
fnagi-17-1678460 November 21, 2025 Time: 11:14 # 1

TYPE Review
PUBLISHED 21 November 2025
DOI 10.3389/fnagi.2025.1678460

OPEN ACCESS

EDITED BY

Anamitra Ghosh,
Wave Life Sciences Ltd., United States

REVIEWED BY

Grazyna Niewiadomska,
The Polish Academy of Sciences, Poland
Yutaka Oji,
Juntendo University, Japan

*CORRESPONDENCE

JianHua Zhang
zjh828288@163.com

RECEIVED 02 August 2025
ACCEPTED 29 October 2025
PUBLISHED 21 November 2025

CITATION

Liu C, He W and Zhang J (2025) Exercise
regulates mitophagy to alleviate
parkinsonian neurodegeneration.
Front. Aging Neurosci. 17:1678460.
doi: 10.3389/fnagi.2025.1678460

COPYRIGHT

© 2025 Liu, He and Zhang. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Exercise regulates mitophagy to
alleviate parkinsonian
neurodegeneration
Chang Liu1,2, Wei He3 and JianHua Zhang1*
1School of Physical Education and Arts, Hunan University of Medicine, Hunan, China, 2University
of Perpetual Help System DALTA (UPHSD), Las Piñas, Philippines, 3Xiangzhong Normal College for
Preschool Education, Shaoyang, China

Parkinson’s disease (PD) is a common neurodegenerative disorder with

a rising incidence in aging populations, substantially diminishing patients’

quality of life. Mitochondria are central to neuronal energy metabolism, and

mitophagy plays a pivotal role in maintaining mitochondrial quality by removing

damaged organelles. In PD, impaired mitophagy leads to the accumulation

of dysfunctional mitochondria, exacerbating oxidative stress and bioenergetic

deficits and thereby accelerating disease progression. In recent years, exercise

has emerged as a safe and cost-effective intervention that alleviates PD

symptoms. Exercise can activate mitophagy through key signaling pathways—

including AMP-activated protein kinase (AMPK)/Unc-51–like kinase 1 (ULK1)

and PTEN-induced kinase 1 (PINK1)/Parkin—thereby enhancing mitochondrial

function and antioxidant capacity. This review synthesizes current evidence on

how exercise modulates mitophagy to confer neuroprotection in PD, providing

conceptual and practical insights for non-pharmacological management

strategies in neurodegenerative disease.
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1 Introduction

Parkinson’s disease (PD) is a common neurodegenerative disorder characterized
pathologically by the progressive loss of dopaminergic neurons in the substantia nigra
and other midbrain nuclei (Zhou et al., 2019). In recent years, accumulating evidence has
underscored mitochondrial dysfunction and impaired autophagy as central contributors
to PD pathogenesis (Chen J. et al., 2018). Beyond supplying energy for neuronal activity,
mitochondria play key roles in regulating oxidative stress, calcium homeostasis, and cell
death pathways (Okur and Djalilian, 2020; Yañez et al., 2026). As a selective form of
autophagy, mitophagy maintains mitochondrial homeostasis by removing damaged or
dysfunctional mitochondria, thereby preventing the accumulation of toxic species and
further neuronal injury. However, mitophagy is frequently compromised in patients with
PD, resulting in defective clearance of abnormal mitochondria and exacerbation of disease
progression (Wang M. et al., 2021).

With advances in PD-related molecular research, growing evidence suggests that
restoring mitochondrial function and enhancing mitophagy may represent promising
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strategies for disease prevention and therapy (Gan et al., 2024). As a 
safe, economical, and readily implementable non-pharmacological 
intervention, exercise has garnered substantial attention in PD 
management. An increasing body of clinical and experimental 
data indicates that regular physical activity not only improves 
motor symptoms and quality of life in PD, but also confers 
neuroprotection through multiple mechanisms (Nguyen et al., 
2025). These include modulation of key signaling pathways—such 
as PINK1/Parkin and AMP-activated protein kinase (AMPK)— 
to promote mitochondrial recovery and activate mitophagy, 
ultimately supporting neuronal health at multiple levels (Chen C. 
et al., 2022; Guo et al., 2023; Li et al., 2024). 

Accordingly, this review aims to systematically delineate the 
role and molecular mechanisms by which exercise regulates 
mitophagy in the context of PD prevention and treatment. We 
focus on the eects of exercise on mitochondrial function, the 
autophagic process, and related signaling cascades. The goal 
is to provide a theoretical foundation and practical guidance 
for non-pharmacological interventions in PD, thereby informing 
comprehensive disease management. 

2 Mitophagy 

Mitophagy is a selective form of autophagy that specifically 
recognizes and eliminates damaged mitochondria, constituting 
a core component of mitochondrial quality control. Unlike 
non-selective autophagy, mitophagy exhibits high specificity, 
targeting dysfunctional or stressed mitochondria for removal 
through the autophagosome–lysosome pathway (Wang X. et al., 
2019). This process is essential for preserving mitochondrial 
integrity and cellular energy homeostasis. Because neurons rely 
heavily on mitochondrial oxidative phosphorylation and are 
particularly vulnerable to oxidative stress, eÿcient mitophagy is 
especially critical for neuronal survival. Numerous experimental 
studies have linked impaired mitophagy to the pathogenesis of 
neurodegenerative diseases, including Parkinson’s disease (PD) 
(Antico et al., 2025; Rappe et al., 2024; Wang S. et al., 2023; Xiao 
et al., 2022; Yang et al., 2025). 

Current evidence indicates that mitophagy is governed by 
two major classes of signaling mechanisms: (i) a ubiquitin-
dependent pathway mediated primarily by PTEN-induced kinase 
1 (PINK1) and the E3 ubiquitin ligase Parkin; and (ii) ubiquitin-
independent, receptor-mediated pathways involving proteins such 
as BNIP3, NIX, and FUNDC1 (Lim and Lim, 2017; see Figure 1). 
Among these, the PINK1/Parkin cascade is the most extensively 
characterized. 

Under physiological conditions, PINK1 is imported into the 
inner mitochondrial membrane (IMM) and degraded by the 
mitochondrial protease PARL (Baninameh et al., 2025; Siebert 
et al., 2022). When the mitochondrial membrane potential (ψm) 
collapses, PINK1 accumulates on the outer mitochondrial 
membrane (OMM), undergoes autophosphorylation, and 
recruits and activates Parkin (Guardia-Laguarta et al., 2019). 
Activated Parkin ubiquitinates multiple OMM proteins—including 
VDAC1, mitofusin-1/2 (Mfn1/2), and TOM20—generating K63-
linked polyubiquitin chains that are recognized by autophagy 
receptors such as p62/SQSTM1, optineurin (OPTN), and NDP52 

(Barodia et al., 2019; Bradshaw et al., 2021). These receptors 
contain LC3-interacting region (LIR) motifs that bind LC3 
on nascent autophagosomal membranes, thereby promoting 
sequestration of damaged mitochondria, followed by lysosomal 
fusion and degradation (Wang S. et al., 2023). This process is 
further fine-tuned by regulatory factors including TANK-binding 
kinase 1 (TBK1), AMP-activated protein kinase (AMPK), and 
mechanistic target of rapamycin (mTOR) (Belousov et al., 2021). 

In parallel, to compensate for PINK1 or Parkin deficiency and 
under specific stresses, cells deploy several Parkin-independent, 
receptor-mediated mitophagy routes. Under hypoxia or ATP 
depletion, BNIP3 and NIX are upregulated and can directly engage 
LC3 to initiate mitophagy (Yamashita et al., 2024). During hypoxia, 
FUNDC1 is dephosphorylated by PGAM5, which increases its 
aÿnity for LC3; likewise, upon OMM rupture, the IMM protein 
prohibitin-2 (PHB2) becomes exposed to the cytosol and acts as 
an LC3 receptor to facilitate degradation of the inner membrane 
(Chen Z. et al., 2017; Roy et al., 2025). Newly identified receptors, 
such as BCL2L13 and FKBP8, also exert compensatory roles when 
Parkin is absent (Bhujabal et al., 2017). Most of these non-canonical 
receptors harbor LIR motifs and interact with the LC3/GABARAP 
family to promote the clearance of damaged mitochondria. 

In sum, mitophagy is a coordinated, multistep process 
encompassing damage recognition, ubiquitin tagging, adaptor 
recruitment, membrane encapsulation, and autophagosome– 
lysosome fusion and degradation. Together, the PINK1/Parkin axis 
and diverse non-canonical receptor pathways form a robust and 
partially redundant network that is indispensable for maintaining 
mitochondrial homeostasis in neurons (Imberechts et al., 2022). 
Disruption of this system is a key initiating factor in PD and 
related disorders (Rai et al., 2024). Elucidating the molecular 
basis of mitophagy is therefore crucial for understanding disease 
mechanisms and identifying potential therapeutic targets (Cai and 
Jeong, 2020; Cen et al., 2021; Shefa et al., 2019). 

3 Mitophagy impairment and the 
pathogenesis of PD 

Converging evidence indicates that mitophagy is broadly 
compromised in patients with PD, potentially playing a key role 
in neurodegeneration (Sharabi et al., 2021). Postmortem analyses 
reveal abnormal accumulation of the outer-mitochondrial-
membrane (OMM) small GTPase Miro—an adaptor for 
mitochondrial transport and a degradation substrate during 
PINK1/Parkin-mediated mitophagy—suggesting defective 
clearance and impaired quality control; this alteration is absent 
in age-matched controls (Drwesh et al., 2025; Gao et al., 2020; 
Hsieh et al., 2016). Consistently, platelets from patients with PD 
display marked reductions in autophagy markers such as LC3-II 
and MsrB2 (Lee et al., 2019). In induced pluripotent stem cell 
(iPSC)-derived dopaminergic (DA) neurons—including models 
carrying the LRRK2 G2019S mutation and those derived from 
sporadic PD—mitochondrial depolarization fails to trigger proper 
Miro degradation, thereby disrupting the recruitment of the 
Parkin-dependent autophagic machinery (Bharat and Wang, 
2020; Hsieh et al., 2016). Neurons expressing mutant forms of 
α-synuclein (α-syn) similarly exhibit Miro accumulation and 
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FIGURE 1 

Schematic of mitophagy under exercise-related regulation (By Figdraw). Loss of mitochondrial membrane potential (m dissipation) or 
hypoxia/ATP depletion stabilizes PINK1 on the outer mitochondrial membrane (OMM) by preventing its processing by PARL. PINK1 then 
phosphorylates ubiquitin and activates Parkin (PRKN), amplifying ubiquitination of OMM proteins such as VDAC1, MFN1/2, and TOM20. These tags 
recruit the receptors OPTN and NDP52, which use their LIR motifs to bind LC3 and enwrap damaged mitochondria into autophagosomes. On the 
left, exercise/energy-stress regulators are shown: AMPK promotes mitophagy and counteracts mTOR inhibition, while TBK1 phosphorylation 
enhances the LC3 binding of OPTN/NDP52. The blue dashed panel depicts receptor-mediated non-canonical routes: dephosphorylated FUNDC1 
(facilitated by PGAM5) directly binds LC3; BNIP3/NIX and BCL2L13/FKBP8 can also serve as LC3-interacting receptors; when the OMM ruptures, the 
inner-membrane protein PHB2 becomes exposed and functions as an LC3 receptor. The lower pathway illustrates flux: autophagosome formation, 
fusion with lysosomes, and degradation in the autolysosome. The “PINK1/PRKN deficiency” box indicates that receptor pathways may partially 
compensate when the canonical pathway is impaired. m, mitochondrial membrane potential; OMM, outer mitochondrial membrane; Ub, 
ubiquitin; LC3, microtubule-associated protein 1 light chain 3; LIR, LC3-interacting region; OPTN, optineurin; NDP52, also CALCOCO2; AMPK, 
AMP-activated protein kinase; mTOR, mechanistic target of rapamycin; TBK1, TANK-binding kinase 1; PARL, presenilin-associated rhomboid-like 
protease; PGAM5, phosphoglycerate mutase family member 5; BNIP3/NIX, NIP3-like protein X (BNIP3L); FUNDC1, FUN14 domain-containing 
protein 1; PHB2, prohibitin-2; BCL2L13, BCL-2-like protein 13; FKBP8, FK506-binding protein 8; MFN1/2, mitofusin-1/2; VDAC1, voltage-dependent 
anion channel 1; TOM20, translocase of the outer mitochondrial membrane 20. 

mitophagy defects (Xiao et al., 2022). Collectively, cytological 
observations and genetic data support a pathogenic link between 
impaired mitophagy and PD, with genotype- and phenotype-
specific eect sizes. Pathogenic variants in PINK1 (a mitochondrial 
serine/threonine kinase) and PRKN (encoding the E3 ubiquitin 
ligase Parkin) cause subsets of familial PD and directly disrupt 
damage recognition and clearance. By contrast, LRRK2 G2019S– 
associated mitophagy defects can be partially rescued by LRRK2 
kinase inhibitors but not in PINK1/PRKN deficiency, implying 

the need for etiologically stratified therapeutic strategies (Barodia 
et al., 2017; Bonello et al., 2019; Narendra et al., 2013). 

3.1 Oxidative stress and mitophagy in PD 

Reactive oxygen species (ROS) are markedly elevated in the 
PD brain. Major sources include dopamine auto-oxidation— 
which generates quinones and superoxide (O2 

•−)—and high iron 
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content in the substantia nigra (SN), which catalyzes hydroxyl 
radical (•OH) formation via the Fenton reaction (Martinez and 
Peplow, 2017; Teerapattarakan et al., 2018). Dysfunction of 
respiratory chain complexes I and III further promotes electron 
leak and ROS production. These factors converge to collapse 
the mitochondrial membrane potential (ψm) and disrupt 
inner mitochondrial membrane (IMM) architecture (Dias et al., 
2023). 

Intriguingly, moderate ROS can act as signaling cues, activating 
stress-response pathways. ROS stimulate the AMPK–mTORC1 axis 
and the JNK pathway, both of which enhance PINK1/Parkin-
dependent mitophagy, thereby facilitating removal of damaged 
mitochondria and attenuating DA neuron apoptosis (Park et al., 
2017; Xiao et al., 2017). In the MPTP mouse model, either moderate 
exercise or treatment with N-acetylcysteine (NAC) lowers ROS 
levels in the SN, increases LC3-II expression, and augments Parkin 
recruitment to mitochondria; these interventions improve motor 
performance and enhance DA neuron survival (Hwang et al., 2018; 
Monti et al., 2016). 

In contrast, chronically elevated or excessive ROS inflict 
irreversible damage on the autophagy–lysosome system. 
Overabundant ROS oxidize key autophagy proteins (e.g., 
ATG3 and ATG7), inhibiting the lipidation of LC3-I to LC3-
II (Zhou et al., 2022). Oxidative injury to lysosomal membrane 
proteins (e.g., LAMP2) blocks autophagic flux and causes p62 
accumulation (Wang X. et al., 2019). In neuronal models exposed 
to 6-hydroxydopamine (6-OHDA), high ROS impairs mitophagy 
and exacerbates apoptosis (Di Rita et al., 2018). 

Taken together, these data support a “dose–response” 
paradigm: moderate ROS promote neuroprotection by activating 
AMPK–mTORC1 and JNK signaling to facilitate PINK1/Parkin-
mediated mitophagy, whereas chronic/excess ROS oxidatively 
disable ATG3/ATG7 and LAMP2, disrupt autophagic flux, 
drive accumulation of dysfunctional mitochondria, and 
accelerate neurodegeneration. Future work should define 
quantitative thresholds and molecular determinants of ROS– 
mitophagy coupling and develop combination strategies 
that both mitigate oxidative stress and precisely activate 
PINK1/Parkin-dependent mitophagy, with the goal of disease 
modification in PD. 

3.2 α-synuclein aggregation and 
mitophagy 

Misfolding and aggregation of α-synuclein (α-syn) are 
pathological hallmarks of PD. Mutations or copy-number gains 
in SNCA cause α-syn overexpression and Lewy body formation 
in neurons (Polymeropoulos et al., 1997). Aggregated α-syn 
impairs mitophagy via two principal routes. First, pathological 
α-syn anchors to the OMM and gains access through the 
translocase of the outer membrane (TOM) complex, perturbing 
mitochondria–ER contact sites (MAMs) and disrupting calcium 
homeostasis (Paillusson et al., 2017). Oligomeric α-syn further 
inhibits complex I activity, reduces ATP production, increases 
electron leak and ROS generation, collapses ψm, and opens 
the mitochondrial permeability transition pore (mPTP), 
collectively activating mitochondrial apoptosis and triggering 

PINK1/Parkin-dependent mitophagy to clear damaged organelles 
(Reeve et al., 2015). 

Second, abundant evidence indicates that α-syn aggregation 
not only injures mitochondria but also compromises the 
execution of mitophagy itself. Lewy bodies from PD brains 
contain not only α-syn aggregates but also mitochondrial 
membrane components and autophagolysosomal remnants, 
suggestive of stalled flux (Lenzi et al., 2024). In Drosophila, 
cultured neurons, and human iPSC-derived DA neurons, α-syn 
overexpression preferentially suppresses PINK1/Parkin-mediated 
mitophagy while sparing bulk, non-selective autophagy (Kinnart 
et al., 2024). Although PINK1 and Parkin are recruited to 
depolarized mitochondria, downstream steps—phagophore 
formation, sequestration of damaged mitochondria, traÿcking, 
and lysosomal fusion—are impeded, resulting in impaired 
mitophagy flux. 

Mechanistically, excessive α-syn promotes and stabilizes 
hyperpolymerization of the actin cytoskeleton, reducing the 
plasticity of autophagosomal membranes and their capacity to 
engulf damaged mitochondria (Kinnart et al., 2024; Lurette 
et al., 2023). Overexpressing the actin-severing protein cofilin, 
or pharmacologically inhibiting the Arp2/3 complex to restore 
actin depolymerization, partially rescues mitophagy flux and 
mitochondrial clearance (Sarkar et al., 2021). Moreover, pathogenic 
α-syn variants interfere with Parkin-mediated ubiquitination of 
Miro, preventing its degradation; damaged mitochondria remain 
tethered to microtubules, hindering autophagosome recruitment 
and initiation of mitophagy (D’Errico et al., 2021). 

Summary. Pathological α-syn both aggravates mitochondrial 
damage and disrupts multiple components of the mitophagy 
machinery, creating a vicious cycle of “mitochondrial dysfunction 
→ defective clearance → further damage” that accelerates DA 
neuron loss. Elucidating how α-syn modulates TOM complex 
function, MAM integrity, actin remodeling, and Miro degradation 
may enable targeted strategies to counter α-syn aggregation or its 
inhibitory pathways and restore mitophagy balance. 

3.3 Neuroinflammation and mitophagy in 
PD 

Chronic neuroinflammation is a prominent feature of PD. 
Activated microglia and astrocytes release proinflammatory 
mediators—including IL-1β, TNF-α, IL-6, and nitric oxide (NO)— 
which exacerbate DA neuron injury and apoptosis (Chen G. 
et al., 2017; Guo et al., 2025). Within this inflammatory milieu, 
upstream stimuli such as ROS activate NF-κB signaling. NF-
κB not only drives classical inflammatory gene expression but 
also upregulates autophagy-related factors, including the receptor 
p62 and PINK1, thereby enhancing Parkin-dependent mitophagy, 
constraining NLRP3 inflammasome overactivation, and limiting 
mitochondrial dysfunction (Song et al., 2020; Zhong et al., 2016). 

Notably, inhibition of NF-κB–p62–driven mitophagy 
aggravates programmed cell death in inflammatory macrophages, 
underscoring a “dual role” for NF-κB in balancing inflammation 
via mitophagy regulation (Yuk et al., 2020). Conversely, chronic 
neuroinflammation is often accompanied by sustained activation 
of mTOR signaling and cumulative oxidative stress, which suppress 
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expression of the autophagy-initiating kinase ULK1. Although 
Beclin 1 may be upregulated as compensation, autophagic flux 
remains insuÿcient to restore homeostasis, leading to inadequate 
clearance of damaged proteins and organelles, α-syn accumulation, 
and heightened neurotoxicity (Hosokawa et al., 2009; Spencer 
et al., 2009). 

Mitophagy defects can further amplify neuroinflammation 
in a feed-forward manner. In mice with microglia-specific 
Atg5 deletion, α-syn overexpression increases proinflammatory 
cytokine release and exacerbates DA neuron loss (Qin et al., 
2021). Likewise, in peripheral immune cells of patients with 
PD, impaired mitophagy allows damaged mitochondria and 
their damage-associated molecular patterns (DAMPs)—including 
mitochondrial DNA and ROS—to accumulate, activating the 
NLRP3 inflammasome and promoting IL-1β secretion (Tansey 
et al., 2022). Encouragingly, enhancing general autophagy or 
selective mitophagy facilitates the clearance of dysfunctional 
mitochondria and protein aggregates, suppresses NLRP3 assembly 
and activation, mitigates neuroinflammation, and supports DA 
neuron survival (Kinet and Dehay, 2023). 

Summary. Neuroinflammation and mitophagy are tightly 
interlinked through complex positive and negative feedback 
loops. Moderate activation of mitophagy can buer inflammatory 
signaling, whereas impaired mitophagy aggravates chronic 
inflammation and drives neurodegeneration. 

3.4 Calcium dyshomeostasis and 
mitophagy in PD 

Calcium (Ca2+) is essential for the autonomous pacemaking 
and synaptic signaling of DA neurons, largely due to sustained 
Ca2+ influx through L-type voltage-gated calcium channels, 
particularly CaV1.2 and CaV1.3 (Liu et al., 2014). When 
mitochondria are intact, excess cytosolic Ca2+ is rapidly 
sequestered into the matrix and extruded via Ca2+ pumps 
and Na+/Ca2+ exchangers to maintain homeostasis. In PD, 
mitochondrial Ca2+ buering is impaired. In addition, α-syn 
aggregation and related factors disrupt MAMs, perturbing Ca2+ 

uptake and release during cytosolic transients and resulting in 
Ca2+ overload in both the cytosol and mitochondria (Henrich 
et al., 2023; Paillusson et al., 2017). 

Beyond its canonical role in mitochondrial quality control, 
PINK1 maintains Ca2+ homeostasis by promoting mitochondrial 
Ca2+ eux. In PINK1-deficient models, matrix Ca2+ accumulates, 
triggering mPTP opening, ψm loss, mitochondrial swelling, 
cytochrome c release, and DA neuron apoptosis (Gandhi 
et al., 2009; Gautier et al., 2012). Using mitochondria-targeted 
photosensitizers to induce localized matrix Ca2+ oscillations, 
studies show that even physiological Ca2+ transients can stabilize 
PINK1 accumulation on the OMM and recruit Parkin, thereby 
initiating selective mitophagy without global mitochondrial 
depolarization (Tian and He, 2022; Yu et al., 2021). Moreover, 
the Ca2+-dependent phosphatase calcineurin promotes Parkin 
translocation to damaged mitochondria via dephosphorylation and 
activates transcription factors such as TFEB, linking Ca2+ signaling 
to mitophagy at both post-translational and transcriptional levels 
(Marchesan et al., 2024; Tong and Song, 2015). 

Nevertheless, under PD-related pathological conditions, 
sustained Ca2+ overload causes excessive mPTP opening and 
copious ROS generation, pushing mitochondria into irreversible 
failure before timely clearance can occur. Dysregulated Ca2+ 

signaling may either blunt proper activation of PINK1/Parkin-
mediated mitophagy or, conversely, drive its overactivation and 
eventual exhaustion, further disrupting mitochondrial clearance 
(Xiao et al., 2022). 

Summary. Calcium imbalance in PD not only worsens 
mitochondrial injury but also perturbs Ca2+-dependent 
signaling that governs mitophagy, jointly accelerating DA 
neurodegeneration. Ca2+ thus serves as both trigger and modulator 
of mitophagy in PD pathophysiology. 

3.5 Ferroptosis and mitophagy 

Iron dyshomeostasis is a key pathological feature of PD, with 
significantly elevated iron in the SN (Faucheux et al., 2003). Excess 
ferrous iron (Fe2+) catalyzes the Fenton reaction, converting 
H2O2 into highly reactive •OH radicals, thereby intensifying 
oxidative stress. This promotes lipid peroxidation and protein 
oxidation of mitochondrial membranes, ultimately compromising 
mitochondrial function (Jomova et al., 2010). Iron can also interact 
directly with α-syn, promoting conformational rearrangement and 
oligomerization, enhancing neurotoxicity, and further escalating 
ROS production and mitochondrial dysfunction (Deas et al., 2016). 

Iron overload triggers ferroptosis—a regulated cell death 
modality characterized by cristae collapse and lipid peroxide 
accumulation—which rapidly increases the burden of damaged 
mitochondria and the demand on the mitophagy system (Li et al., 
2022). However, when iron accumulates within lysosomes, 
it impairs v-ATPase–mediated acidification and inhibits 
autophagosome–lysosome fusion and degradative activity. As 
a result, damaged mitochondria and misfolded protein aggregates 
are ineÿciently cleared, establishing a vicious cycle of “iron 
dyshomeostasis → mitophagy dysfunction” (Jahng et al., 2019). 
As mitophagy eÿciency declines, damaged mitochondria continue 
to release ROS and proinflammatory mediators, amplifying 
neuroinflammation and cellular stress and accelerating progressive 
DA neuron loss (Xu J. et al., 2025). 

Summary. In PD, iron overload amplifies ROS via the Fenton 
reaction, drives lipid peroxidation, and synergizes with α-syn 
to damage mitochondria and induce ferroptosis. Lysosomal iron 
further compromises acidification and autophagic degradation, 
impeding mitochondrial clearance. Reducing iron burden and 
restoring mitophagy/lysosomal function are therefore pivotal to 
breaking this cycle. 

3.6 PD genes and mitophagy 

Beyond the canonical PINK1/PRKN axis, an expanding roster 
of PD risk and causal genes converge on mitophagy regulation 
(Table 1), impeding three functional tiers: (i) damage tagging and 
receptor recruitment, (ii) dynamical pre-processing (fission/fusion 
and segregation), and (iii) autophagolysosomal degradation. For 
example, hyperactive LRRK2 (e.g., G2019S) overphosphorylates 
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TABLE 1 Parkinson’s disease (PD)-associated genes impacting mitophagy at tagging, dynamics, and degradation steps. 

Gene Alias/locus Primary step in 
mitophagy 

Key mechanistic points Effect on mitophagy Evidence/Risk in PD References 

DJ-1 PARK7 Tagging/receptor recruitment Redox sensor; helps relay Parkin 

signaling to receptors such as 
OPTN/NDP52; oxidative-stress 

responsive 

Defective assembly/selection of 
receptors when DJ-1 is lost, stalling 

selective mitophagy 

Pathogenic variants cause familial PD; 
loss of antioxidant defense impedes 
damaged-mitochondria clearance 

Imberechts et al., 2022 

LRRK2 PARK8; G2019S, etc., Tagging upstream; 
Rab-GTPase regulation 

Hyperactive kinase 

over-phosphorylates Rabs (e.g., 
Rab10), weakens localization of 
OPTN and related receptors on 

damaged mitochondria 

Decreased mitophagy; accumulation 

of dysfunctional mitochondria 

Familial PD mutations common; 
associated with Lewy pathology 

Pang et al., 2022 

VPS35 Retromer core; 
D620N 

Dynamical pre-processing 

(fission/fusion segregation) 
Alters DRP1 cycling and 

MUL1–MFN2 axis; disrupts 
mitochondrial dynamics 

Harder to segregate damaged 

fragments into the autophagic route; 
reduced PINK1/PRKN-mediated 

clearance eÿciency 

Familial PD mutation; linked to 

mitochondrial damage 

Shiraishi et al., 2024 

GBA GBA1; GCase Autophagolysosomal 
degradation 

Glucocerebrosidase deficiency → 

lysosomal dysfunction; 
mTORC1–TFEB imbalance 

Post-fusion “flux bottleneck”; 
accumulation of damaged 

mitochondria; positive feedback to 

α-syn aggregation 

Most important genetic risk factor for 

PD; accelerates disease progression 

Senkevich and Gan-Or, 2020 

ATP13A2 PARK9 Lysosomal ion/pH 

homeostasis (degradation 

arm) 

Loss of function causes abnormal 
lysosomal pH and ion imbalance 

Reduced fusion/degradation 

eÿciency; impaired mitophagy 

Early-onset PD; autophagy–lysosome 

dysfunction 

Johnson et al., 2021 

SYNJ1 Synaptojanin-1 Membrane sourcing and 

autophagosome maturation 

Endocytic defects limit membrane 

supply and autophagosome formation 

Mitochondrial degradation impaired; 
mitophagy flux reduced 

Early-onset PD; mitochondrial quality 

control aected 

Nguyen et al., 2019 

DNAJC6 Auxilin Clathrin uncoating/vesicle 

traÿcking (membrane 

supply) 

Perturbs clathrin-coated vesicle cycle; 
interferes with autophagosome 

membrane sourcing 

Indirect inhibition of mitophagy; 
decreased throughput 

Early-onset PD–related; synaptic 

endocytosis defects 
Nguyen et al., 2019 

SH3GL2 Endophilin-A1 Endocytosis/vesicle 

traÿcking → 

autophagosome formation 

Membrane curvature/scission 

abnormalities; autophagosome 

biogenesis less eÿcient 

Lower mitophagy eÿciency; reduced 

degradative capacity 

PD risk locus; linked to autophagy 

and mitochondrial injury 

Senkevich and Gan-Or, 2020 

USP24 Deubiquitinase Signaling layer upstream of 
cargo tagging 

Excess deubiquitination counteracts 
Parkin-driven ubiquitin tagging 

Negative regulator of selective 

mitochondrial clearance 

Located at PD susceptibility regions; 
acts as autophagy brake 

Thayer et al., 2020 

TMEM175 Lysosomal 
K + channel 

Autophagolysosomal 
degradation 

(acidification/voltage) 

Channel defects impair lysosomal 
membrane potential and acidification; 

disturbed ionic homeostasis 

Ineÿcient cargo degradation; 
promotes α-syn accumulation; 

reduced ALP capacity 

Increases PD risk; compromises 
mitochondrial quality control 

Johnson et al., 2021 
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Rab GTPases, weakening the localization of receptors such 
as OPTN on damaged mitochondria and suppressing Parkin-
dependent tagging and clearance (Wauters et al., 2020). GBA1 
deficiency is marked by lysosomal enzyme insuÿciency and 
mTORC1–TFEB imbalance, creating a “flux bottleneck” at the post-
fusion degradative step; mitophagy inhibition feeds back to α-syn 
aggregation (Perez-Abshana et al., 2025). DJ-1 (PARK7), a redox 
sensor positioned at the PINK1/PRKN interface, does not prevent 
PINK1 stabilization or Parkin activation but critically promotes 
assembly/enrichment of receptors such as OPTN/NDP52; loss 
causes selective mitophagy stalling (Sarkar and Singh, 2024). 
VPS35 (retromer core) maintains fission/fusion balance via DRP1 
cycling and the MUL1–MFN2 axis; mutations (e.g., D620N) 
induce dynamical imbalance that hampers segregation of damaged 
fragments into the autophagic pathway and reduces PINK1/PRKN-
mediated clearance eÿciency (Ma et al., 2021). 

Additional genes converge on the degradative arm or 
membrane supply: ATP13A2 and TMEM175 compromise 
lysosomal acidification and ionic homeostasis (Bento et al., 
2016; Jinn et al., 2017); SYNJ1, DNAJC6, and SH3GL2 
(endocytosis/vesicle-traÿcking factors) impact autophagosome 
membrane sourcing and maturation (Saenz et al., 2024; Weissbach 
et al., 2019; Wittke et al., 2021); deubiquitinases such as USP24 can 
negatively tune upstream signaling (Young et al., 2024). In sum, 
these loci enter via distinct molecular “gateways” yet converge on 
the same outcome—blocking mitophagy at one or more nodes 
of the “tag–segregate–degrade” continuum—thus explaining 
how PD’s polygenic architecture coalesces into mitochondrial 
quality-control failure. 

Overall summary. In PD, oxidative stress, α-syn aggregation, 
neuroinflammation, Ca2+ dyshomeostasis, and iron overload 
amplify one another to drive mitochondrial injury while 
suppressing mitophagy at critical stages—from tagging/receptor 
recruitment to dynamical pre-processing and autophagolysosomal 
degradation—forming a self-reinforcing loop that propels 
disease progression. In parallel, a multigenic susceptibility 
background further weakens this clearance system, enabling 
long-term accumulation of damaged mitochondria and ROS, 
fostering protein aggregation and inflammatory spread, and 
accelerating DA neuron loss. Therapeutic strategies should 
therefore combine reduction of oxidative and iron burdens, 
mitigation of inflammation and Ca2+ imbalance, restoration of 
lysosomal function, and targeted enhancement of mitophagy— 
by activating PINK1/PRKN, optimizing receptor recruitment, 
correcting mitochondrial dynamics, and promoting TFEB-
driven autophagy–lysosome biogenesis. When integrated with an 
appropriate exercise prescription, such approaches may interrupt 
the early “injury → clearance failure → further injury” cycle and 
deliver disease-modifying benefits. 

4 Exercise and mitophagy 

4.1 Acute effects of exercise on 
mitophagy 

A single bout of high-intensity exercise can rapidly 
activate mitophagy in the central nervous system (CNS). 

Exercise-induced AMPK phosphorylation directly activates 
ULK1 [e.g., phosphorylation at Ser555 (Guan et al., 2024; 
Longo et al., 2024)] while relieving its inhibition by suppressing 
Raptor, a component of mTORC1 (Huang et al., 2021), thereby 
synergistically promoting the initiation of autophagy. This process 
is accompanied by an increase in the autophagy marker LC3-II 
(Wang et al., 2022) and transiently enhances neuronal autophagic 
activity, likely facilitating autophagosome formation via ULK1 
downstream eectors such as BECN1 (Shen et al., 2021), thereby 
maintaining mitochondrial homeostasis and neural function. 

Meanwhile, acute exercise–induced ROS promote the 
accumulation of PINK1 on the outer mitochondrial membrane 
and facilitate the recruitment of Parkin, enabling damaged 
mitochondria to be eÿciently tagged and cleared through 
the autophagosome–lysosome pathway (Chen C. C. W. 
et al., 2018). Swimming and treadmill models likewise show 
that in peripheral tissues such as liver and skeletal muscle, 
acute exercise activates mitophagic flux, characterized by 
increased phosphorylation of mitochondrial AMPK and the 
accumulation of p62 on mitochondria. Interestingly, this response 
appears to be only weakly dependent on PINK1, suggesting 
the presence of parallel exercise-induced signaling pathways 
(McCoin et al., 2022). 

In addition, in neural injury models, short-term forced 
exercise accelerates the mitophagic clearance of damaged 
mitochondria via the STING/TBK1 signaling axis, thereby reducing 
cellular stress and stabilizing neuronal function (Adriaenssens 
et al., 2024; Yang et al., 2024). Taken together, these studies 
indicate that acute exercise rapidly activates mitophagy through 
multiple converging pathways—including AMPK–mTORC1 and 
PINK1/Parkin—to eliminate dysfunctional mitochondria and 
limit excessive ROS accumulation, providing a molecular basis for 
the neuroprotective eects of exercise under conditions of acute 
PD-related stress. 

4.2 Adaptive regulation of mitophagy by 
long-term exercise 

Prolonged, regular exercise coordinates mitochondrial 
biogenesis, fusion–fission dynamics, and autophagic clearance to 
enhance mitochondrial quality control and sustain mitochondrial 
homeostasis in neurons. In a 6-OHDA–induced PD mouse model, 
Abrishamdar et al. (2023) implemented 4 weeks of aerobic or 
resistance training (3 days/week, 40 min/day) and observed robust 
upregulation of the biogenesis markers PGC-1α, NRF-1/2, and 
TFAM in the substantia nigra; in parallel, the fusion proteins optic 
atrophy-1 (OPA1; inner-membrane remodeling) and mitofusin-
2 (MFN2; OMM fusion) were increased, whereas the fission 
GTPase dynamin-related protein-1 (Drp1) normalized toward 
control levels (Jahangiri et al., 2025). These molecular changes 
synergistically enhanced biogenesis and dynamics, yielding 
greater mitochondrial abundance and improved respiratory 
capacity. 

Similarly, in the MPTP model, Jang et al. (2018) reported that 
6 weeks of treadmill running (5 days/week, 60 min/day) increased 
NRF-1 and TFAM expression, further elevated OPA1 and MFN2, 
and eectively modulated Drp1. This adaptive response optimized 
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the fusion–fission balance, accelerated regeneration of functional 
mitochondria, and supported dopaminergic neuroprotection. 

Long-term exercise also activates PINK1/Parkin-dependent 
mitophagy to facilitate clearance of accumulated damaged 
mitochondria. In sedentary PD models, p62, PINK1, and Parkin 
often accumulate on dysfunctional mitochondria, indicating 
impaired flux (Chen C. et al., 2022; Gu et al., 2024). After 6–8 weeks 
of treadmill training, these substrates decline markedly, while 
lysosomal proteins such as LAMP2 and cathepsin L are upregulated 
(Nhu et al., 2021), consistent with restoration of autophagosome– 
lysosome fusion and degradative capacity. This adaptive tuning 
lowers mitochondrial ROS production, suppresses α-synuclein 
aggregation, and limits pro-apoptotic signaling, thereby improving 
DA-neuron survival at cellular and organismal levels (Gao B. et al., 
2025; Tung et al., 2024; Wang W. et al., 2021). 

Clinical data further support neuroprotection from sustained 
exercise. In patients with PD, 12 weeks of moderate-intensity 
aerobic training significantly increased plasma antioxidant 
enzymes [e.g., catalase (CAT), glutathione (GSH)] and reduced 
oxidative-stress markers [e.g., malondialdehyde (MDA), uric acid] 
(Tsai et al., 2025). Likewise, 8 weeks of progressive resistance 
training increased skeletal-muscle superoxide dismutase (SOD) 
and glutathione peroxidase (GSH-Px) activities by ∼10%, while 
decreasing MDA and H2O2 levels by ∼15%–16% (Powers 
and Jackson, 2008). These findings suggest that resistance 
training enhances antioxidant defenses and attenuates oxidative 
stress; however, its direct eects—beneficial or detrimental—on 
mitophagy per se require more definitive evidence. Animal and 
cell studies imply that resistance-type loading modulates flux via 
TFEB-mediated autophagy–lysosome pathways and PINK1/PRKN 
tagging, but direct human/clinical confirmation remains limited 
and warrants controlled trials with tracer-based verification (Cao 
et al., 2025; Díaz-Castro et al., 2024; Hentilä et al., 2018; Moradi 
et al., 2024). 

Additional clinical evidence focused on mitochondrial function 
is accumulating: a 16-week high-intensity combined-training 
intervention increased skeletal-muscle complex I/IV activities by 
∼45%–56% and 39%–54%, respectively, with citrate synthase 
unchanged—suggesting qualitative functional gains rather than 
increased mitochondrial content (Kelly et al., 2014). Another 3-
month aerobic-plus-strength program improved clinical scores and 
whole-body metabolism in PD, and ∧31P-MRS phosphocreatine 
(PCr) recovery correlated with performance/metabolic indices; 
however, the most pronounced PCr improvements occurred in 
healthy controls, implying partially constrained mitochondrial 
adaptation in PD muscle (Krumpolec et al., 2017). Overall, 
direct human evidence demonstrating “exercise → increased 
mitophagy flux and improved neural tissue mitochondrial 
function” remains limited; an ongoing randomized controlled trial 
(the PARKEX protocol) will evaluate mitochondrial respiration 
and related endpoints to further test exercise eects on PD 
mitochondrial function (Magaña et al., 2023). Hence, clinical 
conclusions should remain cautious, and future PD studies 
should incorporate objective readouts such as ∧31P-MRS, 
platelet or PBMC respiration, respiratory-chain activities, and 
mitophagy/autophagy-flux markers. 

In summary, long-term exercise adaptively enhances 
mitophagy and antioxidant capacity, stabilizes neuronal 
bioenergetics, and mitigates PD pathology at multiple levels. 

4.3 Modality-specific regulation of 
mitophagy by exercise 

Evidence from PD-related studies indicates that dierent 
exercise modalities emphasize complementary segments of the 
“initiation–flux–clearance” chain. Aerobic training and high-
intensity interval training (HIIT) preferentially amplify front-
end events on acute timescales—energy stress triggers AMPK 
phosphorylation, relieves mTORC1-mediated ULK1 inhibition, 
and promotes ULK1–Atg13–FIP200 assembly, while a tempered 
ROS pulse stabilizes PINK1 on the OMM and recruits Parkin. 
Together with the TBK1–p62/NDP52/OPTN adaptor axis, these 
pathways achieve precise tagging and sequestration of damaged 
mitochondria (Guo et al., 2023; Liu and Pan, 2019; Sharma 
et al., 2023). After multi-week interventions, this front-end 
advantage consolidates as higher autophagic/mitophagic flux, 
often coupled to optimized mitochondrial dynamics (OPA1/MFN2 
upregulation, DRP1 normalization), thereby promoting biogenesis 
and functional recovery (Hatsuda et al., 2023; Laker et al., 
2017; Lu et al., 2022). By contrast, resistance training tends to 
strengthen mid- to late-stage flux and clearance: through Akt– 
mTOR/FoxO3a, it balances substrate mobilization and proteostasis, 
drives TFEB nuclear translocation and activation of the CLEAR 
network, and upregulates lysosomal components (e.g., LAMP 
family proteins, cathepsins) to boost autophagosome–lysosome 
fusion and cargo degradation—correcting sedentary/pathological 
bottlenecks and p62 accumulation. Over weeks, both modalities 
synergize with the PGC-1α–NRF-1/2–TFAM biogenesis axis and 
OPA1/MFN2/DRP1 re-tuning, yielding increased mitochondrial 
content and respiratory capacity, reduced oxidative/proteotoxic 
stress, and stabilization of DA-neuron function (Cao et al., 2025; 
D’Lugos et al., 2018; Zeng et al., 2020). 

It must be emphasized that no published clinical intervention 
in PD has yet directly quantified an exercise-induced increase in 
mitophagy in vivo with positive results; current conclusions 
derive largely from animal models, peripheral tissues, or 
indirect correlates. Within this evidence framework, combined 
prescriptions (aerobic/HIIT plus resistance) are more likely 
than single-modality programs to produce a closed-loop gain— 
front-end “ignition” (AMPK–ULK1, PINK1/PRKN) together 
with back-end “flux consolidation” (TFEB–CLEAR, lysosomal 
function) (Bai et al., 2017; Chen C. et al., 2022; Colleluori et al., 
2019). As a practical guideline: center the program on moderate-to-
moderately-high-intensity aerobic/interval work, complemented 
by resistance training 2–3 times per week, with intensity and 
volume individualized for tolerance and safety. 

5 Mechanisms by which 
exercise-regulated mitophagy 
ameliorates PD pathology 

Parkinson’s disease (PD) is a neurodegenerative disorder 
whose pathogenesis involves multiple pathological processes, 
including oxidative stress, α-synuclein (α-syn) aggregation, 
neuroinflammation, dysregulation of calcium homeostasis, 
and ferroptosis (Di Martino et al., 2021; Huang et al., 2023). 
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Emerging evidence indicates that exercise—a safe, low-cost, 
non-pharmacological intervention—confers neuroprotection by 
upregulating neurotrophic factors, attenuating oxidative stress, 
and enhancing mitochondrial function (Li et al., 2023), and is 
therefore considered an eective strategy in PD management. Of 
note, exercise can activate mitophagy through multiple signaling 
pathways, thereby mitigating PD-related pathologies with disease-
modifying potential. Treadmill/endurance training upregulates 
PINK1/Parkin, elevates LC3-II, reduces p62 accumulation, and 
restores mitochondrial membrane potential across PD models 
(Nakahira et al., 2015; Nhu et al., 2021); high-intensity interval 
or aerobic training can enhance TFEB-mediated autophagy– 
lysosome biogenesis and flux (Zhang et al., 2022); and exercise 
upregulates SIRT3 to facilitate removal of damaged mitochondria 
and modulate the NLRP3 inflammasome (Luthra et al., 2025). 
Together, these findings support the biological plausibility and 
translational promise of the “exercise–mitophagy” axis in PD. 

5.1 How exercise-activated mitophagy 
alleviates oxidative stress in PD 

Oxidative stress—a core driver of PD—is largely fueled by 
sustained ROS production from dysfunctional mitochondria, 
disrupting redox homeostasis. As a key component of 
mitochondrial quality control, mitophagy selectively removes 
damaged mitochondria, halting persistent ROS generation. 
Recent work shows that exercise activates multiple mitophagy-
linked pathways, strengthening the process at several stages 
and thereby reducing PD-related oxidative damage at the 
molecular level. 

First, exercise-induced energy stress potently activates AMP-
activated protein kinase (AMPK), a central metabolic sensor 
and upstream regulator of mitophagy initiation. During physical 
activity, rapid ATP consumption and a rising AMP/ATP ratio 
trigger Thr172 phosphorylation and activation of AMPK (Chen 
et al., 2003; Richter and Ruderman, 2009). Activated AMPK 
phosphorylates ULK1 at Ser317 and Ser777, counteracting 
mTORC1 inhibition and promoting assembly of the ULK1–Atg13– 
FIP200 initiation complex to start phagophore formation (Kim 
et al., 2011). AMPK further tunes autophagic flux by regulating 
ATG proteins and LC3 lipidation, ensuring continuous and eÿcient 
processing of damaged mitochondria (Fujita et al., 2008; Nath et al., 
2014). In a systematic review, Nhu et al. (2021) reported that 
treadmill exercise in PD animal models significantly upregulated 
PINK1, Parkin, and LC3-II while lowering p62, thereby accelerating 
mitochondrial clearance and reducing ROS accumulation (Wang S. 
et al., 2023). 

Second, the PINK1/Parkin pathway is pivotal to exercise-
induced mitophagy. By sensing loss of mitochondrial membrane 
potential, this cascade recruits Parkin to ubiquitinate OMM 
substrates and mark organelles for degradation. In MPTP mice, 
Hwang et al. showed that treadmill exercise reduced abnormally 
elevated PINK1/PRKN, p62, and LC3-II/I while increasing 
LAMP2 and cathepsin L, indicating restoration of PINK1/PRKN-
linked mitophagy flux and lysosomal function, with consequent 
reduction of damaged-mitochondria burden and neuroprotection 
(Hwang et al., 2018). 

Third, exercise enhances terminal degradation by activating 
transcription factor EB (TFEB), the master regulator of the 
autophagy–lysosome system. Upon nuclear translocation, 
TFEB induces lysosomal gene programs (e.g., LAMP2, CTSD), 
promotes autophagosome–lysosome fusion, and ensures eÿcient 
degradation of mitochondrial cargo (Yang et al., 2023). Exercise has 
been shown to promote TFEB nuclear entry, preventing retention 
of incompletely degraded mitochondria and secondary ROS 
release, thereby interrupting positive feedback loops of oxidative 
stress (Palmieri et al., 2011). 

Summary. By co-activating AMPK–ULK1, PINK1/Parkin, 
and TFEB, exercise enhances mitophagy from recognition and 
initiation through lysosomal degradation, eectively alleviating 
oxidative stress in PD and oering a mechanistic framework for 
mitophagy-targeted non-pharmacological interventions. 

5.2 How exercise-activated mitophagy 
mitigates α-synuclein aggregation in PD 

Aberrant folding and aggregation of α-syn are signature lesions 
in PD. Intracellular accumulation not only injures mitochondria 
but also impairs autophagic flux, suppressing mitophagy and 
creating a damaging feedback loop that intensifies mitochondrial 
dysfunction and neurotoxicity (Zhao et al., 2023). Recent studies 
indicate that exercise strengthens recognition and removal of 
damaged mitochondria—together with α-syn complexes bound on 
their surface—thereby restricting pathological spread and reducing 
the toxic burden. 

Exercise first activates the AMPK–ULK1 axis to initiate 
mitophagy: activity-induced energy stress (ATP depletion and 
increased AMP/ATP) phosphorylates and activates AMPK 
(Thr172), which suppresses mTORC1 and activates ULK1 to drive 
phagophore formation (Laker et al., 2017). This pathway facilitates 
elimination of damaged mitochondria and aids recognition of 
α-syn aggregates tethered to the OMM (Amireddy et al., 2023; Kim 
et al., 2025). In parallel, exercise upregulates the deacetylase SIRT1 
and activates PGC-1α, which supports mitochondrial dynamics 
and stabilizes the PINK1/Parkin pathway (Vainshtein and Hood, 
2016; Zhao et al., 2021). Koo, Cho, and colleagues showed that 
treadmill running elevates p-AMPK, LC3-II, SIRT1, PGC-1α, 
and Parkin while reducing α-syn deposition, consistent with 
multivalent enhancement of mitophagy (Koo and Cho, 2017). 

At downstream execution steps, exercise promotes TFEB 
activation to augment autophagy–lysosome degradation. In resting 
cells, TFEB is retained in the cytosol by mTORC1-dependent 
phosphorylation; exercise-induced AMPK and Ca2+ signals favor 
TFEB dephosphorylation and nuclear translocation, upregulating 
LAMP1/LAMP2/CTSD and facilitating autophagosome–lysosome 
fusion and cargo breakdown (Li et al., 2025; Mansueto et al., 
2017). In α-syn transgenic mice, sustained physical activity 
increases PPARα and TFEB expression/nuclear localization 
and upregulates LAMP2 and CTSD, which—together with 
macroautophagy and chaperone-mediated autophagy (CMA)— 
promote α-syn clearance (Erlich et al., 2018). It is important to 
note that mitophagy primarily targets damaged mitochondria; 
improvements therein can indirectly suppress protein deposition 
by lowering ROS/inflammation, whereas direct removal of α-syn 
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aggregates is mainly mediated by macroautophagy and CMA (Sala 
et al., 2016). 

Summary. Exercise reinforces mitophagy at initiation (AMPK– 
ULK1), network maintenance (SIRT1–PGC-1α), and terminal 
degradation (TFEB), thereby facilitating clearance of α-syn–linked 
pathological substrates and supporting anti-aggregation eects in 
PD. Future work should dissect temporal dynamics and crosstalk 
among these pathways to optimize exercise-based strategies for 
α-syn removal and neuroprotection. 

5.3 How exercise-activated mitophagy 
attenuates neuroinflammation in PD 

Neuroinflammation is integral to PD progression (Zhu 
et al., 2025). Dysfunctional mitochondria chronically release 
mitochondria-derived damage-associated molecular patterns 
(mtDAMPs)—including ROS and mitochondrial DNA (mtDNA)— 
which activate the NLRP3 inflammasome and NF-κB/MAPK 
signaling, driving microglial hyperactivation and proinflammatory 
cytokine release (Deus et al., 2022; Mishra et al., 2025; Yan 
et al., 2020; Yu et al., 2025). By selectively removing damaged 
mitochondria, mitophagy curtails the supply of mtDAMPs and 
is closely associated with resolution of inflammation (Zhong and 
Lemasters, 2018). 

In MPTP and 6-OHDA models, sustained treadmill running 
not only improves ψm and lowers intracellular ROS but also 
produces favorable inflammatory endpoints: reduced CD11b/Iba1 
(microglial activation markers) in the substantia nigra, decreased 
NLRP3–ASC–caspase-1 activity and IL-1β/IL-18 release, and 
downregulation of p-NF-κB and p-ERK/JNK/p38 (Gao Y. et al., 
2025; Tung et al., 2024; Wang W. et al., 2021; Zhao et al., 
2072). These shifts coincide with enhanced mitophagy flux—LC3-
II/p62 changes indicative of increased throughput—and stronger 
PINK1/PRKN-mediated tagging/clearance (Chakraborty et al., 
2018; Li and Chen, 2019; Wu et al., 2018). 

Causality is supported by the observation that pharmacological 
autophagy inhibitors (3-MA, bafilomycin A1) or genetic 
suppression of PINK1/PRKN blunt exercise-induced reductions 
in IL-1β/TNF-α and microglial activation; conversely, TFEB 
activation partially mimics exercise’s anti-inflammatory eects, 
whereas TFEB inhibition attenuates them (Zhao et al., 2023). 

Summary. By boosting clearance of damaged mitochondria and 
lysosomal degradative capacity, exercise reduces persistent release 
of ROS/mtDNA and dampens inflammasome activity, microglial 
activation, and proinflammatory cytokines in PD models (Koo and 
Cho, 2017; Ni et al., 2025; Sui et al., 2024). The evidence supports 
an “exercise → mitophagy → anti-inflammation” axis to guide 
prescriptions aimed at inflammatory control. 

5.4 How exercise-activated mitophagy 
ameliorates calcium dyshomeostasis in 
PD 

Calcium dysregulation underlies DA-neuron vulnerability 
in PD. Chronic high firing and rhythmic activity increase 
intracellular Ca2+ amplitude and burden; impaired mitochondrial 

buering leads to matrix Ca2+ overload, ψm collapse, mPTP 
opening, and intrinsic apoptosis (Matuz-Mares et al., 2022). 
Mitophagy selectively removes mitochondria with defective 
Ca2+ handling and depolarized membranes, thereby curtailing 
Ca2+ toxicity and helping restore homeostasis (Borbolis 
et al., 2025). Exercise-induced energy and Ca2+ signals act as 
upstream triggers that enhance mitophagy at multiple stages 
and are associated with improvements in PD-related Ca2+ 

abnormalities. 
Exercise-related energy and Ca2+ signals facilitate initiation: 

increased AMP/ATP activates AMPK, which phosphorylates 
ULK1 at Ser317/Ser777 to assemble the ULK1–Atg13–FIP200 
complex. Activity-evoked Ca2+ transients engage CaMKKβ and 
calcineurin to potentiate initiation and link to downstream 
TFEB dephosphorylation/nuclear translocation (Guan et al., 
2024; Hatsuda et al., 2023; Laker et al., 2017), enabling early 
recognition and sequestration of compromised mitochondria. 
In animal models, treadmill/endurance training strengthens 
these initiation events and coincides with reduced indices of 
mitochondrial Ca2+ overload and lower mPTP propensity (Gill 
et al., 2019). 

The PINK1/Parkin pathway then targets “Ca2+-overloaded, 
depolarized” mitochondria: upon ψm loss, PINK1 accumulates 
on the OMM, recruits Parkin, ubiquitinates OMM substrates, 
and directs organelles to degradation. In MPTP/6-OHDA models, 
regular treadmill exercise enhances PINK1/Parkin enrichment 
on mitochondria and subsequent clearance eÿciency, reflected 
by fewer Ca2+-overloaded mitochondria, restored membrane 
integrity/Ca2+ buering, and favorable LC3-II/p62 flux signatures 
(Li et al., 2021). Finally, exercise-induced TFEB activation 
improves terminal degradation and reduces retention of “Ca2+-
overloaded” mitochondria, with upregulation of LAMP1/LAMP2 
and CTSD promoting fusion and breakdown (Triolo et al., 
2022). 

Summary. By reinforcing AMPK–ULK1 initiation, 
PINK1/Parkin-mediated selection, and TFEB-driven terminal 
degradation, exercise upgrades recognition, removal, and disposal 
of “Ca2+-dysregulated” mitochondria; these multi-level eects 
correlate with reduced mPTP opening and restoration of ψm 
and Ca2+ buering (Borbolis et al., 2025; Gill et al., 2019; Li et al., 
2021; Matuz-Mares et al., 2022; Triolo et al., 2022). 

5.5 How exercise-activated mitophagy 
counteracts ferroptosis in PD 

Ferroptosis—an iron-dependent, lipid-peroxidation-
driven form of regulated cell death—has been implicated 
in PD (Do Van et al., 2016). Hallmarks include increased 
mitochondrial membrane density, cristae loss, and depolarization, 
underscoring tight links to mitochondrial dysfunction. Damaged 
mitochondria are both a major ROS source and a nexus for 
iron dyshomeostasis; in the absence of eective clearance, 
they seed chain-propagating lipid peroxidation and amplify 
ferroptotic drive (Dong et al., 2023). Emerging evidence 
suggests that exercise mitigates neuronal ferroptosis by enhancing 
mitophagy and removing mitochondria with dysregulated iron 
handling. 
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First, by activating the AMPK–mTOR–ULK1 axis, exercise 
promotes the initiation and throughput of mitophagy, 
enabling timely removal of ROS-rich mitochondria and 
interruption of early lipid-peroxidation cascades (Lee et al., 
2020). In animal studies, exercise elevates LC3-II, reduces 
p62 accumulation, downregulates ferroptosis markers (e.g., 
ACSL4, 4-HNE), and preserves glutathione peroxidase-
4 (GPX4) activity—collectively indicating mitigation of 
lipid peroxidation via autophagy activation (Zhang et al., 
2025). 

Second, PINK1/Parkin-mediated mitophagy plays a central role 
in exercise’s anti-ferroptotic eect. Upon depolarization, PINK1 
accumulation and Parkin recruitment target mitochondria— 
often enriched in Fe2+ and producing excessive ROS—for 
degradation, thereby disrupting Fenton-driven oxidative cascades 
(Xu J. et al., 2025). Exercise enhances PINK1 and Parkin 
expression and mitochondrial translocation, accelerating removal 
of iron-dysregulated mitochondria and lowering susceptibility to 
ferroptosis. 

Third, the PGC-1α axis is crucial for mitochondrial iron 
metabolism and antioxidant defense. Beyond biogenesis, 
PGC-1α regulates mitochondrial iron-transport proteins (e.g., 
mitoferrin-1/2, ABCB8) to maintain iron homeostasis (Halling 
and Pilegaard, 2020) and supports expression of antioxidants 
such as GPX4. Together with mitophagic clearance, this 
forms an integrated barrier against ferroptotic stress. In PD 
models, exercise upregulates PGC-1α and downstream targets 
(NRF-1, TFAM), restores membrane integrity, and reduces 
labile iron and lipid-peroxidation markers (Gerecke et al., 
2010). 

Summary. Exercise reduces neuronal susceptibility to 
ferroptosis through (i) AMPK–ULK1-driven augmentation 
of mitophagy flux, (ii) PINK1/Parkin-dependent removal of 
iron-overloaded mitochondria, and (iii) PGC-1α-mediated 
stabilization of mitochondrial iron handling and antioxidant 
capacity—supporting mitophagy-targeted anti-ferroptotic 
strategies in PD. 

6 Conclusion and outlook 

In sum, mitophagy—a linchpin of mitochondrial quality 
control and cellular bioenergetics—plays a central role in PD 
pathophysiology. Dysfunction of mitophagy is tightly connected 
to oxidative stress, α-syn aggregation, neuroinflammation, 
calcium dyshomeostasis, and ferroptosis. A substantial body of 
evidence shows that exercise enhances mitophagy by engaging 
AMPK/ULK1, PINK1/Parkin, SIRT1/PGC-1α, and TFEB. 
Through coordinated regulation of recognition, sequestration, and 
degradation, exercise eÿciently clears dysfunctional mitochondria, 
reduces ROS and pathological protein accumulation, alleviates 
cytotoxicity and inflammation, and improves multiple facets 
of PD pathology. 

Dierent modalities (e.g., aerobic and resistance training) 
oer complementary advantages in maintaining mitochondrial 
homeostasis, and clinical studies further substantiate 
improvements in antioxidant defenses and functional outcomes 
in PD. Nevertheless, key knowledge gaps remain regarding 

the molecular underpinnings of exercise-induced mitophagy— 
crosstalk between AMPK and PINK1/Parkin, the precise roles 
of SIRT3, DJ-1, irisin, and other modulators, and the temporal/ 
“dose–response” characteristics of autophagy activation. 

Future work should leverage multi-omics and gene-editing 
tools in large, multi-center clinical studies to systematically 
evaluate the impacts of diverse exercise paradigms on mitophagy 
and PD phenotypes, and to explore synergies with nutritional and 
pharmacological interventions. Looking ahead, individualized, 
mitophagy-targeted exercise prescriptions hold promise as 
a non-pharmacological avenue for PD management and 
may provide a foundation for disease-modifying therapy— 
oering a practical framework for precision medicine in 
neurodegenerative disorders. 
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