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Background: The liver, skeletal muscle, and brain are interconnected through
metabolic and endocrine pathways, constituting a systemic axis that may
influence neurodegeneration. Although hepatic steatosis and sarcopenia have
been independently associated with neurodegeneration, their integrated effects
on the brain remain poorly understood. This study investigated whether muscle
density mediated the link between hepatic steatosis and neurodegeneration,
quantified via the brain age gap (BAG).

Methods: Data from 2,510 adults (aged 22—-87 years) who underwent abdominal
computed tomography (CT), brain magnetic resonance imaging (MRI), and
blood tests during comprehensive health evaluations were retrospectively
analyzed. Fully automated CT markers, including visceral and subcutaneous fat,
muscle, and the liver attenuation index (LAI) (a CT-based surrogate of hepatic
steatosis) were obtained. The BAG was calculated from T1-weighted structural
MRI scans using a pretrained machine learning pipeline. Mediation analysis was
performed to evaluate the indirect effects of LAl on the BAG through muscle
density. Network analysis further characterized the multivariate associations
between the BAG, CT markers of body composition, laboratory results, and
anthropometric variables.

Results: Mediation analysis confirmed that muscle density, not muscle volume,
partially mediated the LAI-BAG relationship (indirect § = —0.04, p < 0.001). LAI
was negatively associated with the BAG (3 = —0.027, p = 0.002) and positively
associated with muscle density (B = 0.049, p < 0.001), whereas muscle density
was inversely associated with BAG (B = —0.080, p < 0.001). Network analysis
identified muscle density as a central hub linking the LAI, body composition,
and the BAG. The BAG was also negatively correlated with Montreal Cognitive
Assessment scores (r = —0.20, p < 0.001).

Conclusion: Muscle density mediates the effect of hepatic steatosis
on brain aging, supporting its role as a key modifiable factor within
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the liver—brain axis. These findings underscore the importance of preserving
muscle quality to decelerate brain aging.

KEYWORDS

myosteatosis, liver-brain axis, brain age, hepatic steatosis, opportunistic screening,
automatic segmentation

Highlights

Recent studies have established the associations between body
composition, metabolic dysfunction, and brain aging; however,
the complex mechanisms linking multiple metabolic factors to the
brain remain underexplored. This study builds on prior work by
showing that muscle density, a CT-based marker of myosteatosis,
mediates the relationship between hepatic steatosis and brain-
predicted age. By integrating multimodal data, including structural
brain MRI, abdominal CT-based markers of body composition,
laboratory biomarkers, and cognitive performance, our analysis
identified muscle quality as a central node within the body-
liver-brain axis. The inclusion of inflammatory, glycemic, and
hemodynamic markers enables further characterization of systemic
biological pathways associated with accelerated brain aging. These
findings suggest that skeletal muscle quality may represent a key
modifiable factor mediating the relationship between metabolic
dysfunction and accelerated brain aging.

1 Introduction

The aging of the global population has promoted an increasing
prevalence of age-related conditions, such as cognitive decline,
metabolic dysfunction, and sarcopenia (Yuan and Larsson,
2023). Despite the progress in life expectancy, no proportional
improvement in the healthspan has been noted, highlighting the
need to identify modifiable systemic factors that contribute to
brain and physical aging (Lopez-Otin et al., 2013; Wrigglesworth
et al., 2021). Recent evidence suggests that physical and cognitive
health are interdependent, with numerous studies demonstrating a
bidirectional relationship between metabolic dysfunction and the
brain (Zhao et al., 2021).

The liver is the primary organ involved in maintaining
energy balance among humans given that it controls the
metabolism of different nutrients, such as lipids, glucose, and
protein (Matsubara et al., 2022). Alteration in lipid metabolism
leads to the accumulation of lipids in the liver, resulting in
organelle malfunction, cellular injury, inflammation, and persistent
activation of pathways associated with fibrosis, all of which
worsen liver function and promote the development of metabolic
dysfunction-associated steatotic liver disease (MASLD) (Rao et al.,
2023). Extrahepatic manifestations of MASLD have attracted the
attention of researchers in the field of both hepatology and
neuroscience. Interest in cognitive functioning and brain health
has been particularly high owing to their shared risk factors and
pathophysiology with liver diseases (Weinstein et al., 2018). This
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relationship forms the basis of the emerging liver-brain axis, a
conceptual model describing the dynamic interaction between the
brain and liver (Matsubara et al., 2022). Specifically, recent efforts
to understand the liver-brain axis have identified a link between
liver function and imaging markers of brain structure, implying
accelerated brain aging (Jiang et al., 2023; Wang et al., 2025).

Disturbed hepatic lipid metabolism affects not only the brain
but also the muscles. In fact, MASLD has been closely related
to various metabolic complications, such as obesity, insulin
resistance, type 2 diabetes, hyperlipidemia, hypertension, and
other cardiovascular diseases, due to the significant role hepatic
lipid metabolism plays in the overall energy balance of the body
(Rao et al, 2023). The Framingham Heart Study found that
lower computed tomography (CT) attenuation of the paraspinal
muscle, which was a marker of myosteatosis and therefore muscle
quality, was associated with various metabolic risk factors, such
as hyperglycemia, dyslipidemia, and hypertension (Kim J. A.
et al., 2025; Therkelsen et al., 2013). Interestingly, recent evidence
suggests that muscle health and metabolic indices, including
fasting glucose levels and C-reactive protein levels, are also
linked to brain aging (Lee et al., 2025). Hence, disruptions in
this multiorgan axis (i.e., hepatic steatosis and myosteatosis)
may collectively accelerate brain aging through shared metabolic
pathways. Although sarcopenia and hepatic steatosis have been
individually associated with brain atrophy, no study has yet clearly
established the mediating role of muscle in the association between
liver fat accumulation and brain aging.

The brain age gap (BAG), defined as the difference between the
predicted brain age based on magnetic resonance imaging (MRI)
and chronological age, is a robust marker of neurodegeneration.
A higher BAG, which implies accelerated aging, has been associated
with cognitive impairment, neuropsychiatric conditions, and
metabolic risk factors (Cole et al., 2018; Franke and Gaser, 2019).
Previous studies have shown that BAG was clearly associated
with hepatic steatosis and myosteatosis, indicating that people
with higher measures of adipose tissue have older-appearing
brains and that BAG was a reasonable surrogate for brain health
(Beck et al., 2022; Lee et al., 2025).

Although some pieces of the puzzle have been investigated,
only a few studies have examined the BAG within the context
of whole-body metabolic status or organ-organ interactions.
Thus, no integrated model with an all-in-one analysis has yet
been established. Considering the interdependency among
organs in regulating systemic inflaimmation and glucose
and lipid metabolism, we hypothesized that muscle density
would mediate the effects of hepatic fat on brain aging,
positioning it as a critical intermediary within the body-
liver-brain axis. Using a large retrospective cohort of 2,510
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adults who underwent abdominal CT, brain MRI, and metabolic
profiling, a multimodal analysis that integrated imaging-derived
markers, blood biomarkers, and anthropometric data was
conducted. Specifically, we employed mediation analysis to
determine whether myosteatosis mediates the association
between hepatic steatosis and BAG. Additionally, graphical
least absolute shrinkage and selection operator (LASSO)-based
network analysis was used to elucidate dependencies across

multiple variables.

2 Materials and methods

2.1 Patient selection and demographics

This retrospective study was approved by the Institutional
Review Board of Seoul National University Hospital (SNUH
IRB No. 2504-076-1629) and conducted in accordance with
the Declaration of Helsinki. Informed consent was waived
due to retrospective nature of the study. We examined data
from 2510 consecutive individuals (1294 males, 1216 females)
ranging in age from 22 to 87 years. These participants had
completed a comprehensive health check-up program at the
Seoul National University Hospital Health Promotion Center
in the Republic of Korea, with data collected between January
2019 and December 2022. The health assessment battery for
each participant involved a combination of laboratory analyses,
anthropometric measurements, a questionnaire about smoking
history, abdominal computed tomography, and brain MRI. For
laboratory analyses, venous blood samples were collected before
10:00 AM after a 12-h fast. Standardized methodologies were
employed for all biochemical analyses, which were conducted
at a single laboratory (Lee et al, 2010). A small portion
of the included patients (220 participants) underwent the
Korean version of the Montreal Cognitive Assessment (MOCA)
(Kang et al., 2009).

2.2 MRI, quality control, and brain age
estimation

Magnetic resonance imaging of the brain was performed using
a GE Discovery MR750w 3.0-T system (GE Healthcare, Milwaukee,
WI), equipped with a 24-channel head coil. The TI1-weighted
images were captured via a three-dimensional (3D) fast spoiled
gradient-echo sequence. Key acquisition parameters were: 8.0 ms
repetition time, 3.0 ms echo time, 450 ms inversion time, and
a 12° flip angle. The images had a 256 mm x 256 mm field
of view, a 256 x 256 acquisition matrix, and a 139.4 Hz/pixel
receiver bandwidth, with 1 excitation. Sagittal slices, varying
between 154 and 172 based on head size, were acquired at a

3 voxel resolution. Consistent with

1 mm thickness, yieldinga 1 mm
previous research, high-quality scans were defined by the absence
of imaging artifacts (such as ghosting or ringing), no evidence
of prior brain pathology (e.g., lacunar infarctions), and an Euler
number (rescaled) below 10, indicating good scan integrity (Kim
M. et al., 2025). Brain age was calculated using brainageR (version

2.1), an open-access software for generating brain age predictions
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from raw T1-weighted MRI scans! (Cole et al., 2018). BrainageR
involves two main stages: preprocessing and prediction. In the
preprocessing stage, images are segmented and normalized via
SPM12 software?. For quality control, the FSL slicesdir function
was used to generate two-dimensional slices of the segmentation
and normalization outputs. Normalized images were loaded into
R (R Core Team, 2013) and converted to vectors. Gray matter,
white matter, and cerebrospinal fluid vectors were masked using
a 0.3 threshold from the mean image template based on the
brainageR model training dataset and then combined. In the
prediction stage, the brainageR model was applied to the vectorized
and masked study images to estimate a brain age score for each.
BrainageR had been previously trained to predict the brain age from
normalized brain volumetric maps obtained from 3377 healthy
individuals included in seven publicly available datasets using
the Gaussian Processes Regression. Using principal component
analysis, the top principal components capturing 80% of the
variance in brain volumes were retained. The resulting rotation
matrix for the 435 principal components was then applied to
the new imaging data to predict the brain age (Biondo et al,
2022).

For each image, the final output of brainageR was a
predicted brain age value with the corresponding 95% confidence
interval (CI). After calculating the predicted brain age for
each subject, we further calculated the BAG, a metric that
reflected the subjects relative brain health status. The BAG
was initially measured by subtracting the true brain age from
the predicted brain age, with higher values implying an older
brain morphology relative to the participant’s chronological age.
Owing to regression dilution, however, regression models may
also bias the predicted brain age toward the mean, which can
underestimate the age of older subjects and overestimate the
age of younger participants. To correct this bias, we defined
the BAG as the difference between the individual BAG and the
expected BAG (measurements fitted over the entire sample set
using the regression model and leave-one-out cross-validation)
(Kang et al., 2023). The BAG was then corrected such that the
BAGs of the whole dataset analyzed became unbiased across all age
ranges.

2.3 Acquisition of abdominal CT images

(SOMATOM  Force;
Healthineers, Erlangen, Germany) was used for all computed

A dual-source scanner Siemens
tomography procedures. After a bolus injection of iobitridol
(Xenetix 350; Guerbet) at 520 mg/kg body weight, followed
by a saline flush, images were acquired during the single
portal venous phase 70 s after contrast media delivery. Data
collection occurred in dual energy mode, utilizing 80 and 150 kVp
settings. Virtual non-contrast images were then derived from
the dual energy data using a dedicated Syngo.via post-processing
system (Siemens Healthineers) directly at the CT console,
and reconstructed with a 2-mm slice thickness (Jeon et al,
2024).

1 https://github.com/james-cole/brainageR

2 https://www fil.ion.ucl.ac.uk/spm/software/spm12/
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Volumetric quantification of the liver and spleen was
performed automatically using DeepCatch version 1.2.0.0
(MEDICALIP Co., Ltd., Seoul, Korea), a deep-learning-based
multiorgan segmentation software, applied to the virtual non-
contrast enhanced images. The software’s reported segmentation
performance for these organs, on both non-contrast and post-
contrast enhanced images, demonstrated Dice scores greater than
0.95 (Jeon et al,, 2024). Following the creation of a 3D organ
mask, the system automatically computed the mean volumetric CT
attenuation (in Hounsfield units, HU) for the segmented regions.

2.4 Variable selection and statistical
analysis

For integrative analysis of the brain-liver-muscle axis, we
selected body composition measures and serum biomarkers that
were useful, or may be potential systemic confounders in evaluating
metabolic dysfunction and brain aging based on previous studies.
We employed the liver attenuation index (LAI) (mean CT
attenuation of the liver - mean CT attenuation of the spleen) as
a CT attenuation-based parameter for assessing hepatic steatosis
in accordance with previous studies on the utility of CT for
this purpose. The LAI has been reported to be robust across
various scan settings using the spleen as an internal reference
(Jeon et al, 2024). We used skeletal muscle and visceral fat
volume (in cm?®), normalized to height (in meters squared),
as indices (termed as MusIndex and VisFatIndex, respectively)
(Chang et al., 2024). This study focused on these volumes, as well
as the visceral-to-subcutaneous fat ratio (AVF_SFVolumeRatio),
given their strong predictive value for overall mortality and
association with type 2 diabetes mellitus (Chang et al.,, 2024).
We also selected the mean CT attenuation of the muscle as
the gold standard for evaluating myosteatosis (Kim J. A. et al,
2025) given its association with metabolic risk factors, such
as hyperglycaemia, dyslipidaemia, and hypertension (Therkelsen
et al, 2013). Body-mass index (BMI) was included given its
potential to be an independent risk factor for diffuse brain
alterations manifesting as accelerated brain age (Kolenic et al.,
2018). Among the laboratory tests, we included hemoglobin
Alc (HbAlc), triglycerides (TG), and high-sensitivity C-reactive
protein (hs-CRP) to represent hyperglycemia, dyslipidemia, and
systemic inflammation (Wang et al., 2025). Lastly, mean arterial
pressure (MAP) was included as the single marker of blood
pressure (Kulshreshtha and Chandel, 2025). All conditions were
found to be linked to brain health or cognition (Jawinski et al.,
2022).

We investigated the association between imaging-derived
markers, blood biomarkers, and anthropometric data with BAG.
First, a mediation model (Figure 1) was built to examine how the
independent variable (LAI) affected the dependent variable (BAG)
through an intermediary variable known as the mediator (mean CT
attenuation of the muscle as a marker of myosteatosis). Mediation
analysis decomposes the total exposure (X, LAI)-outcome (Y,
BAG) effect into a direct effect and an indirect effect through a
mediator (M, myosteaosis); therefore, it is an important statistical
tool for gaining insight into the mechanisms of exposure-outcome
effects (MacKinnon, 2012). This type of analysis allows us to
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understand the mechanisms behind the observed effects, which
can lead to more targeted interventions. We evaluated muscle
density as a mediator of de novo lipogenesis considering that
systemic inflammation and metabolic disturbances can leading to
increased fat infiltration into the muscle and that both hepatic
steatosis and myosteaosis has been linked to cognitive decline
and accelerated brain aging (Altajar and Bafty, 2020). To support
the role of myosteatosis as a mediator and our data is cross-
sectional, we conducted same mediation analysis with exposure
and outcome reversed. The PROCESS macro for R statistical
programming language developed by Hayes (2017) was used to
compute the models (R Core Team, 2013). We additionally tested
a mediation model with the MusIndex as a mediator for sensitivity
analysis.

Second, network analysis was applied to characterize the
relationships among all selected variables using the JASP network
analysis module (Costantini et al., 2015; Smarandache et al., 2022;
JASP Team, 2025). The network model included participants’
chronological age, given the wide age range in our dataset, and
was stratified by sex to control for potential imbalances between
sexes. During network analysis, variables are referred to as nodes,
and relationships among nodes are referred to as edges. The
strength of the relationship between the nodes is indicated in
terms of edge weights. The graphical LASSO procedure simplifies
the interpretation of the network by penalizing small correlation
values to zero. Given that this replacement serve as a tradeoft
between false-positive correlations (i.e., correlations with small
values that should be removed) and true-positive correlations (i.e.,
correlations with small values that should not be removed), we
used a version of the LASSO regularization that uses the extended
Bayesian information criterion (EBIC) model selection (Foygel and
Drton, 2010) with the default hyperparameter gamma (y). We
also computed the 95% ClIs for the edges of the EBIC-regularized
LASSO network using a non-parametric bootstrap procedure with
1000 randomly selected samples.

Lastly, we explored the relationship between MOCA scores and
the BAG and muscle density in the subgroup of participants with
available MOCA scores.

3 Results

The clinical characteristics and descriptive statistics of the study
population are summarized in Table 1. Figure 1 and Table 2 present
the results regarding the mediating effect of muscle density (i.e.,
a proxy for myosteatosis and thus muscle quality) on ability of
the LAI to predict the BAG. Regression analysis revealed that
muscle density had a significant negative effect on the BAG
(B = —0.0795, SE = 0.0205, t = —3.8785, p < 0.001), indicating that
a decrease in muscle quality was associated with accelerated brain
aging. We also found that LAI had a significant positive effect on
muscle density (B = 0.0489, SE = 0.0084, t = 5.8575, p < 0.001),
suggesting that higher liver adiposity is associated with lower
muscle quality. The direct effect of the LAI on the BAG, controlling
muscle density, was also significant (B = —0.0271, SE = 0.0086,
t = —3.1392, p = 0.0017), reconfirming the direct influence
of liver adiposity on brain aging. Lastly, our results showed
that the bootstrapped indirect effect, which is the proportion
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mediated by muscle quality, was significant (effect = —0.0039,
bootstrapped SE = 0.0012, 95% CI —0.0065, —0.0017]) given that
the confidence interval did not include zero. This confirmed that
the decrease in muscle quality related to hepatic steatosis partially
mediates liver-related brain aging, explaining approximately 8%
of the total effect. The sensitivity mediation analysis with revered
directional hypothesis also revealed that muscle density as a
mediator (Supplementary Figure 1). In another sensitivity analysis
(Supplementary Figure 2) wherein muscle density was replaced
with the MusIndex (the normalized muscle volume), we found
that MusIndex was positively associated with the BAG, suggesting
that increased muscle volume was associated with accelerated brain
aging. This finding contradicts common knowledge, which implies
a confounder between MusIndex and the BAG (e.g., increased BMI
inflates low-quality muscle volume).

Next, we applied network analysis to characterize the
relationships among all selected variables that may confound
the complex relationship. The graphical LASSO network analysis
(Figure 2) also suggested that muscle density serves as a critical link
between body composition and brain aging (arrows in Figure 2).

TABLE 1 Clinical characteristics of the study population.

Variables

Age (years) 60.59 (9.226) 61.143 (8.609)

Predicted brain age (years) 52.672 (11.702) 50.812 (11.423)

Absolute brain age gap (years) 5.864 (4.399) 5.837 (4.458)

LAI —20.67 (17.899) —16.349
(15.655)
MAP 91.716 (11.634) 89.518 (12.198)
BMI 24.927 (3.165) 23.442 (3.315)
VisFatIndex 0.125 (0.056) 0.087 (0.049)
MusIndex 0.285 (0.040) 0.227 (0.030)
AVF_SFVolumeRatio 1.28 (0.66) 0.514 (0.357)
HbAlc 5.954 (0.839) 5.848 (0.747)
hsCRP 0.196 (0.612) 0.172 (0.572)
TG 121.759 (80.19) 95.264 (53.057)
History of over 1 pack-year 831 56
smoking

MOCA (n =220) 25.565 (3.361)

(n=85)

24.393 (4.123)
(n=135)

Continuous data are means (SD). LAL liver attenuation index; MAP, mean arterial pressure;
BMI, body-mass index; VisFatIndex, visceral fat volume index; MusIndex, muscle volume
index; AVF_SFVolumeRatio, visceral-to-subcutaneous fat volume ratio; HbAlc, glycated
hemoglobin; hsCRP, high-sensitive C-reactive protein; TG, triglycerides; MOCA, Korean
version of the Montreal Cognitive Assessment.
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FIGURE 1

Model showing the mediating effects of muscle density (Hounsfield
unit) on the ability of the liver attenuation index as a predictor of
accelerated brain aging. The direction of the arrows, as opposed to
the coefficients, is based on rationale supported by previous
literature; however, we acknowledge that this represents a
suggestive rather than definitive framework.

In both male and female networks, the BAG node (blue) connects
exclusively to the four CT-derived body composition measures
(green nodes) through muscle density. Additionally, our results
showed that the LAI was linked to visceral fat volume and serum
markers of HbAlc (notably in men, Figure 2A) and TG but
showed no direct connection to the BAG, implying that systematic
metabolic alterations caused by hepatic steatosis affect muscle
density and consequently promote brain aging. The bootstrapped
confidence intervals of all edge weights in the two networks are
detailed in Supplementary Figure 3.

We also examined the correlations between the BAG and
MOCA scores, as well as between muscle density and MOCA
scores. Notably, we found a significant negative correlation between
the BAG and MOCA scores (r = —0.20, p < 0.001) but a significant
positive correlation between muscle density and MOCA scores
(r =0.29, p < 0.001) (Figure 3). These findings align with those
reported in previous research demonstrating association between
brain aging, myosteatosis, and cognitive function (Liem et al,
2017).

4 Discussion

The current study found that the muscle quality index
(specifically, muscle density) mediates the relationship between
hepatic steatosis measured using the LAI and accelerated
brain aging measured using the BAG (Figure 1 and Table 2).

TABLE 2 Mediation analysis results for the direct, indirect, and total effects, with liver attenuation index (LAI) as the independent variable, muscle
density (HU) as the mediator, and the brain age gap (BAG) as the dependent variable.

Effect type | Pathway Effect (B) 95% Cl (lower) | 95% ClI (upper)
Direct effect LAI — BAG (¢) —0.0271 0.0086 —3.1392 0.0017 —0.0441 —0.0102
Indirect effect LAI — Muscle density — BAG (a x b) —0.0039 0.0012 - - —0.0065 —0.0017
Total effect LAI — BAG (c) —0.031 0.0087 —3.5643 0.0004 —0.048 —0.014
LAL liver attenuation index; BAG, brain age gap; SE, standard error; CI, confidence interval.
Frontiers in Aging Neuroscience 05 frontiersin.org
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A. Male

FIGURE 2

B. Female

Networks constructed via graphical LASSO depicting regularized partial correlations among variables from the BAG, CT-derived markers, laboratory
test measures, and anthropometric measurements stratified according to sex. Nodes representing CT-derived muscle and fat markers are colored
green. The arrow indicates that muscle density exclusively connects the green nodes to the BAG. The blue lines represent positive associations,
whereas the red lines represent negative associations. The thickness and brightness of the edges indicate the strength of the associations. LAI, liver
attenuation index; MAP, mean arterial pressure; BMI, body-mass index; VisFatindex, visceral fat volume index; Muslndex, muscle volume index;
AVF_SFVolumeRatio, visceral-to-subcutaneous fat volume ratio; HbAlc, glycated hemoglobin; hsCRP, high-sensitive C-reactive protein; TG,
triglycerides; MOCA, Korean version of the Montreal Cognitive Assessment, AGE, subject’s chronological age.

intervals are also reported.
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FIGURE 3

Correlation scatter plots illustrating the relationships between MOCA scores (x-axis) and the brain age gap (A) and muscle density (B). Higher MOCA
scores were associated with lower brain age gaps and higher muscle density values. Pearson’s correlation coefficients (r) and 95% confidence

Furthermore, by integrating widely used markers of body
composition, serum biomarkers, and metabolic indicators into a
graphical LASSO network, we observed that body composition
and the LAT were associated with BAG exclusively through muscle
density (Figure 2, arrows). Given that the network was plotted
using the Fruchterman-Reingold algorithm, which places most

central nodes into the center (Fruchterman and Reingold, 1991),
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the central placement of the muscle density within the
network underscores its pivotal role among the analyzed
variables associated with metabolism. This finding suggests
that muscle density plays a crucial intermediary role in the
body-brain axis. Additionally, our findings reaffirmed the
negative association between brain aging and cognitive function,

as well as between muscle density and cognitive function
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(Figure 3), consistent with previous research indicating a link
between increased brain age and cognitive decline (Elliott et al,
2021).

After constructing a hypothetical model based on the
previously established liver-brain-muscle axis, we found that
myosteatosis additionally contributes to the association between
hepatic steatosis and brain aging. However, the directionality
of this relationship-whether from liver to brain or vice versa-
remains unconfirmed. The directionality of the model represents
the authors’ best estimate, informed by a review of the existing
literature; the liver and brain engage in a well-established
bidirectional dialogue known as the “liver-brain axis” such
that pathological conditions in the liver can contribute to the
development of neurodegenerative disorders, while neurological
states can impact liver function (Nguyen and Swain, 2023). Several
large-scale studies linking hepatic steatosis with accelerated brain
aging (VanWagner et al, 2017; Weinstein et al, 2018) have
confirmed that the brain and liver constantly communicate through
hepatokines, metabolites, and autonomic nerves to regulate
metabolism (De Col et al, 2024). Liver steatosis disrupts gut
barrier integrity and perturbs bile acid and cytokine homeostasis,
allowing endotoxins and inflammatory mediators to cross the
blood-brain barrier and trigger neuroinflammation and structural
atrophy (Yan et al, 2023). Bile acids provide neuroprotection
through a complex system of physiological mechanisms; after
being derived from the liver, bile acids are transformed by gut
microbiota, and interact with receptors such as the Farnesoid X and
G protein-coupled bile acid receptor along the intestinal and brain
axis, eventually providing a role in mood regulation, cognition,
anti-inflammatory responses, and neuroprotection (Yassin et al.,
2025). Furthermore, studies have incorporated systemic metabolic
factors to explain the complex crosstalk between the liver
and brain (Jiang et al, 2023; Weinstein et al,, 2018). Skeletal
muscle also communicates with the brain through several known
mechanisms. During exercise, skeletal muscle releases myokines,
such as brain-derived neurotrophic factor (BDNF), which can
cross the blood-brain barrier and exert beneficial effects on brain
function, including enhanced learning, memory, and mood (Yin
et al,, 2022). Irisin, another myokine induced by exercise, also
upregulates BDNE, particularly in the hippocampus, and has
neuroprotective effects (Jodeiri Farshbaf and Alvina, 2021). As
such, emerging evidence has indicated an association between
skeletal muscle health and brain aging markers (Samuelsson
et al, 2025; Yu et al, 2021). The literature suggests that fatty
liver often occurs concurrently with reduced muscle density
(myosteatosis) and sarcopenia. Indeed, studies have indicated
a possible common mechanism (e.g., insulin resistance and
chronic inflammation) linking fatty liver with muscle deterioration
(Pasco et al., 2022). Specifically, NAFLD induces systemic insulin
resistance, which promotes intramyocellular lipid accumulation
and, consequently, myosteatosis through impaired glucose disposal
in muscle tissue (Samuel and Shulman, 2012). In addition,
myosteatosis is accompanied by chronic low-grade inflammation-
driven by increased proinflammatory cytokines and oxidative
stress—that further disrupts the muscle-liver-adipose axis and may
exacerbate both hepatic and neural injury (Henin et al,, 2024).
Similarly, a recent study discovered that sarcopenia was strongly
and independently associated with a higher risk of mortality in
patients with liver cirrhosis (Tantai et al., 2022). Therefore, our
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findings — muscle density mediates the impact of liver steatosis
on brain aging - can be explained by several well-characterized
biological pathways.

Our research took advantage of opportunistic screening,
which was made possible by the development of deep learning
automatic segmentation models (Pickhardt, 2022). Although we
did not directly measure muscle strength, large-scale studies
have consistently confirmed that myosteatosis quantified through
CT attenuation, rather than muscle volume itself, was a critical
factor in staying healthy and preventing cardio-metabolic diseases
(Chang et al, 2024; Kim J. A. et al,, 2025). Kim J. A. et al
(2025) discovered that muscle density was positively associated
with greater muscle strength and better physical performance
in men and women, regardless of muscle mass or diabetes
status. Hence, improving myosteatosis may be a therapeutic
target for preventing sarcopenia. Similarly, Chang et al. (2024)
reported that patients with type 2 diabetes mellitus exhibited
increased muscle mass but decreased muscle density on CT.
Identifying low muscle density, which indicates myosteatosis, is
crucial given its adverse association with muscle strength and
mortality (Nachit et al., 2023). Our results further highlight muscle
density as an important link between cardio-metabolic conditions
and neurodegeneration. Given that regular exercise can enhance
muscle quality, particularly in healthy populations, regular physical
activity should be recommended more often (Kim J. A. et al,
2025).

Although our study identified significant associations between
the LAI, muscle density, and the BAG, the observed effect
sizes were quite modest. This indicates that while LAI and
muscle density contributed to variations in brain aging, they
accounted for a limited portion of the variance, with a total effect
of B = —0.0310. Consequently, other unmeasured factors may
have a more substantial impact on brain age. For example, the
microbiota-gut-brain axis is increasingly recognized as a critical
regulator of brain health, influencing both neurodevelopment
and age-related neurological decline. Unlike the brain, the gut
microbiota is directly accessible to external influences, including
dietary changes, prebiotics, probiotics, antibiotics, and other
lifestyle-related interventions (Yassin et al., 2025). Future research
should aim to identify these additional variables to provide a
more comprehensive understanding of the determinants of brain
aging.

The current study has a few limitations worth noting.
First, the current research relies on a retrospective and cross-
sectional design. Although our model was developed based on
previous evidence on hepatic steatosis, myosteatosis, and the
BAG, the observed mediation effects are strictly a measure of
association and cannot determine causality. Given the potential
flaws associated with mediation analysis, these results should be
considered preliminary (Zhao et al., 2010). A future study with a
prospective, repeated-measures design may strengthen our findings
and establish causality. Second, we observed a relatively large
BAG (Supplementary Figure 4), which may be attributed to the
advanced average age of our participants (approximately 60 years
old) and potential ethnic differences compared to the training
dataset. However, the mean absolute error (MAE) of approximately
5 years in our study aligns with previous research conducted on
a large East Asian population. For instance, a recent study by Lee
et al. (2025) reported an MAE of 4.26 and 6.11 years in their
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training and clinical test dataset, respectively. Lastly, the precise
molecular mediators that link myosteatosis to region-specific
cortical thinning are undetermined, and the relative contributions
of different myokines require elucidation. Moreover, while the
liver-brain axis is recognized, the specific metabolites or cytokines
mediating direct hepatic effects on neural structure remain to be
identified. Addressing these gaps will demand targeted mechanistic
studies integrating lipidomics, cytokine profiling, and regionally
resolved neuroimaging. Finally, there is a need for clinical trials
to prove whether improving skeletal muscle quality can serve as
a modifiable therapeutic target to preserve brain health in hepatic
steatosis.

In summary, the current study involving a large cohort of
participants provides an integrative model highlighting the role of
muscle quality in accelerated brain aging and cognitive functioning.
Considering that myosteatosis can serve mediate the relationship
between body composition and neurodegeneration, improving
myosteatosis may be the key modifiable factor within the liver—
muscle-brain axis.
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