucose positron emission tomography (["*F]JFDG PET)
can directly reflect the functional status of neuronal activity by
assessing glucose metabolism in brain regions. Studies have shown
that the cerebellar FDG metabolic pattern exhibits dynamic
complexity during the AD pathological process: cerebellar metabolism
is significantly reduced in severe AD patients (Ishii et al., 1997), while
it is compensatorily enhanced in mild to moderate AD patients,
contributing to the formation of the characteristic AD metabolic
pattern, and shows a high degree of accuracy in distinguishing
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cognitively normal individuals from other types of dementia
(Perovnik et al., 2022a; Perovnik et al., 2022b). Longitudinal studies
have further confirmed that cerebellar FDG metabolism is an effective
indicator for predicting the conversion of mild cognitive impairment
(MCI) to AD (Blazhenets et al., 2019). However, studies on cerebellar
FDG metabolism are still limited, and metabolic heterogeneity in
different subregions of the cerebellum and its role in AD diagnosis
have not been fully explored. It is also unclear whether combining
radiomics features of cerebellar metabolism and structure improves
the accuracy of early diagnosis.

This study aims to develop a multimodal radiomics model based
on the cerebellum, integrating [*F]FDG PET and 3DT1IW MRI
images radiomic features to explore the potential of the cerebellum in
AD diagnosis. By segmenting the cerebellum into different subregions
and using model visualization techniques, we aim to evaluate the
importance of these subregional structural and metabolic radiomics
features in diagnostic accuracy. Through this multimodal approach,
we hope to provide more comprehensive and sensitive biomarkers for
the early diagnosis of AD and provide new insights into the cerebellar
pathophysiology of AD.

2 Materials and methods

Figure 1 shows the general framework of this study, which
primarily includes the following steps: (1) image collection and
preprocessing; (2) feature extraction and selection; (3) classification
model construction and evaluation, as detailed in the following steps.

2.1 Participants

The data used in this study were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI)'. ADNI is a large-scale,
multicenter study aimed at monitoring the progression of MCI and
AD through a series of neuroimaging techniques, neuropsychological
assessments, and biomarker analyses. ADNI has received approval
from the ethics committees of each participating site, and all
participants provided written informed consent.

In this study, 310 ADNI participants were included, consisting of
164 CN and 146 AD subjects from the ADNI1, ADNI2/GO and
ADNI3 cohorts. For data collection, all participants were required to
have both [*F]FDG PET and 3DT1W MRI imaging data, with a scan
interval not exceeding 2 weeks to avoid time-related pathological and
physiological changes, ensuring the consistency and comparability of
the data. Additionally, demographic and genetic information,
including sex, age, education level, and APOE genotype, were also
collected for these participants.

2.2 Image acquisition

The ADNI project online information provides detailed
descriptions of [¥F]JFDG PET and 3DT1W MRI acquisition

1 http://adni.loni.usc.edu/
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FIGURE 1

MNI, Montreal Neurological Institute.

Radiomics workflow. 3DT1IW MRI, 3DT1-weighted magnetic resonance imaging; [*®*FIFDG PET, [**F]fluorodeoxyglucose positron emission tomography;

procedures. For the PET images, subjects underwent dynamic 3D
scanning in six frames of 5min each, starting 30-60 min after
intravenous injection of 185 MBq (5 mCi) of ["*F]FDG, with a 30-min
interval between frames. For MRI images, T1-weighted structural
imaging was acquired using 3DT1 MPRAGE or equivalent protocols
with slightly different resolutions. Parameters are slightly different
between scanners. The Siemens scanner parameters were: repetition
(TR) = 2,300 ms, matrix = 240 x 256 x 176,
thickness = 1.2 mm; the General Electric scanner parameters were:
TR = 7 ms, matrix = 256 x 256 x 166, slice thickness = 1.2 mm; and
the  Philips  scanner  parameters were: TR =6.8ms,
matrix = 256 x 256 x 170, slice thickness = 1.2 mm.

time slice

2.3 Imaging preprocessing

To ensure optimal differentiation of imaging features across
different subjects, standardized image preprocessing was performed
using Statistical Parametric Mapping (SPM12) software (Wellcome
Department of Imaging Neuroscience, Institute of Neurology,
London, United Kingdom), implemented in MATLAB R2018a
(MathWorks Inc., Sherborn, MA, United States). First, MRI and PET
images were converted from DICOM format to Neuroimaging

Frontiers in Aging Neuroscience

Informatics Technology Initiative (NIFTT, nii) format using dcm2niix
in MRIcron? for SPM12 compatibility.

For MRI images, Computational Anatomy Toolbox (CAT12) was
used to perform skull stripping, N4 bias field correction, normalization
to the Montreal Neurological Institute (MNI) space, and smoothing
for noise reduction, followed by automatic segmentation into gray
matter, white matter, and cerebrospinal fluid. PET images were
coregistered with the corresponding MRI images, normalized to the
MNI space, and smoothed using an 8 mm isotropic Gaussian kernel.
Finally, the normalized PET and MRI images were prepared for input,
with a voxel size of 1.0 mm® and dimensions of 161 x 197 x 161.

2.4 Cerebellar segmentation and feature
extraction

To obtain more detailed cerebellar features, 26 cerebellar regions

from the MNI-provided Anatomical Automatic Labeling atlas were
used as regions of interest (ROI). These include bilateral cerebellar

2 https://www.nitrc.org/projects/mricron/
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lobules Crus I, Crus II, III, IV-V, VI, VIIB, VIII, IX, X, as well as
vermal lobules I-1I, III, IV-V, VI, VII, VIII, IX, X. A total of 200
radiomic features were extracted from each ROI in both [®*F]FDG
PET and 3DT1W MRI images, including 14 shape features, 18 first-
order features, 24 gray-level co-occurrence matrix (GLCM) features,
14 gray-level dependence matrix (GLDM) features, 16 gray-level size
zone matrix (GLSZM) features, 16 gray-level run length matrix
(GLRLM) features, 5 neighboring gray-tone difference matrix
(NGTDM) features, and 93 Laplacian of Gaussian (LoG) features.
Therefore, a total of 5,200 (200 x 26 = 5,200) features were extracted
from each modality.

2.5 Feature selection

Systematic preprocessing was performed before feature selection,
including addressing outliers and missing values, and eliminating the
magnitude differences of multimodal radiomics features by Z-score
normalization. To ensure the generalization performance of the
classification model, the complete dataset was randomly split into
training and test subsets at an 8:2 ratio, with 80% for training and 20%
for independent validation. Feature selection was performed on the
training set using Python 3.9 software. First, statistically significant
differences between groups were characterized by the Mann-Whitney
U test (p < 0.05). Subsequently, the Maximum Relevance Minimum
Redundancy (mRMR) algorithm was employed to remove redundant
or irrelevant features, enhancing feature independence. Next, recursive
feature elimination (RFE) was used to iteratively eliminate the least
contributive features through stepwise backward elimination. Finally,
least absolute shrinkage and selection operator (LASSO) regression
with 10-fold cross-validation was applied to optimize the
regularization parameter A, retaining features with non-zero
coefficients to construct the final classification model. Radiomics
scores (Rad-Score) were calculated for each subject.

2.6 Model construction and evaluation

Using the features selected from the training set, the classification
model to discriminate AD from CN was developed using the Random
Forest (RF) algorithm, and the generalization performance of the
models was evaluated by the independent test set. To investigate the
synergistic diagnostic value of multimodal imaging, three distinct
classification models were constructed: [*F]JFDG PET model, 3DT1W
MRI model, and multimodal model combining ["*F]FDG PET and
3DT1W MRI. Model performances were assessed by the following
metrics, including the receiver operating characteristic (ROC) curve
with calculated area under the curve (AUC), accuracy, sensitivity,
specificity, positive predictive value, negative predictive value, and F1
score. The stability of the AUC values was further evaluated using
bootstrap resampling to calculate 95% confidence intervals. To further
validate reliability, calibration curves were generated to evaluate the
consistency of the predicted probabilities with the true labels, while
decision curve analysis (DCA) quantified clinical net benefits across
risk thresholds. Finally, the Shapley Additive exPlanations (SHAP)
interpretability framework was introduced to parse the key feature
contributions, thereby revealing the impact of imaging markers on
classification decisions.
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In addition, to rigorously evaluate whether the model performance
was driven by the radiomics features themselves rather than the
specific architecture of the Random Forest classifier, we conducted
comprehensive robustness validation. Using the same radiomics
features and training/test set split, we performed a comparative
analysis using seven additional machine learning algorithms,
including Logistic Regression (LR), Support Vector Machine (SVM),
k-Nearest Neighbors (KNN), Decision Tree (DT), Light Gradient
Boosting Machine (LightGBM), eXtreme Gradient Boosting
(XGBoost), and Gaussian Naive Bayes (GNB).

2.7 Statistical analysis

Demographic differences were analyzed using SPSS 25.0 (IBM
SPSS, Chicago, IL, USA). The Shapiro-Wilk test was conducted to
assess the normality of the data. Normally distributed continuous
variables were compared using independent-sample t-tests, while
non-normally distributed continuous variables were analyzed via
Mann-Whitney U tests. Categorical data were compared using the
chi-square test. p < 0.05 was considered statistically significant.

Radiomics machine learning model construction and evaluation
were carried out using Python (version 3.9)°. Radiomics features were
extracted with the pyradiomics package, and machine learning models
were developed using scikit-learn. The matplotlib and scikit-learn
libraries were used to plot ROC curves, calibration curves, and
DCA. Feature importance was calculated and visualized by the shap
package, producing SHAP value heatmaps and summary plots.

3 Results
3.1 Demographic characteristics

A total of 310 participants were included in this study. There were
no statistically significant differences in gender (p = 0.545) and age
(p = 0.485) between the two groups. However, significant differences
were found between the groups in education (p = 0.008), APOE &4
allele carrier status (p < 0.001), and Mini-Mental State Examination
(MMSE) scores (p < 0.001). Specifically, the AD group exhibited
shorter education duration, higher prevalence of APOE ¢4 carriers,
and lower MMSE scores compared to the CN group. Detailed
information is shown in Table 1.

The AD and CN groups were randomly divided 8 to 2 into the
training and test sets, and Table 2 provides demographic differences
within the training and test set groups.

3.2 Feature selection result

5,200 features were extracted from 26 cerebellar subregions for
each modality. After feature selection using the Mann-Whitney U
test, nRMR, and RFE, the [*F]FDG PET model, 3DT1W MRI model,
and multimodal model retained 15, 15, and 20 features, respectively.

3 https://www.python.org/
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Finally, LASSO regression identified 10, 13, and 15 non-zero
coefficient features for the construction of the final machine learning
models for each modality. The LASSO cross-validation error curve
and coeflicient profiles were presented in Supplementary Figure S1.
The correlation heatmap and feature weight distribution were shown
in Figure 2. The Rad-Score between AD and CN was statistically
significant in all three modalities, as shown in Figure 3.

3.3 Model diagnostic performance

Performance evaluation was conducted for cerebellar single-
modality (["*FJFDG PET, 3DT1W MRI) and multimodal (["*F]JFDG
PET combined with 3DT1W MRI) classification models. The results
demonstrated that all three models effectively distinguish AD from
CN subjects, and the multimodal model showed superior
discriminative ability. As shown in Table 3 and Figure 4, the
multimodal model achieved an AUC of 0.918 and an accuracy of
84.3% in the training set, and an AUC of 0.903 and an accuracy of
82.3% in the test set, both of which were higher than those of the [*F]
FDG PET model (training set: AUC = 0.887, accuracy = 81.0%; test
set: AUC = 0.842, accuracy = 79.0%) and the 3DT1WI MRI model
(training set: AUC = 0.878, accuracy = 78.6%; test set: AUC = 0.804,
accuracy = 74.2%). To statistically compare these results, we conducted
DeLong’s test on the test set predictions. The AUC of the multimodal
model was significantly higher than that of the ["*F]JFDG PET model
(z=-2.536, p=0.011). The improvement over the 3DTIW MRI
model showed a strong trend toward significance (z=—1.735,
p=0.083). No significant difference was found between the two
single-modality models (z = —0.557, p = 0.577).

Model performance was further assessed by calibration curves
and DCA, as shown in Figures 5, 6. The calibration curves showed that
the predicted probabilities of the three models were in well agreement

TABLE 1 Demographic data of the CN and AD groups.

CN(n=164) AD (n = 146) p

Age (years) 77.09 + 6.52 77.16 +7.23 0.485
Gender (M/F) 91/73 76/70 0.545
Education

16.35 £ 2.83 15.45+£2.92 0.008*
(years)
APOE €4 (+/-) 51/113 106/40 <0.001*
MMSE score 29.02+1.17 22.34 £ 4.05 <0.001*

CN, cognitively normal; AD, Alzheimer’s disease. *p < 0.05.

TABLE 2 Demographic data of the training and test set.

Training set (n = 248)

10.3389/fnagi.2025.1679788

with the true observations in both the training and test sets (Hosmer-
Lemeshow statistic, p > 0.05). The DCA indicated that all three models
showed high clinical net benefit across the clinical application
threshold range. Notably, the multimodal model seemed to exhibit
stronger calibration ability and better clinical applicability compared
to the single-modality models in the test set. These results suggested
that the multimodal integration strategy can enhance the accuracy
and practicality of early AD diagnosis.

3.4 Feature interpretation and visualization

We interpreted and visualized the radiomics features in the
multimodal model by plotting SHAP bar plot, bee-swarm plot, and
heatmap, as shown in Figure 7. Among the 15 features used for
modeling, we found 7 features based on 3DT1W MRI and 8 features
based on ["®F]FDG PET, where the features from PET are more
important for modeling. Specifically, R_FDG_CER_III_original
firstorder_90Percentile and R_FDG_CER_VI_original_firstorder_
Median were the top two features, playing a key role in distinguishing
AD from CN.

3.5 Robustness validation with multiple
algorithms

Overall, the diagnostic performance achieved using different
machine learning algorithms was highly consistent with our primary
results. All models constructed with these algorithms exhibited
excellent performance, and multimodal models consistently
outperformed single-modality models, with their AUC values ranging
from 0.867 to 0.900 (Supplementary Table S1). Figure 8 and
Supplementary Figure S2, respectively, present the ROC curves
corresponding to all multimodal and single-modality models. The
consistency in performance across different algorithms—from simple
linear models to complex ensemble learning methods—provides
strong evidence that the multimodal cerebellar radiomic features
identified in our study inherently possess high discriminative power,
thereby supporting robust and high diagnostic accuracy.

4 Discussion

This study is the first to comprehensively extract multimodal
radiomic features from distinct cerebellar subregions, integrating

Test set (n = 62)

CN (n = 131) AD (n = 117) CN (n = 33) AD (n = 29)
Age (years) 76.95 + 6.56 77.57 £7.29 0.192 77.61 £ 6.45 75.52 % 6.86 0.243
Gender (M/F) 72159 60/57 0.562 19/14 16/13 0.849
Education (years) 16.34 + 2.81 15.49 +2.93 0.026% 16.36 + 2.97 14.97 +2.81 0.045%
APOE &4 (+/-) 46/85 84/33 <0.001% 5/28 2217 <0.001%
MMSE score 28.97 +1.20 2222+4.14 <0.001% 29.24 % 1.06 22.79 + 3.69 <0.001%

CN, cognitively normal; AD, Alzheimer’s disease; MMSE, Mini-Mental State Examination. *p < 0.05.
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FIGURE 2

Relationship graphs of radiomics features used for modeling. Correlation heatmap of radiomics features in the [*¥FIFDG PET model (A), 3DT1IW MRI
model (B), and multimodal model (C). Weight distribution map of the radiomics features in the [*FIFDG PET model (D), 3DT1W MRI model (E) and
multimodal model (F).
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TABLE 3 Performance of the single-modality and multimodal machine learning models.

10.3389/fnagi.2025.1679788

[*8FIFDG PET 3DT1W MRI Multimodal

Training set Test set Training set Test set Training set Test set
AUC 0.887 0.842 0.878 0.804 0.918 0.903
95% CI 0.888-0.939 0.820-0.863 0.874-0.931 0.734-0.826 0.922-0.967 0.852-0.913
Accuracy 0.810 0.790 0.786 0.742 0.843 0.823
Sensitivity 0.769 0.828 0.735 0.586 0.821 0.793
Specificity 0.847 0.758 0.832 0.879 0.863 0.849
PPV 0.818 0.750 0.796 0.810 0.842 0.821
NPV 0.804 0.833 0.779 0.707 0.843 0.824
F1 score 0.793 0.787 0.764 0.680 0.831 0.807

3DTIW MRI, 3DT1-weighted magnetic resonance imaging; ["*F]FDG PET, ["*F]fluorodeoxyglucose positron emission tomography; AUC, the area under the curve; CI, confidence interval;
NPV, negative predictive value; PPV, positive predictive value.
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FIGURE 3
Comparison of Rad-Score between AD and CN groups. Rad-Scores of [*FIFDG PET model for AD and CN in the training set (A) and test set (B). Rad-
Scores of 3DTIW MRI model for AD and CN in the training set (C) and test set (D). Rad-Scores of multimodal model for AD and CN in the training set
(E) and test set (F).
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complementary information from both metabolic and structural
imaging to establish an objective machine learning classification
model for distinguishing between CN and AD. Compared to the
single-modality model, the multimodal model significantly

improved

the accuracy of AD recognition, achieving an AUC of

Frontiers in Aging Neuroscience

0.918 and an accuracy of 84.3% in the training set, and an AUC
0f 0.903 and an accuracy of 82.3% in the test set. SHAP analysis
of the multimodal model showed that among the 15 selected
features, the top seven features with the highest contribution all
originated from the [""F]JFDG PET images. Among them,
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R_FDG_CER_III_original_firstorder_90Percentile and R_FDG_
CER_VI _original_firstorder_Median were the
important features for distinguishing CN and AD, underscoring

two most

the wunique value of cerebellar metabolic feature
heterogeneity in AD.

Traditionally, the cerebellum has been considered primarily
responsible for coordinating voluntary movements, maintaining postural
balance, and regulating muscle tone. However, recent studies have
demonstrated its extensive involvement in various cognitive processes,
including executive function, language processing, working memory, and
emotional regulation (Guell et al, 2018; Biondi et al., 2024). Direct
damage to the cerebellum can lead to cerebellar cognitive affective
syndrome, further emphasizing its critical role in higher cognitive
functions and emotional modulation (Hoche et al., 2018). Anatomically,
the cerebellum is divided into the anterior lobe (I-V), posterior lobe
(VI-X), and the vermis. Among these, the anterior lobe primarily
regulates motor functions, while the posterior lobe is involved in cognitive
processing (Manto, 2022; Yang et al., 2024). This functional heterogeneity
manifests as a specific pattern of impairment under disease conditions.
Significant differences in cerebellar glucose metabolism patterns were
found in patients with vascular cognitive impairment, with posterior lobe
metabolism levels positively correlating with cognitive performance,
while metabolism in the anterior lobe and vermis showed negatively
correlated with cognition (Weng et al., 2025). In patients with AD,
significant atrophy occurred in the vermis and paravermal regions of the
anterior cerebellar lobe (I-V) and the posterior lobe (VI) during the MCI
stage. However, as the disease progressed, the posterior lobe hemisphere
(VII lobule) and Crus I were more prominently affected (Toniolo et al.,
2018). Additionally, autopsy findings have confirmed significant atrophy
of the granule cell layer in the lateral regions of the cerebellum in AD
patients, with the degree of synaptic loss closely correlated with Braak
stages (Samstag et al., 2025). These findings suggest that AD patients
exhibit
abnormalities, which display regional heterogeneity. This provides a

cerebellar-specific  pathological changes and imaging
theoretical basis for the use of radiomics techniques to quantitatively
analyze the structural and metabolic features of cerebellar subregions and
subsequently develop a diagnostic model for AD. Our results
demonstrated that the cerebellar subregion radiomics model, based on
[F]JFDG PET combined with 3DTIW MRI, achieved excellent
diagnostic performance for AD. The synergistic integration of multimodal
data significantly improved model performance. Furthermore, the
varying contributions of subregional features further highlighted the
critical value of cerebellar subregional heterogeneity in the early
diagnosis of AD.

SHAP analysis showed that the contribution of [*F]JFDG PET
metabolic image features was significantly higher than that of 3DTIW
MRI structural image features in the multimodal model (all of the top
seven features were derived from PET). The above indicates that
cerebellar metabolic features extracted from PET images are more
sensitive for AD diagnosis than structural features derived from
MRI. Notably, most of the AD patients included in this study were at
an early disease stage (MMSE score: 22.34 + 4.05), further supporting
the hypothesis that metabolic disturbances precede macrostructural
changes (Jagust et al., 2006). This may be attributed to the ability of
PET imaging to directly reflect the functional state of neuronal glucose
metabolism, thereby capturing early pathophysiological activities such
as synaptic dysfunction more effectively (Chételat et al., 2020). In
contrast, structural MRI primarily captures gray matter atrophy,
which often represents a later morphological consequence resulting
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from sustained neuronal injury (Pini et al., 2016). Consequently,
during the early stages of the disease, PET-derived radiomic features
can earlier and more directly detect AD-related neuronal
abnormalities, which likely constitutes the fundamental reason for
their superior discriminative power. These findings align with
previous AD studies reporting that metabolic abnormalities in the
temporoparietal cortex and hippocampus are early predictors for the
conversion from CN to AD, exhibiting greater sensitivity than
structural MRI (Ewers et al., 2014).

On the other hand, we identified two important radiomics
features for AD diagnosis in the right cerebellar IIT and VI lobules on
[¥FIFDG PET images, namely R_FDG_CER_III_original
firstorder_90Percentile and R_FDG_CER_VI_original_firstorder_
Median. The original first-order features are mainly used to capture the
voxel intensity distribution within the region of interest, quantifying
cerebellar metabolic levels from multiple dimensions and thereby
indicating alterations in neuronal activity or synaptic function (Lambin
etal., 2017). Lobule IIJ, traditionally regarded as part of the anterior
cerebellum that projects to the primary motor cortex, participates in
motor regulation (Kelly and Strick, 2003). Metabolic abnormalities in
this lobule may serve as a potential underlying cause of motor deficits
(e.g., gait instability, bradykinesia) observed in AD patients, and
patients with these motor symptoms have been shown to experience
more rapid cognitive decline (Oveisgharan et al., 2024; Shaw et al,,
2025). Notably, a recent large-scale multicenter study demonstrated
that texture features in the right lobule III can predict the conversion
from CN to MCI, and are significantly correlated with the severity of
cognitive impairment across different levels of AP and p-tau pathology
(Chen etal., 2025). Therefore, we speculate that metabolic abnormalities
in lobule III not only reflect the early involvement of motor-related
circuits in AD but also indicate that this region may serve as a motor—
cognitive integration hub, playing a critical role in the multisystem
dysfunction of AD. As a core cognitive subregion in the posterior
cerebellar lobe, lobule VI participates extensively in higher cognitive
functions via extensive connections with the default mode network and
fronto-parietal control network (Henschke and Pakan, 2020; Buckner
etal, 2011). fMRI studies have consistently demonstrated that bilateral
lobule VI activation supports working memory, with the left
hemisphere predominating in socioemotional processing and the right
in language tasks, corresponding closely to the clinical manifestations
of AD (Stoodley et al., 20125 Guell et al., 2018). Large-scale meta-
analyses have further identified lobule VI as the most consistently
reported cerebellar region exhibiting functional abnormalities and gray
matter atrophy in both MCI and AD (Bernard et al., 2025; Gellersen
etal., 2021; Colloby et al., 2014). The metabolic alterations of this lobule
observed in our study provide new evidence for the essential role of
Lobule VI in AD from the perspective of energy metabolism. This
mechanism may result from direct damage to local neurons by AD
pathology, or secondary metabolic decline due to weakened functional
connectivity caused by degeneration of upstream associative cortices.

It is worth noting that in previous ["*F]JFDG PET studies, the
cerebellum has commonly been used as a reference region for the
normalization of cortical metabolism, leading to the long-term neglect
of its intrinsic metabolic pattern in AD (Yan et al., 2020). Our findings
raise an important question: does the cerebellum remain a scientifically
appropriate reference region for metabolic normalization? Future
studies should explore more deeply the specific metabolic patterns of
subregions within the cerebellum in AD. On the other hand, the
results of this study also reveal its potential for clinical application. The
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DCA curve showed that our model provides favorable clinical net
benefit across a wide range of threshold probabilities, aiding the
distinction between CN and AD and potentially optimizing diagnostic
workflows. More importantly, the model is based on [*F]FDG PET
and 3DTIW MRI—two modalities routinely acquired in clinical
practice for AD—and requires no additional scanning sequences or
equipment, which lowers the barrier for clinical translation. Although
still at the research stage, this strategy points to a clear direction:
in-depth secondary analysis of routine imaging can transform such
imaging into high-value quantitative diagnostic biomarkers. The core
of future work will be the development of standardized and automated
analysis tools, with the ultimate goal of providing effective decision
support for the early identification and intervention in AD.
Nevertheless, our study has some limitations. First, the relatively
small sample size, with all data obtained from the ADNI database, may
limit the generalizability of the model. Specifically, the small sample size
may be insufficient to fully capture the inherent pathological
heterogeneity of AD and might compromise the detection of
low-abundance features in small cerebellar subregions. These factors
may lead to imprecise estimation of model performance, and the stability
of key features in a broader population requires further validation. While
rigorous feature selection, independent test set partitioning, and cross-
algorithm validation ensure internal robustness, external validation with
independent multi-center cohorts remains essential. Second, the cross-
sectional design limits the ability to analyze the dynamic evolution of
cerebellar subregional features during AD progression or to evaluate
their predictive value for conversion from MCI to AD, which requires
follow-up studies using longitudinal cohorts. Finally, though the
radiomics features showed strong diagnostic performance, their
correlation with key AD molecular pathologies (such as Ap deposition
and tau tangles) remains unexplored and warrants further investigation.

5 Conclusion

In conclusion, this study is the first to integrate ['"*F]JFDG PET
metabolic images with 3DTIW MRI structural images to
innovatively extract multimodal radiomics features from different
cerebellar subregions, successfully constructing a highly accurate
machine learning model for AD diagnosis. The model has
demonstrated excellent performance and holds great potential for
future clinical applications. Meanwhile, this study breaks the
traditional paradigm of AD research centered on the cortex-
hippocampus and holds promise for providing cerebellar-based
potential biomarkers for clinical use.
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