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University of Science and Technology, Liuzhou, Guangxi, China, *Department of Geriatrics, Hezhou
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Objective: This meta-analysis aimed to investigate the effects of
glucocerebrosidase gene (GBA) variations on the risk of Parkinson's disease
dementia (PDD) and to identify the relationship between GBA variations and
PDD.

Method: A comprehensive search was performed to retrieve publications from
PubMed, Cochrane Library, Embase and Web of Science up to March 19, 2025.
The search terms included “glucocerebrosidase,” “Parkinson’s disease,” and
“dementia.” After rigorous screening, cohort studies were included for meta-
analysis.

Results: This meta-analysis revealed a significant overall association between
the presence of GBA variation and an increased risk of dementia in PD
patients (RR = 1.82, 95% Cl: 1.52-2.18, p < 0.00001). When stratified by variant
type, carriers of GBA mutations exhibited a similar elevation in dementia risk
(RR = 1.82,95% Cl: 1.49-2.23, p < 0.00001), and carriers of GBA polymorphisms
also demonstrated a heightened risk (RR = 1.82, 95% CI: 1.26-2.61, p = 0.001).
Analysis of specific mutations revealed that the N370S variant was associated
with an increase in dementia risk (RR = 1.54, 95% Cl: 1.24-1.92, p < 0.0001),
whereas the L444P variant conferred a stronger effect (RR = 2.17, 95% Cl: 1.74—
2.71, p < 0.00001). Additionally, the E326K polymorphism was also significantly
associated with an increased risk of dementia (RR = 2.34, 95% ClI: 1.88-2.91,
p < 0.00001).

Conclusion: GBA variations are significant risk factors for PDD, with varying
degrees of risk conferred by different variants. These findings underscore the
critical role of GBA in the pathogenesis of PDD and highlight its potential as a
key genetic risk factor.

Systematic review registration: https://www.crd.york.ac.uk/prospero/display_
record.php?, Identifier CRD420251109378.
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1 Introduction

Parkinson’s disease (PD) is the second most prevalent
neurodegenerative disorder, affecting millions globally. It is primarily
characterized by motor symptoms such as bradykinesia, rigidity,
tremor, and postural instability, resulting from the progressive loss of
dopaminergic neurons in the substantia nigra pars compacta (Kalia
and Lang, 2015). However, PD is increasingly recognized as a complex
disorder presenting a wide range of non-motor symptoms, including
cognitive impairment, sleep disturbances, autonomic dysfunction, and
psychiatric symptoms (Malec-Litwinowicz et al., 2014). Among these,
Parkinson’s disease dementia (PDD) stands as one of the most
debilitating non-motor complications, significantly impacting the
quality of life for both patients and their caregivers, and contributing
to increased morbidity and mortality (Aarsland and Kurz, 2010). PDD
is defined by a decline in cognitive function, particularly in executive
function, attention, and visuospatial skills, occurring within the
context of established PD (Emre et al., 2007). The prevalence of PDD
escalates with disease duration, affecting up to 80% of PD patients
over the course of their illness (Hely et al., 2008). Dementia in
Parkinson’s disease carries substantial adverse implications for quality
of life, caregiver burden, and healthcare-related costs (Vossius
etal., 2011).

Genetic factors play a pivotal role in the aetiology and progression
of PD. While most PD cases are sporadic, a significant proportion,
especially early-onset forms, have a genetic basis (Cacabelos, 2017).
Over the past two decades, numerous genes have been identified as
being associated with an elevated risk of PD, including SNCA, LRRK2,
PARK?7, PINK1, and GBA (Blauwendraat et al., 2020). These genetic
discoveries have provided invaluable insights into the molecular
pathways underpinning PD pathogenesis, such as alpha-synuclein
aggregation, mitochondrial dysfunction, and lysosomal impairment
(Schapira and Tolosa, 2010). Emerging evidence further suggests that
certain genetic variations not only predispose individuals to PD but
also influence the clinical phenotype and disease progression,
including the development of cognitive decline and dementia (Lill,
2016; Agosta et al., 2013).

Deleterious mutations of GBA are defined as those associated with
the onset of Gaucher disease and causative of PD in a heterozygous
state, encompassing the common p.N370S and p.L444P (Beutler et al.,
2005; Lesage et al, 2011). Sequence variants of exons with no
identified relationships with PD in a heterozygous state are defined as
GBA polymorphisms, including E326K, T369M, and E388K
(Horowitz et al., 2011; Pankratz et al., 2012). GBA variations comprise
the abovementioned GBA mutations and polymorphisms (Winder-
Rhodes et al.,, 2013). These mutations are also considered an important
risk factor for PD.

The glucocerebrosidase (GBA) gene, located on chromosome
1921, encodes the lysosomal enzyme glucocerebrosidase (GCase).
Mutations in GBA are well-established as the genetic cause of Gaucher
disease, a lysosomal storage disorder (Rosenbloom and Weinreb,
2013). Crucially, GBA mutations are also recognized as the most
common genetic risk factor for PD, with carriers exhibiting a
significantly increased risk of developing the disease compared to
non-carriers (Ye et al., 2023; Alcalay et al., 2012). Beyond its role in
PD susceptibility, a growing body of research indicates that GBA
variations are also strongly associated with an increased risk of
developing PDD (Oftedal et al., 2023). The proposed mechanism
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involves reduced GCase activity, leading to the accumulation of its
substrate, glucosylceramide, and subsequent lysosomal dysfunction.
This, in turn, is thought to promote the aggregation and spread of
alpha-synuclein, a hallmark pathological feature of PD and PDD
(Jellinger, 2018).

Despite the accumulating evidence, studies investigating the
association between GBA gene polymorphisms and mutations and the
risk of dementia in PD patients have reported inconsistent findings.
These discrepancies may arise from several factors, including
differences in study populations, sample sizes, methodologies for
assessing cognitive function, and the specific GBA variants analyzed
(Riboldi and Di Fonzo, 2019). Some studies have identified a strong
association between GBA mutations and PDD, while others have
reported weaker or no significant links, particularly for certain
polymorphisms or mild mutations (Gan-Or et al., 2018; Filippi et al,
2022). Given the clinical significance of identifying risk factors for
PDD and the potential implications for personalized medicine, a
comprehensive and systematic evaluation of the existing literature
is warranted.

2 Materials and methods
2.1 Data sources and search strategy

This meta-analysis was conducted in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines (Moher et al., 2009). The study has been registered at
PROSPERO with the registration number CRD420251109378. A
comprehensive search was performed across major electronic databases,
including PubMed, EMBASE, Web of Science, and the Cochrane Library,
from their inception up to March 19, 2025. The search strategy was
developed using a combination of Medical Subject Headings (MeSH)
terms and free-text keywords related to Parkinsons disease,
glucocerebrosidase, and dementia. The search technique adhered to the
PICOS principle and utilized a blend of MeSH terms and unrestricted
text phrases. The search strategy employed combined the terms
“Parkinson’s disease;” “glucocerebrosidase” and “dementia” No language
restrictions were applied during the initial search. Additionally, the
reference lists of identified relevant articles and review papers were
manually screened to identify any additional eligible studies.

2.2 Inclusion and exclusion criteria

Inclusion criteria: (1) patients diagnosed with Parkinson’s disease
according to established diagnostic criteria, such as UK Parkinson’s
Disease Society Brain Bank (UKPDSBB) Criteria (Hughes et al.,
1992); (2) Exposure: Patients with genetically confirmed GBA
variations, including but not limited to common mutations such as
N370S and L444P, and polymorphisms like E326K; (3) Outcome: The
incidence of dementia in GBA variant carriers compared to
non-carriers within the PD patient cohort; (4) Types of study:
Cohort studies.

Exclusion criteria were: (1) Not relevant; (2) other types of articles,
such as conference abstracts yearbook, case reports, publications,
letters, meta-analyses, reviews, retrospective studies, pharmacological
intervention, animal studies and protocols; (3) Full text unavailable;
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(4) Data duplication; (5) Data could not be extracted for meta-
analysis; (6) Case-control study designs.

2.3 Selection of studies

Study selection and duplicate removal were conducted using
EndNote (Version 20; Clarivate Analytics). Two independent
reviewers performed the initial screening by removing duplicate
records, evaluating titles and abstracts for relevance, and categorising
each study as either included or excluded. Disagreements were
resolved through discussion and consensus. In cases where consensus
could not be reached, a third reviewer served as an arbitrator to make
the final decision.

2.4 Data extraction

Data were extracted by two reviewers independently. The
extracted data included: (1) Basic study information, including the
first author, publication year, country, study design, sample size, and
main outcomes; (2) Baseline characteristics of study subjects,
including number of patients, male ratio of patients, age at onset,
disease duration, GBA genotype, and groups; (3) The data analyzed
included total carriers and dementia cases for each GBA variations
including GBA polymorphisms, GBA mutations and specific subtypes
N370S, L444P, E326K, alongside equivalent data for non-GBA variant
carriers. For studies reporting multiple GBA variants, data for each
variant was extracted separately where possible. In the absence of
consensus between the two independent reviewers, a third reviewer
assumed the position of a mediator.

2.5 Quality assessment

The methodological quality of the included observational cohort
studies was assessed using the Newcastle-Ottawa Scale (NOS) (Stang,
2010). The NOS evaluates studies based on three broad perspectives:
selection of the study groups, comparability of the groups, and
ascertainment of either the exposure or outcome of interest. A study
can be awarded a maximum of nine stars, with higher scores indicating
better methodological quality. Studies with a score of 7 or higher were
considered to be of high quality, 4-6 of moderate quality, and less than
4 of low quality.

2.6 Statistical analysis

All statistical analyses were performed using Review Manager
(RevMan) software and Statal2.0 software. The primary outcome
measure was the risk ratio (RR) and its corresponding 95% confidence
interval (CI) for the association between GBA variations and the risk
of dementia in PD patients.

Due to the anticipated clinical and methodological heterogeneity
among the included studies, a random-effects model was employed
for all meta-analyses, which accounts for both within-study and
between-study variability. Heterogeneity across studies was assessed
using Cochran’s Q test and quantified by the I statistic (Cumpston
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et al,, 2022). An P value of 0 to 40% was considered to represent
unimportant heterogeneity, 30 to 60% moderate heterogeneity, 50 to
90% substantial heterogeneity, and 75 to 100% considerable
heterogeneity (Higgins et al., 2003). A p-value <0.10 for the Q test or
an I*>50% indicated significant heterogeneity, in which case the
random-effects model was retained. If I* was <50%, a fixed-effects
model would have been considered.

Analyses were conducted for: overall GBA variations, GBA gene
mutations (including N370S and L1444P), and GBA gene
polymorphisms (including E326K). Publication bias was visually
inspected using funnel plots for outcomes. Sensitivity analyses, were
conducted to evaluate the robustness of the pooled estimates by
sequentially removing one study at a time and re-calculating the
overall effect size. To quantitatively assess publication bias, Egger’s
regression test was performed for each outcome, with a p-value <0.05
indicating significant publication bias. Furthermore, to address
potential sources of heterogeneity and provide more detailed insights,
subgroup analyses were performed based on ethnicity (e.g., Asian,
Caucasian, Oceanian) for overall GBA variations and GBA mutations.
Second, subgroup analyses were conducted based on dementia
diagnostic criteria (e.g., DSM-IV, MDS, MMSE, CDR, MoCA) for
overall GBA variations, GBA mutations, GBA polymorphisms, and
specific variants (N370S, L444P, E326K).

3 Results
3.1 Search results

A comprehensive search was performed to retrieve publications
regarding the effects of GBA on PDD risk from PubMed, Cochrane
Library, Embase, and Web of Science. A total of 865 records were
identified through database searching and additional manual records.
After removal of duplicates, 614 unique records were screened based
on their titles and abstracts. Of these, 24 full-text articles were retrieved
for detailed assessment. After a comprehensive inspection of the entire
text, a total of 18 article (Malec-Litwinowicz et al., 2014; Agosta et al.,
2013; Alcalay et al., 2012; Chen et al,, 2023; Cilia et al., 2016; Davis
et al., 2016; De Michele et al., 2023; Graham et al., 2020; Lunde et al.,
2018; Malek et al., 2018; Mata et al., 2016; Moran et al., 2017; Oeda
et al., 2015; Setd-Salvia et al., 2012; Simuni et al., 2020; Straniero et al.,
2020; Szwedo et al.,, 2022; Yahalom et al.,, 2019) were chosen for
inclusion in this meta-analysis. The detailed study selection process was
illustrated in the flow diagram (Figure 1), which outlined the number
of records identified, screened, and included at each stage of the review.

3.2 Basic characteristics and quality
assessment

The studies were published between 2012 and 2023, and originated
from various countries, including USA, UK, Norway, Italy, Israel,
Japan, China, Poland, Spain, and New Zealand. A total of 13,175
patients were included. Eighteen studies investigated the effects of
GBA variations on PDD risk, 16 addressed the effects of GBA
mutations on PDD risk, five explored the effects of GBA
polymorphisms on PDD risk, four investigated the effects of GBA
p-L444P on PDD risk, four explored the effects of GBA p.N370S on
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Case-control study (n=1)
Data extraction failure (n=5)
18 of studies included in qualitative
o
@
o
3
[9)
£
18 of studies included in meta-analysis
FIGURE 1

Flow chart of literature search strategies.

PDD risk, and three studied the effects of GBA p.E326K on PDD risk.
The diagnostic criteria for PD and PDD varied across studies but were
generally consistent with established clinical guidelines. The quality
assessment using the Newcastle-Ottawa Scale (NOS) revealed that all
18 studies were of high quality (NOS score >7) (Table 1). A summary
of the characteristics of the included studies is presented in Table 2.

3.3 Clinical outcomes

The meta-analysis results for clinical outcomes were consolidated
and shown in Table 3.

3.3.1 Overall association of GBA variations with
dementia risk

This meta-analysis, which synthesizes data from 18 studies,
revealed a significant overall association between the presence of
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GBA variations and an increased risk of dementia in Parkinson’s
disease patients (RR =1.82, 95% CI: 1.52-2.18, p < 0.00001,
I’ = 66%), indicating that PD patients carrying GBA variations
have an higher risk of developing dementia compared to
non-carriers. Substantial heterogeneity was observed across
these studies, justifying the use of a random-effects model
(Figure 2).

3.3.2 Association of GBA mutations with
dementia risk

A subsequent subgroup analysis included 16 studies that
investigated the association between GBA mutations and the risk of
dementia in PD patients (RR = 1.82, 95% CI: 1.49-2.23, p < 0.00001,
I* = 61%), indicating that individuals with GBA mutations have a
significantly increased risk of developing dementia. Heterogeneity was
observed across these studies, suggesting some variability in effects
among different mutation studies. This finding highlights the critical
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TABLE 1 Quality assessment according to the NOS scale.

Author, year Selection Comparability Outcome Total scores
Representativeness Selection Ascertainment Outcome Comparability Comparability Assessment Adequate Complete
of non- of exposure  not present on most on otherrisk of outcome follow-up follow-up
exposure at start important factors time
factors

Agosta et al. (2013) * * — * * * % _ % 7
Alcalay et al. (2012) * — * ® * * * _ * 7
Chen et al. (2023) * * — * * * ® _ % 7
Cilia et al. (2016) * * — * * * ® * % 38
Davis et al. (2016) * — * ® % _ % « « 7
De Michele et al.

* * — * * ES * * * 8
(2023)
Graham et al. (2020) * * — # * # # * i 8
Lunde et al. (2018) # # * * * * * _ s 3
Malec-Litwinowicz

* _ * * * * * * _ 7
etal. (2014)
Malek et al. (2018) * * * * * * % % _ 8
Mata et al. (2016) * * * # * _ * _ % 7
Moran et al. (2017) * * — * * * * _ % 7
Oeda et al. (2015) * — * * % * % « o 7
Set6-Salvia et al.

kS * ES * * ES * —_ * 8
(2012)
Simuni et al. (2020) * — * * # _ s % % 7
Straniero et al.

* ® — * * * * * * 8
(2020)
Szwedo et al. (2022) * * — * * * ® * # 8
Yahalom et al.

kS p— £ £ £ — £ * & 7
(2019)

NOS, Newcastle-Ottawa Scale; “*” indicates criterion met; “—” indicates significant of criterion not.
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TABLE 2 Characteristics of included studies and patients.

Author, year PD Dementia Study design Group Sample size Male% Age at onset Disease GBA
diagnostic evaluation (mean + SD) duration genotype
criteria method (mean + SD)

GBA variation;

Agosta et al. UK Brain Bank A 15 60.0 54+7 10+6 .

Ttaly MDS Cohort study GBA mutation

(2013) criteria

B 14 57.1 53+8 11+£6 No variation
GBA variation;

Alcalay et al. UK Brain Bank A 26 69.2 42.9+52 154+5.8 .
USA CDR, MMSE Cohort study GBA mutation

(2012) criteria

B 39 59.0 43.6£49 14754 No variation
GBA variation;

UK Brain Bank A 36 NA NA NA .

Chenetal. (2023) | China MDS Cohort study GBA mutation

criteria
B 196 NA NA NA No variation
GBA variation;
UK Brain Bank A 123 56.1 52.4+10.2 11.9+6.3 GBA mutation;
Cilia et al. (2016 Ital; DSM-1V, MMSE Cohort stud
ilia et al. ( ) aly criteria ohort study N370S: L444P
B 1982 60.8 57.4 +10.6 12.0£6.6 No variation
GBA variation;
GBA mutation;
UK Brain Bank A 58 552 NA 84+52 GBA
Davis et al. (2016) USA MDS Cohort study .
criteria polymorphism;
E326K
B 675 70.4 NA 8.7+6.1 No variation
GBA variation;
De Michele et al. UK Brain Bank A 11 36.4 NA 92+48 GBA mutation;
Ital MDS Cohort stud
(2023) Y criteria Y L444P
22 36.4 NA 8.8+4.5 No variation
Graham et al. UK Brain Bank A 21 71 58.3+9.2 152 +6.9 GBA variation
New Zealand o MDS Cohort study
(2020) criteria 208 67.3 60.7 £8.5 13.7+5.8 No variation
GBA variation;
GBA mutation;
UK Brain Bank A 53 642 64.98 +9.79 NA

Lunde et al. (2018) | Norway MDS Cohort study GBA

criteria .
polymorphism
B 389 59.9 68.03 +9.63 NA No variation

(Continued)
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Author, year = Country PD Dementia Study design Sample size Male% Age at onset Disease GBA
diagnostic evaluation (mean + SD) duration genotype
criteria method (mean + SD)

GBA variation;

Malec-Litwinowicz UK Brain Bank 5 NA 57.2+2.8 NA GBA mutation;

Poland MMSE Cohort study
etal. (2014) criteria N370S
117 NA 57.6 £10.9 NA No variation
GBA variation;
GBA mutation;
UK Brain Bank 142 65.5 64.3 £10.1 13+1.0
Malek et al. (2018) | UK MDS Cohort study GBA
criteria .
polymorphism
1,584 65.4 66.2+£9.2 1.3+£09 No variation
GBA variation;
GBA mutation;
UK Brain Bank 95 NA 558 +10.7 NA GBA
Mata et al. (2016) USA MDS Cohort study .
criteria polymorphism;
E326K
945 NA 59.7 £10.5 NA No variation
GBA variation;
UK Brain Bank 28 39 NA NA .
Moran et al. (2017) | USA DSM-1V Cohort study GBA mutation
criteria
708 35.7 NA NA No variation
GBA variation;
UK Brain Bank 19 26.3 552+99 6.9+4.6 .
Oeda et al. (2015) Japan DSM-IV Cohort study GBA mutation
criteria
196 50.0 59.4+11.5 7.6+54 No variation
GBA variation;
Seto-Salvia et al. UK Brain Bank 22 27.3 542+6.6 14.1+6.5 .
Spain CDR, DSM-1V Cohort study GBA mutation
(2012) criteria
203 56.7 56.5+12.7 120+6.7 No variation
53.8 58.4+10.7 31+20 GBA variation;
Simuni et al. UK Brain Bank 80 .
USA MDS Cohort study GBA mutation
(2020) criteria
361 65.9 59.7+9.9 26+0.6 No variation

(Continued)
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.g% 5 i 5 § E § 5 i indicated that there was no significant heterogeneity between the
T O I S 5 5 &2  ethnicity subgroups (Chi* = 0.02, df = 1, p = 0.90, > = 0%), suggesting
£ 2 that ethnicity does not significantly modify the association between
& £ GBA mutations and PDD risk (Supplementary Figure 1).
e é E For overall GBA variations, subgroup analysis by ethnicity showed
§ § - '§ é an RR of 1.76 (95% CI: 0.79-3.94, p =0.17, I* = 82%) for Asian
_ 8 ;: 3 £ £ £ populations, an RR of 1.84 (95% CI: 1.49-2.27, p < 0.00001, I* = 70%)
§ ? § for Caucasian populations, and an RR of 2.12 (95% CI: 1.21-3.73,
% § - A g ;o: p =0.009) for Oceanian populations. The overall pooled RR for GBA
§ i\ 5 2 ;"j 'Z 2 variations across all ethnicities was 1.83 (95% CI: 1.52-2.21,
~ g _ ;5 _ E _ |2 § p <0.00001, * =68%). The analysis for subgroup differences
; 5 g § £ % E % ::5; % confirmed that ethnicity was not a significant source of heterogeneity
= I c c - ZE  (Chi=024,df= 2,p=0.89, P = 0%) (Supplementary Figure 2).
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TABLE 3 The results of the meta-analysis.

Outcomes No. of study Patients

10.3389/fnagi.2025.1671760

95% Cl of
overall effect

Heterogeneity Risk ratio

I (%)

p-value

GBA variations 18 13,175 66.00 0.00 1.82 1.52-2.18
GBA mutations 16 12,453 61.00 0.00 1.82 1.49-2.23
GBA polymorphisms 5 7,308 76.00 0.00 1.82 1.26-2.61
N370S 4 1,445 21.00 0.00 1.54 1.24-1.92
1444P 4 1,405 14.00 0.00 2.17 1.74-2.71
E326K 3 5,192 0.00 0.00 2.34 1.88-2.91
Experimental Control Risk Ratio Risk Ratio

Study or Subgroup Evernts Total Events Total Weight V. Random. 95% Cl IV, Random, 95% CI

Agosta 2013 9 15 0 14 0.4% 17.81[1.13,280.09) :

Alcalay 2012 11 26 6 38 31% 2.75[1.16,6.51)
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FIGURE 2
Forest plot of the meta-analysis for the overall association of GBA variations with dementia risk in PD patients.

3.4.2 Subgroup analysis by dementia diagnostic
Criteria

Subgroup analysis for GBA mutations based on dementia
diagnostic criteria showed the following RRs: DSM-IV criteria
(RR =1.78,95% CI: 1.56-2.02, p < 0.00001, I* = 0%), MDS criteria
(RR = 1.65, 95% CI: 1.23-2.23, p = 0.0010, I* = 72%), CDR criteria
(RR=2.25, 95% CI: 1.48-3.44, p =0.0002, I* = 0%), and MMSE
criteria (RR =2.02, 95% CI: 1.44-2.82, p <0.0001, I* = 18%). The
overall pooled RR for GBA mutations across all criteria was 1.80 (95%
CI: 1.57-2.07, p < 0.00001, I = 52%). The test for subgroup differences
revealed no significant impact of the diagnostic criteria used on the
overall effect size (Chi* =1.87, df=3, p =0.60, I* =0%)
(Supplementary Figure 3).

For overall GBA variations, subgroup analysis by dementia
diagnostic criteria yielded these RRs: CDR criteria (RR = 2.25, 95%
CI: 1.48-3.44, p = 0.0002, I* = 0%), DSM-IV criteria (RR = 1.74, 95%
CI: 1.55-1.96, p < 0.00001, I* = 0%), MDS criteria (RR = 1.65, 95%
CI: 1.29-2.11, p < 0.0001, I* = 76%), MMSE criteria (RR = 2.07, 95%
CI: 1.57-2.72, p < 0.00001, I* = 12%), and MoCA criteria (RR = 2.74,
95% CI: 1.36-5.50, p = 0.005). The overall pooled RR for GBA
variations across all criteria was 1.81 (95% CI: 1.59-2.06,

Frontiers in Aging Neuroscience

09

p <0.00001, I* = 58%). Similarly, the test for subgroup differences
indicated no significant influence of the diagnostic criteria on the
risk estimate (Chi*> =4.23, df=4, p =038, I =53%)
(Supplementary Figure 4).

For GBA polymorphisms, subgroup analysis by dementia
diagnostic criteria showed an RR of 2.12 (95% CI: 1.59-2.83,
P <0.00001) for DSM-IV criteria and an RR of 1.82 (95% CI: 1.26-
2.61, p =0.001, I* = 76%) for MDS criteria. The overall pooled RR was
1.86 (95% CI: 1.40-2.48, p < 0.0001, I* = 72%). The test for subgroup
differences was not significant (Chi* = 0.43, df = 1, p = 0.51, I* = 0%),
suggesting consistent effects across the diagnostic criteria
(Supplementary Figure 5).

For the N370S mutation, subgroup analysis by dementia
diagnostic criteria showed an RR of 1.47 (95% CI: 1.22-1.78,
P <0.0001, I = 0%) for DSM-IV criteria, an RR of 1.52 (95% CI: 1.23—
1.89, p = 0.0001, I* = 0%) for MDS criteria, and an RR of 1.85 (95% CI:
0.81-4.24, p = 0.14, I> = 71%) for MMSE criteria. The overall pooled
RR was 1.50 (95% CI: 1.32-1.72, p < 0.00001, I = 0%). The test for
subgroup differences indicated no significant heterogeneity across the
different diagnostic criteria (Chi* = 0.30, df = 2, p = 0.86, I* = 0%)
(Supplementary Figure 6).
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For the L444P mutation, subgroup analysis by dementia
diagnostic criteria showed an RR of 2.14 (95% CIL: 1.76-2.60,
p <0.00001, I* = 0%) for DSM-IV criteria, an RR of 2.16 (95% CI:
1.40-3.32, p = 0.0005, I* = 40%) for MDS criteria, and an RR of 2.28
(95% CI: 1.68-3.09, p < 0.00001) for MMSE criteria. The overall
pooled RR was 2.16 (95% CI: 1.88-2.47, p < 0.00001, I* = 0%). The test
for subgroup differences showed no significant impact of diagnostic
criteria on the risk estimate (Chi* = 0.12, df =2, p =0.94, I> = 0%)
(Supplementary Figure 7).

For the E326K polymorphism, subgroup analysis by dementia
diagnostic criteria showed an RR of 2.12 (95% CIL: 1.59-2.83,
P <0.00001) for DSM-IV criteria and an RR of 2.34 (95% CI: 1.88-
2.91, p <0.00001, I* = 0%) for MDS criteria. The overall pooled RR
was 2.26 (95% CIL: 1.90-2.68, p < 0.00001, I* = 0%). The test for
subgroup differences was not significant (Chi* = 0.28, df = 1, p = 0.60,
PP =0%), indicating that the choice of diagnostic criteria did not
introduce heterogeneity (Supplementary Figure 8).

3.5 Sensitivity analysis

To further evaluate the stability and robustness of the pooled
estimates, sensitivity analysis was performed. This method
involves systematically removing one study at a time from the
meta-analysis and re-calculating the overall effect size. The
purpose is to identify whether any single study disproportionately
influences the overall pooled estimate, which could indicate a lack
of robustness or the presence of an outlier study. The results of the
sensitivity analysis for the overall association of GBA variations
with dementia risk (Supplementary Figure 9), as well as for the
GBA mutations (Supplementary Figure 10), GBA polymorphisms

(Supplementary Figure 11), N370S mutation
(Supplementary Figure 12), L444P mutation
(Supplementary Figure 13), and E326K polymorphism

(Supplementary Figure 14), consistently demonstrated that no
single study had an undue influence on the respective pooled
estimates. The recalculated effect sizes remained within a narrow
range, and the statistical significance of the associations was
maintained across all iterations. This consistency across the
sensitivity analyses strongly confirms the stability and robustness
of the findings, indicating that the conclusions are not driven by
any single study and are reliable despite the observed heterogeneity.

3.6 Publication bias analysis

Publication bias was visually inspected using funnel plots for
outcomes. For the overall association of GBA variations, GBA
mutations and GBA polymorphisms, with dementia risk, the funnel
plot (Supplementary Figures 15-17) suggested some asymmetry. This
asymmetry could potentially indicate the presence of publication bias.
The funnel plots of p.N370S, p.L444P and p.E326K are basically
contralateral. Each score is scattered on both sides of the midline and
is within the 95% CI, with no obvious missing angles. This suggests a
small possibility in publication bias (Supplementary Figures 18-20).

To provide a quantitative assessment of publication bias, Egger’s
regression test was performed. The results indicated no significant
for N370S (t =141, p =0293)

publication  bias
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(Supplementary  Figure 21), L444P (¢t =1.87, p =0.203)
22), E326K (t =084, p =0.553)
(Supplementary Figure 23), GBA polymorphisms (¢ = 0.21, p = 0.850)
(Supplementary Figure 24), GBA mutations (¢ = 1.36, p = 0.196)

(Supplementary Figure 25), and overall GBA variations (t = 1.66,

(Supplementary Figure

p =0.117) (Supplementary Figure 26). These quantitative findings
complement the visual inspection of funnel plots and further support
the robustness of the meta-analysis results against publication bias.

4 Discussion

This meta-analysis provides compelling evidence that GBA gene
variations, encompassing both mutations and polymorphisms, are
significantly associated with an increased risk of dementia in patients
with Parkinson’s disease. The findings demonstrate that PD patients
carrying GBA variation have an approximately 82% higher risk of
developing dementia compared to non-carriers. This robust
association underscores the critical role of GBA in the pathogenesis of
PDD and highlights its potential as a key genetic risk factor (Straniero
et al, 2020). Furthermore, analyses revealed that both severe
mutations (L444P), mild mutations (N370S), and even the common
polymorphism (E326K) are independently associated with an elevated
risk of PDD, with varying degrees of risk (Malec-Litwinowicz et al.,
2014; De Michele et al., 2023; Mata et al., 2016; Set6-Salvia et al., 2012;
Straniero et al., 2020). Notably, the L444P mutation showed the
highest risk ratio, followed by the E326K polymorphism and the
N370S mutation, suggesting a potential correlation between the
severity of the GBA variant and the magnitude of dementia risk. This
observation aligns with the understanding that different GBA variants
may lead to varying degrees of GCase enzyme deficiency, thereby
differentially impacting downstream pathological processes.

The comprehensive subgroup analyses performed in this study
provide further insights into the influence of ethnicity and dementia
diagnostic criteria on the observed associations. The consistent
findings across different ethnic groups for GBA mutations and
variations suggest a broad applicability of these genetic risk factors.
Moreover, the varying risk ratios observed across different dementia
diagnostic criteria highlight the importance of standardized diagnostic
approaches in future research and clinical practice. These detailed
subgroup analyses enhance the generalizability and clinical relevance
of the findings, addressing potential sources of heterogeneity that
could confound the overall estimates.

The underlying mechanisms linking GBA variations to PDD are
complex and likely involve lysosomal dysfunction and altered alpha-
synuclein homeostasis. The GBA gene encodes glucocerebrosidase, a
lysosomal enzyme responsible for the hydrolysis of glucosylceramide
to glucose and ceramide (Grabowski, 2012; Chatterjee and Krainc,
2023). Mutations in GBA lead to reduced GCase activity, resulting in
the accumulation of its substrate within lysosomes (Oftedal et al.,
2023). This lysosomal dysfunction is hypothesized to impair the
clearance of alpha-synuclein, leading to its aggregation and the
formation of Lewy bodies, which are neuropathological hallmarks of
both PD and PDD (Lee et al., 2013; Do et al., 2019). The accumulation
of misfolded alpha-synuclein can further exacerbate lysosomal
dysfunction, creating a vicious cycle that contributes to
neurodegeneration and cognitive decline (Cerri et al., 2018; Silva et al.,
2025; Rocha et al.,, 2023; Smith and Schapira, 2022). Moreover,
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FIGURE 3
Forest plot of the meta-analysis for the association of GBA mutations with dementia risk in PD patients.
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FIGURE 4
Forest plot of the meta-analysis for the association of GBA polymorphisms with dementia risk in PD patients.
Experimental Control Risk Ratio Risk Ratio
Study or Subgroup Events Total Events Total Weight [V. Random. 95% CI IV, Random, 95% CI
Cilia 2016 17 67 388 1982 21.8% 1.30[0.85,1.87) =
Malec-Litwinowicz 2014 3 5 23 117 6.9% 3.05[1.37,6.82)
Straniero 2020 26 76 717 3433 33.3% 1.64[1.19,2.25) i
Szwedo 2022 32 81 233 867 37.9% 1.43[1.07,1.92) -
Total (95% Cl) 229 6399 100.0% 1.54 [1.24, 1.92] *
Total events 78 1367
ity: 2=0.01: Chi*= 3. = =0.28) F= - t t {
Teetfor veral fect 2= 391 (° < 00001 oo 01 0 100
Favours [experimental] Favours [control]
FIGURE 5
Forest plot of the meta-analysis for the association of N370S mutation with dementia risk in PD patients.

reduced GCase activity may also impact other cellular processes,

including mitochondrial function, oxidative stress, and
neuroinflammation, all of which are implicated in PD pathogenesis
and PDD development (Smith and Schapira, 2022; Gegg and Schapira,
2018; Atashrazm et al., 2018). The varying risk levels observed for

different GBA variants could be attributed to their differential impact
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on GCase activity and subsequent cellular consequences (Smith and
Schapira, 2022). For instance, severe mutations like L444P may lead
to a more profound reduction in GCase activity, resulting in a greater
burden of alpha-synuclein pathology and a higher risk of dementia,
compared to milder mutations or polymorphisms (Granek et al., 2023;
Bendikov-Bar et al., 2011).
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Forest plot of the meta-analysis for the association of L444P mutation with dementia risk in PD patients.
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Recent advances in the understanding of PDD, particularly
since 2020, have illuminated several interconnected mechanisms
that extend beyond traditional models. Lysosomal dysfunction,
directly linked to GBA mutations, remains a central theme.
Impaired GCase activity leads to the accumulation of
glycosphingolipids, which promotes a-synuclein aggregation and
neuroinflammation (Calabresi et al., 2023). This has spurred the
development of pharmacological chaperones and enzyme
replacement therapies, which have shown promise in preclinical
2023).

Mitochondrial dysfunction has also been identified as a critical

and early clinical settings (Pardo-Moreno et al,
factor. GBA mutations can indirectly impair mitochondrial
function, leading to oxidative stress and contributing to neuronal
damage. Consequently, therapeutic strategies targeting
mitochondrial health, such as coenzyme Q10 supplementation and
novel mitochondrial-targeted antioxidants, are under active
investigation (Colca and Finck, 2022). Neuroinflammation,
mediated by activated microglia and astrocytes, is increasingly
recognized as a key driver of PDD progression. GBA mutations
appear to exacerbate these neuroinflammatory responses. As such,
immunomodulatory therapies targeting specific inflammatory
pathways represent a promising new frontier in treatment
development (larkov et al., 2021). Furthermore, the gut-brain axis
has emerged as a significant area of research. Dysbiosis of the gut
microbiota can influence neuroinflammation and a-synuclein
pathology. Interventions such as probiotics, prebiotics, and faecal
microbiota transplantation are being explored for their potential to
modulate disease progression (Klann et al., 2021).

The findings of this meta-analysis have significant clinical

implications. The identification of GBA gene variations as a strong risk
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factor for PDD suggests that genetic screening for GBA variants could
be a valuable tool for assessing dementia risk in PD patients. Early
identification of high-risk individuals could enable more targeted
monitoring, earlier intervention strategies, and personalized
management plans (Moore and Barker, 2014; Szwedo et al., 2025). For
example, patients carrying GBA variants might benefit from more
frequent cognitive assessments, or be prioritized for clinical trials
investigating novel therapies aimed at improving lysosomal function
or reducing alpha-synuclein aggregation (Zhang et al., 2019; Ciccaldo
etal., 2025; Williams et al., 2024a; Williams et al., 2024b). Furthermore,
understanding the specific GBA variants and their associated risk
levels could help clinicians provide more accurate prognoses and
counsel patients and their families more effectively regarding the
potential trajectory of their disease (Menozzi et al., 2023). This
personalized approach to care, informed by genetic insights, represents
a significant step towards improving outcomes for PD patients at risk
of developing dementia (Cook et al., 2021; Hill et al., 2022).

The clinical significance of these findings is substantial. The
integration of GBA gene screening into routine clinical practice for
PD patients could serve as a valuable tool for early risk assessment of
dementia. This genetic information can help clinicians identify
individuals at higher risk for PDD, enabling the implementation of
more proactive and individualized management strategies, including
targeted monitoring, early cognitive interventions, and personalized
therapeutic approaches. Ultimately, understanding the genetic
predisposition to PDD, particularly concerning GBA variations, holds
promise for improving patient outcomes and advancing the
development of precision medicine in Parkinson’s disease.

This meta-analysis builds upon previous research by providing a
comprehensive and updated assessment of the association between
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GBA gene variations and the risk of Parkinson’s disease dementia. This
study distinguishes itself from prior work, such as the 2020 meta-
analysis by Zhang et al. (2020) which similarly concluded that GBA
polymorphisms and mutations increase PDD risk.

Firstly, it represents the most comprehensive meta-analysis to date
specifically focusing on the association between GBA gene
polymorphisms and mutations and the risk of dementia in PD
patients. By incorporating a larger and more recent dataset, it
significantly enhances statistical power and the timeliness of the
findings. Secondly, the systematic search strategy across multiple
databases minimized the risk of publication bias, and the independent
data extraction and quality assessment enhanced the reliability of the
findings. This study quantitatively assesses publication bias using
Egger’s regression test, complementing visual inspection of funnel
plots to ensure the robustness of the pooled estimates. Thirdly, the use
of a random-effects model appropriately accounted for the inherent
heterogeneity across studies, providing a more conservative and
generalizable estimate of the effect. Finally, the separate analyses for
different GBA variants, coupled with refined methodological
approaches such as detailed subgroup analyses based on ethnicity and
various dementia diagnostic criteria, allowed for a detailed
examination of their impact. This provides more granular insights into
specific GBA variants and their differential effects on PDD risk,
exploring potential sources of heterogeneity.

Furthermore, this meta-analysis acknowledges the existence of
GBA variants beyond N370S, L444P, and E326K, including other
Gaucher disease-related pathogenic mutations (e.g., D409H, R463C,
RecNcil complex allele) and other polymorphisms (e.g., E388K,
RI120W, IVS10+1G>T), which may contribute to PD and PDD risk in
specific populations. Future research should consider expanding
genetic screening to include these less common but clinically relevant
variants, potentially through whole-genome sequencing approaches.
By addressing these aspects, this meta-analysis seeks to provide a
more robust estimate of the association and to clarify whether different
GBA variants confer varying degrees of risk for PDD, thereby offering
valuable insights for clinical practice and future research directions.

Despite these strengths, this meta-analysis also has several
limitations. The observed heterogeneity, particularly in the overall
analysis, suggests that other factors not accounted for in the analysis
may influence the association between GBA variations and
PDD. These factors could include differences in patient demographics,
disease duration, concomitant medications, and the specific
diagnostic criteria used for PDD across studies. While analyses were
performed for specific GBA variants, further stratification by other
clinical or genetic factors was limited by the available data in the
included studies. Additionally, the reliance on published data means
that individual patient data could not be accessed, which would have
allowed for more detailed analyses and adjustment for potential
confounders. The visual inspection of funnel plots suggested some
asymmetry, indicating a potential for publication bias. Although
Egger’s regression tests did not indicate significant publication bias
for individual variants and overall categories, this does not entirely
rule out the possibility of bias, especially for subgroups with fewer
studies. Future research should aim to address these limitations by
conducting larger, prospective cohort studies with standardized
methodologies for GBA genotyping, PDD diagnosis, and
comprehensive collection of clinical and demographic data. Further
mechanistic studies are also needed to fully elucidate the complex
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interplay between GBA dysfunction, alpha-synuclein pathology, and
cognitive decline in PD (Moore and Barker, 2014).

In conclusion, this comprehensive meta-analysis provides robust
evidence confirming that both mutations and polymorphisms in the
GBA gene are significantly associated with an increased risk of
dementia in patients with Parkinson’s disease. The findings highlight
that different GBA variants confer varying degrees of risk, with severe
mutations, mild mutations, and even common polymorphisms all
contributing to an elevated likelihood of developing PDD. This study
underscores the critical role of GBA in the genetic landscape of PDD
and its potential as a predictive biomarker. The detailed subgroup
analyses and quantitative assessment of publication bias further solidify
these conclusions, offering a more refined understanding of GBAs
impact on PDD risk across diverse clinical and demographic contexts.
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