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Background: The liver, skeletal muscle, and brain are interconnected through

metabolic and endocrine pathways, constituting a systemic axis that may

influence neurodegeneration. Although hepatic steatosis and sarcopenia have

been independently associated with neurodegeneration, their integrated effects

on the brain remain poorly understood. This study investigated whether muscle

density mediated the link between hepatic steatosis and neurodegeneration,

quantified via the brain age gap (BAG).

Methods: Data from 2,510 adults (aged 22–87 years) who underwent abdominal

computed tomography (CT), brain magnetic resonance imaging (MRI), and

blood tests during comprehensive health evaluations were retrospectively

analyzed. Fully automated CT markers, including visceral and subcutaneous fat,

muscle, and the liver attenuation index (LAI) (a CT-based surrogate of hepatic

steatosis) were obtained. The BAG was calculated from T1-weighted structural

MRI scans using a pretrained machine learning pipeline. Mediation analysis was

performed to evaluate the indirect effects of LAI on the BAG through muscle

density. Network analysis further characterized the multivariate associations

between the BAG, CT markers of body composition, laboratory results, and

anthropometric variables.

Results: Mediation analysis confirmed that muscle density, not muscle volume,

partially mediated the LAI–BAG relationship (indirect β = −0.04, p < 0.001). LAI

was negatively associated with the BAG (β = −0.027, p = 0.002) and positively

associated with muscle density (β = 0.049, p < 0.001), whereas muscle density

was inversely associated with BAG (β = −0.080, p < 0.001). Network analysis

identified muscle density as a central hub linking the LAI, body composition,

and the BAG. The BAG was also negatively correlated with Montreal Cognitive

Assessment scores (r = −0.20, p < 0.001).

Conclusion: Muscle density mediates the effect of hepatic steatosis

on brain aging, supporting its role as a key modifiable factor within
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the liver–brain axis. These findings underscore the importance of preserving 

muscle quality to decelerate brain aging. 

KEYWORDS 

myosteatosis, liver-brain axis, brain age, hepatic steatosis, opportunistic screening, 
automatic segmentation 

Highlights 

Recent studies have established the associations between body 
composition, metabolic dysfunction, and brain aging; however, 
the complex mechanisms linking multiple metabolic factors to the 
brain remain underexplored. This study builds on prior work by 
showing that muscle density, a CT-based marker of myosteatosis, 
mediates the relationship between hepatic steatosis and brain-
predicted age. By integrating multimodal data, including structural 
brain MRI, abdominal CT-based markers of body composition, 
laboratory biomarkers, and cognitive performance, our analysis 
identified muscle quality as a central node within the body-
liver-brain axis. The inclusion of inflammatory, glycemic, and 
hemodynamic markers enables further characterization of systemic 
biological pathways associated with accelerated brain aging. These 
findings suggest that skeletal muscle quality may represent a key 
modifiable factor mediating the relationship between metabolic 
dysfunction and accelerated brain aging. 

1 Introduction 

The aging of the global population has promoted an increasing 
prevalence of age-related conditions, such as cognitive decline, 
metabolic dysfunction, and sarcopenia (Yuan and Larsson, 
2023). Despite the progress in life expectancy, no proportional 
improvement in the healthspan has been noted, highlighting the 
need to identify modifiable systemic factors that contribute to 
brain and physical aging (López-Otín et al., 2013; Wrigglesworth 
et al., 2021). Recent evidence suggests that physical and cognitive 
health are interdependent, with numerous studies demonstrating a 
bidirectional relationship between metabolic dysfunction and the 
brain (Zhao et al., 2021). 

The liver is the primary organ involved in maintaining 
energy balance among humans given that it controls the 
metabolism of dierent nutrients, such as lipids, glucose, and 
protein (Matsubara et al., 2022). Alteration in lipid metabolism 
leads to the accumulation of lipids in the liver, resulting in 
organelle malfunction, cellular injury, inflammation, and persistent 
activation of pathways associated with fibrosis, all of which 
worsen liver function and promote the development of metabolic 
dysfunction-associated steatotic liver disease (MASLD) (Rao et al., 
2023). Extrahepatic manifestations of MASLD have attracted the 
attention of researchers in the field of both hepatology and 
neuroscience. Interest in cognitive functioning and brain health 
has been particularly high owing to their shared risk factors and 
pathophysiology with liver diseases (Weinstein et al., 2018). This 

relationship forms the basis of the emerging liver–brain axis, a 
conceptual model describing the dynamic interaction between the 
brain and liver (Matsubara et al., 2022). Specifically, recent eorts 
to understand the liver–brain axis have identified a link between 
liver function and imaging markers of brain structure, implying 
accelerated brain aging (Jiang et al., 2023; Wang et al., 2025). 

Disturbed hepatic lipid metabolism aects not only the brain 
but also the muscles. In fact, MASLD has been closely related 
to various metabolic complications, such as obesity, insulin 
resistance, type 2 diabetes, hyperlipidemia, hypertension, and 
other cardiovascular diseases, due to the significant role hepatic 
lipid metabolism plays in the overall energy balance of the body 
(Rao et al., 2023). The Framingham Heart Study found that 
lower computed tomography (CT) attenuation of the paraspinal 
muscle, which was a marker of myosteatosis and therefore muscle 
quality, was associated with various metabolic risk factors, such 
as hyperglycemia, dyslipidemia, and hypertension (Kim J. A. 
et al., 2025; Therkelsen et al., 2013). Interestingly, recent evidence 
suggests that muscle health and metabolic indices, including 
fasting glucose levels and C-reactive protein levels, are also 
linked to brain aging (Lee et al., 2025). Hence, disruptions in 
this multiorgan axis (i.e., hepatic steatosis and myosteatosis) 
may collectively accelerate brain aging through shared metabolic 
pathways. Although sarcopenia and hepatic steatosis have been 
individually associated with brain atrophy, no study has yet clearly 
established the mediating role of muscle in the association between 
liver fat accumulation and brain aging. 

The brain age gap (BAG), defined as the dierence between the 
predicted brain age based on magnetic resonance imaging (MRI) 
and chronological age, is a robust marker of neurodegeneration. 
A higher BAG, which implies accelerated aging, has been associated 
with cognitive impairment, neuropsychiatric conditions, and 
metabolic risk factors (Cole et al., 2018; Franke and Gaser, 2019). 
Previous studies have shown that BAG was clearly associated 
with hepatic steatosis and myosteatosis, indicating that people 
with higher measures of adipose tissue have older-appearing 
brains and that BAG was a reasonable surrogate for brain health 
(Beck et al., 2022; Lee et al., 2025). 

Although some pieces of the puzzle have been investigated, 
only a few studies have examined the BAG within the context 
of whole-body metabolic status or organ–organ interactions. 
Thus, no integrated model with an all-in-one analysis has yet 
been established. Considering the interdependency among 
organs in regulating systemic inflammation and glucose 
and lipid metabolism, we hypothesized that muscle density 
would mediate the eects of hepatic fat on brain aging, 
positioning it as a critical intermediary within the body– 
liver–brain axis. Using a large retrospective cohort of 2,510 
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adults who underwent abdominal CT, brain MRI, and metabolic 
profiling, a multimodal analysis that integrated imaging-derived 
markers, blood biomarkers, and anthropometric data was 
conducted. Specifically, we employed mediation analysis to 
determine whether myosteatosis mediates the association 
between hepatic steatosis and BAG. Additionally, graphical 
least absolute shrinkage and selection operator (LASSO)-based 
network analysis was used to elucidate dependencies across 
multiple variables. 

2 Materials and methods 

2.1 Patient selection and demographics 

This retrospective study was approved by the Institutional 
Review Board of Seoul National University Hospital (SNUH 
IRB No. 2504-076-1629) and conducted in accordance with 
the Declaration of Helsinki. Informed consent was waived 
due to retrospective nature of the study. We examined data 
from 2510 consecutive individuals (1294 males, 1216 females) 
ranging in age from 22 to 87 years. These participants had 
completed a comprehensive health check-up program at the 
Seoul National University Hospital Health Promotion Center 
in the Republic of Korea, with data collected between January 
2019 and December 2022. The health assessment battery for 
each participant involved a combination of laboratory analyses, 
anthropometric measurements, a questionnaire about smoking 
history, abdominal computed tomography, and brain MRI. For 
laboratory analyses, venous blood samples were collected before 
10:00 AM after a 12-h fast. Standardized methodologies were 
employed for all biochemical analyses, which were conducted 
at a single laboratory (Lee et al., 2010). A small portion 
of the included patients (220 participants) underwent the 
Korean version of the Montreal Cognitive Assessment (MOCA) 
(Kang et al., 2009). 

2.2 MRI, quality control, and brain age 
estimation 

Magnetic resonance imaging of the brain was performed using 
a GE Discovery MR750w 3.0-T system (GE Healthcare, Milwaukee, 
WI), equipped with a 24-channel head coil. The T1-weighted 
images were captured via a three-dimensional (3D) fast spoiled 
gradient-echo sequence. Key acquisition parameters were: 8.0 ms 
repetition time, 3.0 ms echo time, 450 ms inversion time, and 
a 12◦ flip angle. The images had a 256 mm × 256 mm field 
of view, a 256 × 256 acquisition matrix, and a 139.4 Hz/pixel 
receiver bandwidth, with 1 excitation. Sagittal slices, varying 
between 154 and 172 based on head size, were acquired at a 
1 mm thickness, yielding a 1 mm3 voxel resolution. Consistent with 
previous research, high-quality scans were defined by the absence 
of imaging artifacts (such as ghosting or ringing), no evidence 
of prior brain pathology (e.g., lacunar infarctions), and an Euler 
number (rescaled) below 10, indicating good scan integrity (Kim 
M. et al., 2025). Brain age was calculated using brainageR (version 
2.1), an open-access software for generating brain age predictions 

from raw T1-weighted MRI scans1 (Cole et al., 2018). BrainageR 
involves two main stages: preprocessing and prediction. In the 
preprocessing stage, images are segmented and normalized via 
SPM12 software2 . For quality control, the FSL slicesdir function 
was used to generate two-dimensional slices of the segmentation 
and normalization outputs. Normalized images were loaded into 
R (R Core Team, 2013) and converted to vectors. Gray matter, 
white matter, and cerebrospinal fluid vectors were masked using 
a 0.3 threshold from the mean image template based on the 
brainageR model training dataset and then combined. In the 
prediction stage, the brainageR model was applied to the vectorized 
and masked study images to estimate a brain age score for each. 
BrainageR had been previously trained to predict the brain age from 
normalized brain volumetric maps obtained from 3377 healthy 
individuals included in seven publicly available datasets using 
the Gaussian Processes Regression. Using principal component 
analysis, the top principal components capturing 80% of the 
variance in brain volumes were retained. The resulting rotation 
matrix for the 435 principal components was then applied to 
the new imaging data to predict the brain age (Biondo et al., 
2022). 

For each image, the final output of brainageR was a 
predicted brain age value with the corresponding 95% confidence 
interval (CI). After calculating the predicted brain age for 
each subject, we further calculated the BAG, a metric that 
reflected the subject’s relative brain health status. The BAG 
was initially measured by subtracting the true brain age from 
the predicted brain age, with higher values implying an older 
brain morphology relative to the participant’s chronological age. 
Owing to regression dilution, however, regression models may 
also bias the predicted brain age toward the mean, which can 
underestimate the age of older subjects and overestimate the 
age of younger participants. To correct this bias, we defined 
the BAG as the dierence between the individual BAG and the 
expected BAG (measurements fitted over the entire sample set 
using the regression model and leave-one-out cross-validation) 
(Kang et al., 2023). The BAG was then corrected such that the 
BAGs of the whole dataset analyzed became unbiased across all age 
ranges. 

2.3 Acquisition of abdominal CT images 

A dual-source scanner (SOMATOM Force; Siemens 
Healthineers, Erlangen, Germany) was used for all computed 
tomography procedures. After a bolus injection of iobitridol 
(Xenetix 350; Guerbet) at 520 mg/kg body weight, followed 
by a saline flush, images were acquired during the single 
portal venous phase 70 s after contrast media delivery. Data 
collection occurred in dual energy mode, utilizing 80 and 150 kVp 
settings. Virtual non-contrast images were then derived from 
the dual energy data using a dedicated Syngo.via post-processing 
system (Siemens Healthineers) directly at the CT console, 
and reconstructed with a 2-mm slice thickness (Jeon et al., 
2024). 

1 https://github.com/james-cole/brainageR 

2 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/ 
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Volumetric quantification of the liver and spleen was 
performed automatically using DeepCatch version 1.2.0.0 
(MEDICALIP Co., Ltd., Seoul, Korea), a deep-learning-based 
multiorgan segmentation software, applied to the virtual non-
contrast enhanced images. The software’s reported segmentation 
performance for these organs, on both non-contrast and post-
contrast enhanced images, demonstrated Dice scores greater than 
0.95 (Jeon et al., 2024). Following the creation of a 3D organ 
mask, the system automatically computed the mean volumetric CT 
attenuation (in Hounsfield units, HU) for the segmented regions. 

2.4 Variable selection and statistical 
analysis 

For integrative analysis of the brain–liver–muscle axis, we 
selected body composition measures and serum biomarkers that 
were useful, or may be potential systemic confounders in evaluating 
metabolic dysfunction and brain aging based on previous studies. 
We employed the liver attenuation index (LAI) (mean CT 
attenuation of the liver - mean CT attenuation of the spleen) as 
a CT attenuation-based parameter for assessing hepatic steatosis 
in accordance with previous studies on the utility of CT for 
this purpose. The LAI has been reported to be robust across 
various scan settings using the spleen as an internal reference 
(Jeon et al., 2024). We used skeletal muscle and visceral fat 
volume (in cm3), normalized to height (in meters squared), 
as indices (termed as MusIndex and VisFatIndex, respectively) 
(Chang et al., 2024). This study focused on these volumes, as well 
as the visceral-to-subcutaneous fat ratio (AVF_SFVolumeRatio), 
given their strong predictive value for overall mortality and 
association with type 2 diabetes mellitus (Chang et al., 2024). 
We also selected the mean CT attenuation of the muscle as 
the gold standard for evaluating myosteatosis (Kim J. A. et al., 
2025) given its association with metabolic risk factors, such 
as hyperglycaemia, dyslipidaemia, and hypertension (Therkelsen 
et al., 2013). Body-mass index (BMI) was included given its 
potential to be an independent risk factor for diuse brain 
alterations manifesting as accelerated brain age (Kolenic et al., 
2018). Among the laboratory tests, we included hemoglobin 
A1c (HbA1c), triglycerides (TG), and high-sensitivity C-reactive 
protein (hs-CRP) to represent hyperglycemia, dyslipidemia, and 
systemic inflammation (Wang et al., 2025). Lastly, mean arterial 
pressure (MAP) was included as the single marker of blood 
pressure (Kulshreshtha and Chandel, 2025). All conditions were 
found to be linked to brain health or cognition (Jawinski et al., 
2022). 

We investigated the association between imaging-derived 
markers, blood biomarkers, and anthropometric data with BAG. 
First, a mediation model (Figure 1) was built to examine how the 
independent variable (LAI) aected the dependent variable (BAG) 
through an intermediary variable known as the mediator (mean CT 
attenuation of the muscle as a marker of myosteatosis). Mediation 
analysis decomposes the total exposure (X, LAI)-outcome (Y, 
BAG) eect into a direct eect and an indirect eect through a 
mediator (M, myosteaosis); therefore, it is an important statistical 
tool for gaining insight into the mechanisms of exposure-outcome 
eects (MacKinnon, 2012). This type of analysis allows us to 

understand the mechanisms behind the observed eects, which 
can lead to more targeted interventions. We evaluated muscle 
density as a mediator of de novo lipogenesis considering that 
systemic inflammation and metabolic disturbances can leading to 
increased fat infiltration into the muscle and that both hepatic 
steatosis and myosteaosis has been linked to cognitive decline 
and accelerated brain aging (Altajar and Bay, 2020). To support 
the role of myosteatosis as a mediator and our data is cross-
sectional, we conducted same mediation analysis with exposure 
and outcome reversed. The PROCESS macro for R statistical 
programming language developed by Hayes (2017) was used to 
compute the models (R Core Team, 2013). We additionally tested 
a mediation model with the MusIndex as a mediator for sensitivity 
analysis. 

Second, network analysis was applied to characterize the 
relationships among all selected variables using the JASP network 
analysis module (Costantini et al., 2015; Smarandache et al., 2022; 
JASP Team, 2025). The network model included participants’ 
chronological age, given the wide age range in our dataset, and 
was stratified by sex to control for potential imbalances between 
sexes. During network analysis, variables are referred to as nodes, 
and relationships among nodes are referred to as edges. The 
strength of the relationship between the nodes is indicated in 
terms of edge weights. The graphical LASSO procedure simplifies 
the interpretation of the network by penalizing small correlation 
values to zero. Given that this replacement serve as a tradeo 
between false-positive correlations (i.e., correlations with small 
values that should be removed) and true-positive correlations (i.e., 
correlations with small values that should not be removed), we 
used a version of the LASSO regularization that uses the extended 
Bayesian information criterion (EBIC) model selection (Foygel and 
Drton, 2010) with the default hyperparameter gamma (γ). We 
also computed the 95% CIs for the edges of the EBIC-regularized 
LASSO network using a non-parametric bootstrap procedure with 
1000 randomly selected samples. 

Lastly, we explored the relationship between MOCA scores and 
the BAG and muscle density in the subgroup of participants with 
available MOCA scores. 

3 Results 

The clinical characteristics and descriptive statistics of the study 
population are summarized in Table 1. Figure 1 and Table 2 present 
the results regarding the mediating eect of muscle density (i.e., 
a proxy for myosteatosis and thus muscle quality) on ability of 
the LAI to predict the BAG. Regression analysis revealed that 
muscle density had a significant negative eect on the BAG 
(β = −0.0795, SE = 0.0205, t = −3.8785, p < 0.001), indicating that 
a decrease in muscle quality was associated with accelerated brain 
aging. We also found that LAI had a significant positive eect on 
muscle density (β = 0.0489, SE = 0.0084, t = 5.8575, p < 0.001), 
suggesting that higher liver adiposity is associated with lower 
muscle quality. The direct eect of the LAI on the BAG, controlling 
muscle density, was also significant (β = −0.0271, SE = 0.0086, 
t = −3.1392, p = 0.0017), reconfirming the direct influence 
of liver adiposity on brain aging. Lastly, our results showed 
that the bootstrapped indirect eect, which is the proportion 
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mediated by muscle quality, was significant (eect = −0.0039, 
bootstrapped SE = 0.0012, 95% CI −0.0065, −0.0017]) given that 
the confidence interval did not include zero. This confirmed that 
the decrease in muscle quality related to hepatic steatosis partially 
mediates liver-related brain aging, explaining approximately 8% 
of the total eect. The sensitivity mediation analysis with revered 
directional hypothesis also revealed that muscle density as a 
mediator (Supplementary Figure 1). In another sensitivity analysis 
(Supplementary Figure 2) wherein muscle density was replaced 
with the MusIndex (the normalized muscle volume), we found 
that MusIndex was positively associated with the BAG, suggesting 
that increased muscle volume was associated with accelerated brain 
aging. This finding contradicts common knowledge, which implies 
a confounder between MusIndex and the BAG (e.g., increased BMI 
inflates low-quality muscle volume). 

Next, we applied network analysis to characterize the 
relationships among all selected variables that may confound 
the complex relationship. The graphical LASSO network analysis 
(Figure 2) also suggested that muscle density serves as a critical link 
between body composition and brain aging (arrows in Figure 2). 

TABLE 1 Clinical characteristics of the study population. 

Variables Men 
n = 1,294 

Women 
n = 1,216 

Age (years) 60.59 (9.226) 61.143 (8.609) 

Predicted brain age (years) 52.672 (11.702) 50.812 (11.423) 

Absolute brain age gap (years) 5.864 (4.399) 5.837 (4.458) 

LAI −20.67 (17.899) −16.349 

(15.655) 

MAP 91.716 (11.634) 89.518 (12.198) 

BMI 24.927 (3.165) 23.442 (3.315) 

VisFatIndex 0.125 (0.056) 0.087 (0.049) 

MusIndex 0.285 (0.040) 0.227 (0.030) 

AVF_SFVolumeRatio 1.28 (0.66) 0.514 (0.357) 

HbA1c 5.954 (0.839) 5.848 (0.747) 

hsCRP 0.196 (0.612) 0.172 (0.572) 

TG 121.759 (80.19) 95.264 (53.057) 

History of over 1 pack-year 

smoking 

831 56 

MOCA (n = 220) 25.565 (3.361) 
(n = 85) 

24.393 (4.123) 
(n = 135) 

Continuous data are means (SD). LAI, liver attenuation index; MAP, mean arterial pressure; 
BMI, body-mass index; VisFatIndex, visceral fat volume index; MusIndex, muscle volume 
index; AVF_SFVolumeRatio, visceral-to-subcutaneous fat volume ratio; HbA1c, glycated 
hemoglobin; hsCRP, high-sensitive C-reactive protein; TG, triglycerides; MOCA, Korean 
version of the Montreal Cognitive Assessment. 

FIGURE 1 

Model showing the mediating effects of muscle density (Hounsfield 
unit) on the ability of the liver attenuation index as a predictor of 
accelerated brain aging. The direction of the arrows, as opposed to 
the coefficients, is based on rationale supported by previous 
literature; however, we acknowledge that this represents a 
suggestive rather than definitive framework. 

In both male and female networks, the BAG node (blue) connects 
exclusively to the four CT-derived body composition measures 
(green nodes) through muscle density. Additionally, our results 
showed that the LAI was linked to visceral fat volume and serum 
markers of HbA1c (notably in men, Figure 2A) and TG but 
showed no direct connection to the BAG, implying that systematic 
metabolic alterations caused by hepatic steatosis aect muscle 
density and consequently promote brain aging. The bootstrapped 
confidence intervals of all edge weights in the two networks are 
detailed in Supplementary Figure 3. 

We also examined the correlations between the BAG and 
MOCA scores, as well as between muscle density and MOCA 
scores. Notably, we found a significant negative correlation between 
the BAG and MOCA scores (r = −0.20, p < 0.001) but a significant 
positive correlation between muscle density and MOCA scores 
(r = 0.29, p < 0.001) (Figure 3). These findings align with those 
reported in previous research demonstrating association between 
brain aging, myosteatosis, and cognitive function (Liem et al., 
2017). 

4 Discussion 

The current study found that the muscle quality index 
(specifically, muscle density) mediates the relationship between 
hepatic steatosis measured using the LAI and accelerated 
brain aging measured using the BAG (Figure 1 and Table 2). 

TABLE 2 Mediation analysis results for the direct, indirect, and total effects, with liver attenuation index (LAI) as the independent variable, muscle 
density (HU) as the mediator, and the brain age gap (BAG) as the dependent variable. 

Effect type Pathway Effect (B) SE t p 95% CI (lower) 95% CI (upper) 

Direct eect LAI → BAG (c’) −0.0271 0.0086 −3.1392 0.0017 −0.0441 −0.0102 

Indirect eect LAI → Muscle density → BAG (a × b) −0.0039 0.0012 – – −0.0065 −0.0017 

Total eect LAI → BAG (c) −0.031 0.0087 −3.5643 0.0004 −0.048 −0.014 

LAI, liver attenuation index; BAG, brain age gap; SE, standard error; CI, confidence interval. 
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FIGURE 2 

Networks constructed via graphical LASSO depicting regularized partial correlations among variables from the BAG, CT-derived markers, laboratory 
test measures, and anthropometric measurements stratified according to sex. Nodes representing CT-derived muscle and fat markers are colored 
green. The arrow indicates that muscle density exclusively connects the green nodes to the BAG. The blue lines represent positive associations, 
whereas the red lines represent negative associations. The thickness and brightness of the edges indicate the strength of the associations. LAI, liver 
attenuation index; MAP, mean arterial pressure; BMI, body-mass index; VisFatIndex, visceral fat volume index; MusIndex, muscle volume index; 
AVF_SFVolumeRatio, visceral-to-subcutaneous fat volume ratio; HbA1c, glycated hemoglobin; hsCRP, high-sensitive C-reactive protein; TG, 
triglycerides; MOCA, Korean version of the Montreal Cognitive Assessment, AGE, subject’s chronological age. 

FIGURE 3 

Correlation scatter plots illustrating the relationships between MOCA scores (x-axis) and the brain age gap (A) and muscle density (B). Higher MOCA 
scores were associated with lower brain age gaps and higher muscle density values. Pearson’s correlation coefficients (r) and 95% confidence 
intervals are also reported. 

Furthermore, by integrating widely used markers of body 

composition, serum biomarkers, and metabolic indicators into a 

graphical LASSO network, we observed that body composition 

and the LAI were associated with BAG exclusively through muscle 

density (Figure 2, arrows). Given that the network was plotted 

using the Fruchterman–Reingold algorithm, which places most 
central nodes into the center (Fruchterman and Reingold, 1991), 

the central placement of the muscle density within the 

network underscores its pivotal role among the analyzed 

variables associated with metabolism. This finding suggests 
that muscle density plays a crucial intermediary role in the 

body–brain axis. Additionally, our findings reaÿrmed the 

negative association between brain aging and cognitive function, 
as well as between muscle density and cognitive function 
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(Figure 3), consistent with previous research indicating a link 
between increased brain age and cognitive decline (Elliott et al., 
2021). 

After constructing a hypothetical model based on the 
previously established liver–brain–muscle axis, we found that 
myosteatosis additionally contributes to the association between 
hepatic steatosis and brain aging. However, the directionality 
of this relationship–whether from liver to brain or vice versa– 
remains unconfirmed. The directionality of the model represents 
the authors’ best estimate, informed by a review of the existing 
literature; the liver and brain engage in a well-established 
bidirectional dialogue known as the “liver–brain axis” such 
that pathological conditions in the liver can contribute to the 
development of neurodegenerative disorders, while neurological 
states can impact liver function (Nguyen and Swain, 2023). Several 
large-scale studies linking hepatic steatosis with accelerated brain 
aging (VanWagner et al., 2017; Weinstein et al., 2018) have 
confirmed that the brain and liver constantly communicate through 
hepatokines, metabolites, and autonomic nerves to regulate 
metabolism (De Cól et al., 2024). Liver steatosis disrupts gut 
barrier integrity and perturbs bile acid and cytokine homeostasis, 
allowing endotoxins and inflammatory mediators to cross the 
blood–brain barrier and trigger neuroinflammation and structural 
atrophy (Yan et al., 2023). Bile acids provide neuroprotection 
through a complex system of physiological mechanisms; after 
being derived from the liver, bile acids are transformed by gut 
microbiota, and interact with receptors such as the Farnesoid X and 
G protein-coupled bile acid receptor along the intestinal and brain 
axis, eventually providing a role in mood regulation, cognition, 
anti-inflammatory responses, and neuroprotection (Yassin et al., 
2025). Furthermore, studies have incorporated systemic metabolic 
factors to explain the complex crosstalk between the liver 
and brain (Jiang et al., 2023; Weinstein et al., 2018). Skeletal 
muscle also communicates with the brain through several known 
mechanisms. During exercise, skeletal muscle releases myokines, 
such as brain-derived neurotrophic factor (BDNF), which can 
cross the blood–brain barrier and exert beneficial eects on brain 
function, including enhanced learning, memory, and mood (Yin 
et al., 2022). Irisin, another myokine induced by exercise, also 
upregulates BDNF, particularly in the hippocampus, and has 
neuroprotective eects (Jodeiri Farshbaf and Alvina, 2021). As 
such, emerging evidence has indicated an association between 
skeletal muscle health and brain aging markers (Samuelsson 
et al., 2025; Yu et al., 2021). The literature suggests that fatty 
liver often occurs concurrently with reduced muscle density 
(myosteatosis) and sarcopenia. Indeed, studies have indicated 
a possible common mechanism (e.g., insulin resistance and 
chronic inflammation) linking fatty liver with muscle deterioration 
(Pasco et al., 2022). Specifically, NAFLD induces systemic insulin 
resistance, which promotes intramyocellular lipid accumulation 
and, consequently, myosteatosis through impaired glucose disposal 
in muscle tissue (Samuel and Shulman, 2012). In addition, 
myosteatosis is accompanied by chronic low-grade inflammation– 
driven by increased proinflammatory cytokines and oxidative 
stress–that further disrupts the muscle–liver–adipose axis and may 
exacerbate both hepatic and neural injury (Henin et al., 2024). 
Similarly, a recent study discovered that sarcopenia was strongly 
and independently associated with a higher risk of mortality in 
patients with liver cirrhosis (Tantai et al., 2022). Therefore, our 

findings – muscle density mediates the impact of liver steatosis 
on brain aging – can be explained by several well-characterized 
biological pathways. 

Our research took advantage of opportunistic screening, 
which was made possible by the development of deep learning 
automatic segmentation models (Pickhardt, 2022). Although we 
did not directly measure muscle strength, large-scale studies 
have consistently confirmed that myosteatosis quantified through 
CT attenuation, rather than muscle volume itself, was a critical 
factor in staying healthy and preventing cardio-metabolic diseases 
(Chang et al., 2024; Kim J. A. et al., 2025). Kim J. A. et al. 
(2025) discovered that muscle density was positively associated 
with greater muscle strength and better physical performance 
in men and women, regardless of muscle mass or diabetes 
status. Hence, improving myosteatosis may be a therapeutic 
target for preventing sarcopenia. Similarly, Chang et al. (2024) 
reported that patients with type 2 diabetes mellitus exhibited 
increased muscle mass but decreased muscle density on CT. 
Identifying low muscle density, which indicates myosteatosis, is 
crucial given its adverse association with muscle strength and 
mortality (Nachit et al., 2023). Our results further highlight muscle 
density as an important link between cardio-metabolic conditions 
and neurodegeneration. Given that regular exercise can enhance 
muscle quality, particularly in healthy populations, regular physical 
activity should be recommended more often (Kim J. A. et al., 
2025). 

Although our study identified significant associations between 
the LAI, muscle density, and the BAG, the observed eect 
sizes were quite modest. This indicates that while LAI and 
muscle density contributed to variations in brain aging, they 
accounted for a limited portion of the variance, with a total eect 
of β = −0.0310. Consequently, other unmeasured factors may 
have a more substantial impact on brain age. For example, the 
microbiota–gut–brain axis is increasingly recognized as a critical 
regulator of brain health, influencing both neurodevelopment 
and age-related neurological decline. Unlike the brain, the gut 
microbiota is directly accessible to external influences, including 
dietary changes, prebiotics, probiotics, antibiotics, and other 
lifestyle-related interventions (Yassin et al., 2025). Future research 
should aim to identify these additional variables to provide a 
more comprehensive understanding of the determinants of brain 
aging. 

The current study has a few limitations worth noting. 
First, the current research relies on a retrospective and cross-
sectional design. Although our model was developed based on 
previous evidence on hepatic steatosis, myosteatosis, and the 
BAG, the observed mediation eects are strictly a measure of 
association and cannot determine causality. Given the potential 
flaws associated with mediation analysis, these results should be 
considered preliminary (Zhao et al., 2010). A future study with a 
prospective, repeated-measures design may strengthen our findings 
and establish causality. Second, we observed a relatively large 
BAG (Supplementary Figure 4), which may be attributed to the 
advanced average age of our participants (approximately 60 years 
old) and potential ethnic dierences compared to the training 
dataset. However, the mean absolute error (MAE) of approximately 
5 years in our study aligns with previous research conducted on 
a large East Asian population. For instance, a recent study by Lee 
et al. (2025) reported an MAE of 4.26 and 6.11 years in their 
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training and clinical test dataset, respectively. Lastly, the precise 
molecular mediators that link myosteatosis to region-specific 
cortical thinning are undetermined, and the relative contributions 
of dierent myokines require elucidation. Moreover, while the 
liver–brain axis is recognized, the specific metabolites or cytokines 
mediating direct hepatic eects on neural structure remain to be 
identified. Addressing these gaps will demand targeted mechanistic 
studies integrating lipidomics, cytokine profiling, and regionally 
resolved neuroimaging. Finally, there is a need for clinical trials 
to prove whether improving skeletal muscle quality can serve as 
a modifiable therapeutic target to preserve brain health in hepatic 
steatosis. 

In summary, the current study involving a large cohort of 
participants provides an integrative model highlighting the role of 
muscle quality in accelerated brain aging and cognitive functioning. 
Considering that myosteatosis can serve mediate the relationship 
between body composition and neurodegeneration, improving 
myosteatosis may be the key modifiable factor within the liver– 
muscle–brain axis. 
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