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Background: The prevalence of cognitive impairment is increasing along with 
global aging. Early retinal structural and vascular changes, prior to the onset of 
clinically detectable retinal pathologies, have been increasingly associated with 
cognitive changes. However, the evidence related to the predictive performance 
of these biomarkers remains limited. Therefore, this study aimed to develop and 
validate a nomogram-based scoring tool for opportunistic screening of mild 
cognitive impairment (MCI).
Methods: This study prospectively recruited participants aged 60 years or 
older, including those with normal cognitive function. The retinal images were 
scanned using optical coherence tomography and angiography. Following 
the selection of potential predictors, a logistic regression model was built to 
predict MCI. Subsequently, a dynamic nomogram was developed to facilitate 
risk scoring in a clinical setting. The model’s discriminative ability was evaluated 
using the area under the receiver operating characteristic curve, along with 
diagnostic metrics of sensitivity and specificity at 95% confidence interval (CI). 
The model was internally validated using bootstrapping. Decision curve analysis 
was conducted to evaluate the model’s clinical impact and utility.
Results: The model indicated that central macular thickness (β: −1.13; 95% CI: 
−0.15,-2.15; p < 0.05), outer nasal perfusion density in the macular area (β: 1.68; 95% 
CI: −2.92, −0.44; p = 0.008), and contrast sensitivity (β: −1.13; 95% CI: −2.03, −0.23; 
p < 0.05) were independently associated with MCI. This nomogram demonstrated a 
discriminative power of 0.90 (95% CI: 0.81, 0.98). The model also demonstrated good 
performance during bootstrap validation, achieving an AUC of 0.87. The optimal 
cutoff points achieved an accuracy of 86%, a sensitivity of 85% and a specificity of 
87%. The decision curve analysis showed that the model provides a high net benefit.
Conclusion: This study developed and internally validated a dynamic, nomogram-
based scoring tool for early detection of MCI that integrates non-invasive retinal 
and visual biomarkers. The model demonstrated high discriminative power and 
substantial clinical net benefit. Further evaluation of the model’s prognostic 
value in predicting further cognitive decline may support its clinical utility.
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1 Introduction

Mild cognitive impairment (MCI) is a transitional cognitive 
impairment with daily functioning largely preserved (Rodrigues and 
Moreno, 2023). Globally, the prevalence of MCI is estimated at 
15–23% among older adults (Bai et al., 2022; Chen et al., 2023; Song 
et al., 2023; Salari et al., 2025). The underlying pathological changes 
may commence approximately a decade before the onset of mild 
cognitive changes, reflecting an asynchrony between structural and 
functional alterations that likely relate to neural compensatory 
mechanisms masking early deficits (Beason-Held et al., 2013; Reuter-
Lorenz and Park, 2014). MCI is a pressing public health issue, 
characterized by a heterogeneous trajectory that may either progress 
to dementia with annual conversion rate of 7–16% (Tifratene et al., 
2015; Roberts et al., 2014) or undergo reversion to normal cognitive 
function (Yu et al., 2025), which is orchestrated by a wide range of 
demographic, health-related, and biological factors. Higher risk of 
dementia is associated with higher age, cardiometabolic diseases, 
haemorrhagic stroke, depression, physical inactivity (Baik et al., 2025), 
higher body mass index (McGirr et al., 2022; Rosenberg et al., 2019), 
higher beta amyloid burden (Ottoy et al., 2019), and presence of tau 
(Smith et al., 2023; Bucci et al., 2021; Mendes et al., 2024). Vision 
impairment has also been recognized as a potential predictor that 
increases the risk of dementia in older adults, through limiting 
physical activity and social engagement (Shang et al., 2021; Lee et al., 
2021). Age-related macular degeneration (AMD), glaucoma, and 
diabetic retinopathy have shown a significant association with an 
increased risk of all-cause dementia (Feng et al., 2023; Son et al., 2025; 
Shang et al., 2023). Predicting dementia based on these pathological 
changes may lack sensitivity for early prediction of cognitive decline, 
as it relies on pathological alterations rather than on preceding 
functional and structural disruption. Thus, objective biomarkers 
based on early structural and functional changes prior to the onset of 
pathological changes are the best strategy for early intervention. Given 
that the retina originates from the central nervous system and shares 
many structural and vascular traits (Lamb et al., 2007), several studies 
have investigated early retinal structural and vascular changes prior to 
the onset of clinically detectable retinal pathologies in AD and 
MCI. The studies reported reduction of retinal thickness (Sánchez et 
al., 2020; Cunha et al., 2017; Mei et al., 2021; Kim and Kang, 2019), 
retinal nerve fiber layer thickness (Szegedi et al., 2020; Yan et al., 
2021), vessel density (Yoon et al., 2019; Wang et al., 2020; Ma et al., 
2023), and perfusion density (Robbins et al., 2022; Ma et al., 2023). 
These retinal changes have been shown to correlate moderately with 
structural and functional brain changes (Hao et al., 2023; Wong et al., 
2021). This indicated that retinal structural, vascular, and 
electrophysiological features are useful biomarkers that may signal the 
central neurovascular changes underlying early cognitive decline (Ge 
et al., 2021). Similarly, significant alterations in visual function have 
also been observed, including color vision deficiency (Cabrera DeBuc 
et al., 2018; Elvira-Hurtado et al., 2023; Salobrar-García et al., 2019; 
Vidal et al., 2022) and reduced contrast sensitivity (Risacher et al., 
2013; Risacher et al., 2020). These early visual and retinal 
neurovascular changes might serve as cost-effective, non-invasive 
biomarkers for early detection of cognitive decline. However, the 
evidence related to the predictive performance of these biomarkers 
remains limited. Given that over one-third of ophthalmic patients are 
older adults aged 65 years or older (Guest et al., 1993), an integrated 

opportunistic screening program could be a potential strategy for this 
high-risk demographic. Thus, developing user-friendly risk assessment 
tools for this targeted population may facilitate early screening and 
bridge the gap between research findings and their practical 
application. Thus, transforming statistical models into nomograms 
provides an intuitive graphical scoring system that enhances the 
interpretability and applicability of the model by visually representing 
individual risk contributions (Jalali et al., 2019). Therefore, this study 
aimed to develop and validate a simplified clinical risk scoring tool for 
opportunistic screening of MCI.

2 Materials and methods

2.1 Study subjects

The Institutional Review Board of The Hong Kong Polytechnic 
University ethically approved this study. The study subjects underwent 
a comprehensive eye examination by licensed optometrists, in 
accordance with the principles outlined in the Declaration of Helsinki. 
Written informed consent was obtained from all subjects before the 
procedures. The inclusion criteria involved older adults aged 60 years 
or older, with best-corrected visual acuity equal to or better than 0.2 
LogMAR, intraocular pressure of ≤21 mmHg, and refractive error of 
≤±5.00 D. Subjects with a history of eye injury, dense cataract, 
glaucoma, AMD, diabetic retinopathy, or hypertensive retinopathy 
were excluded. Sample size adequacy was assessed using the clinical 
prediction model rule (Peduzzi et al., 1996). This study collected 
multiple retinal and visual features that could correlate with cognitive 
decline. However, most retinal features are highly correlated and lack 
unique predictive power for cognitive impairment. Hence, we 
considered retaining 4 to 5 predictors in the final model based on the 
following rationale: According to the clinical prediction model 
development rule (Stiell and Wells, 1999), a minimum of 5 and a 
maximum of 10 events are required for each predictor variable 
(Vittinghoff and McCulloch, 2007). Accordingly, a minimum of 15 and 
a maximum of 25 participants with MCI, as well as a comparable 
number of participants with NC, were required to fit the model. In this 
regard, our sample was adequate for developing the prediction model. 
Similarly, power analysis following the model fitting showed that nearly 
51 samples were required to detect the desired effect size (section 3.5).

2.2 Cognitive assessments

The cognitive assessment process involved thorough history-
taking and cognitive assessment (Petersen, 2016; McCarten, 2013). 
The participants were probed for evidence of cognitive concerns. A 
cognitive assessment was performed using the Cantonese version of 
the Mini-Mental State Examination (MMSE) (Chiu et al., 1994), 
administered by trained research personnel. MMSE assesses working 
memory, short-term memory, attention, concentration, language, 
visuospatial abilities, and orientation. The MMSE score ranges from 0 
to 30. Following cognitive assessment, the study subjects were 
categorized as having MCI or being cognitively normal (NC) based 
on an MMSE score < 26 (Salis et al., 2023) and reported cognitive 
concerns. Participants with MCI and those with NC independently 
conduct daily activities.
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2.3 Eye health examinations

Comprehensive eye examinations, including thorough history, 
visual function assessment, and retinal imaging, were conducted by 
an optometrist, who was an independent assessor blinded to the 
subjects’ cognitive status and research hypothesis.

2.3.1 Visual function assessment

2.3.1.1 Chromatic sensitivity
Chromatic sensitivity was evaluated using the tablet-based Rabin 

Cone Contrast Test (RCCT) (Innova Medical, Inc., United States) 
(White et al., 2023). The test consisted of a randomized series of letters 
selected from the British Standards Institution’s letter set, including 
letters with similar legibility (H, N, V, R, U, E, D, F, P, Z). The letters 
assigned for L- and M-cone subtend 1.22 LogMAR, whereas those 
used for S-cone contrast have a size of 1.34 LogMAR. The letters are 
displayed on a gray background with a luminance of 21.5 cd/m2, with 
decreasing steps of 0.16 log units toward the cone-contrast threshold 
(L- and M-cone: 27.5–1%; S-cone: 173–7%), robustly indicating the 
red, green, and blue sensitivities, respectively. During the test, a single 
letter appears at the center of the screen at a fixed visual angle and 
viewing distance of 75 cm (Cabrera DeBuc et al., 2018). The subject 
must select the letter seen from an adjacent 10-letter matching display.

2.3.1.2 Contrast sensitivity
Contrast sensitivity was measured using the Mars contrast 

sensitivity test (Mars Perceptrix, Chappaqua, NY, United States) 
(Dougherty et al., 2005). This chart has eight rows of six letters, 
comprising 48 letters, designed to subtend a visual acuity of 1.38 
LogMAR. The letters’ contrast ranges from 91% (−0.04 log units) to 
1.2% (−1.92 log units), arranged in steps of 0.04 log units. During 
assessment, uniform illumination of 85 cd/m2 was adjusted, along 
with a proper testing distance of 50 cm, using near correction glass.

2.4 Retinal image acquisitions and 
extraction

2.4.1 Optical coherence tomography
Macular retinal thickness (MRT) and peripapillary retinal nerve 

fiber layer (pRNFL) thickness were scanned using Heidelberg 
Spectralis HRA-OCT (Heidelberg Engineering, Heidelberg, 
Germany). MRT was obtained with a macula-centered acquisition 
based on the Early Treatment Diabetic Retinopathy Study (ETDRS) 
strategy, encompassing a total of 300 (8.7 mm) with nine subfields: 
central 1 mm2, inner 3 mm2, (including inner superior, inner inferior, 
inner temporal, inner nasal, and outer) 6 mm2, (including outer 
superior, outer inferior, outer temporal and outer nasal). The pRNFL 
thickness was captured with an optic disk-centered scan covering 15° 
across seven subregions of interest: temporal superior, nasal superior, 
temporal inferior, nasal inferior, nasal, temporal, and global.

2.4.2 Optical coherence tomography 
angiography

Optical coherence tomography angiography (OCTA) was performed 
using the spectral-domain Cirrus 6,000 (Carl Zeiss Meditec AG, Jena, 
Germany). The macular vessel density (MVD) and macular perfusion 

density (MPD) were scanned with a 6 × 6 mm2 scanning field. Images 
with a quality score of less than 7 and severely affected by motion artifacts 
were rescanned. The OCTA built-in algorithm segments the superficial 
vascular layer (SVL) from the inner boundary at the internal limiting 
membrane to the outer boundary of the inner plexiform layer. The MPD 
and MVD, along with the foveal avascular zone (FAZ) area, circularity 
(FC), and perimeter (FP), were extracted using the built-in algorithm 
(Figures 1A–F) (Samara et al., 2017; Laotaweerungsawat et al., 2020).
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2.5 Data processing and analysis

2.5.1 Predictor selection and model development
The collected data were checked for missing values and 

consistency. Retinal images taken from both were processed. Only 
two subjects had retinal imaging from only one eye due to poor 
image quality in the contralateral eye. The data collected were 
processed and analyzed. This, missing data was not observed at the 
subject-level. Following data processing, summary statistics were 
performed to characterize the visual, retinal, and cognitive profiles 
of the participants. Retinal and visual features were compared 
between participants with MCI and those with NC using an 
independent t-test and its nonparametric version, the Mann–
Whitney test (z-test). A two-sided p < 0.05 was considered statistically 
significant. Predictors were screened using a generalized linear model 
(GLM) after adjusting for age. Multicollinearity was checked with a 
variable inflation factor (VIF). Potential predictors with less than 10 
VIF were selected by the Least Absolute Shrinkage and Selection 
Operator (LASSO) regression model by using the “glmnet” R 
packages version 4.1–91 and “MASS” R packages version 7.3–61,2 
which penalizes less relevant features to zero coefficients and prevents 
overfitting (Ranstam and Cook, 2018).

Although there is no consensus on the ideal method for developing 
a model, simple models with fewer variables are usually preferred over 
complex models, as they are easier to interpret and apply in practice, 
despite excluding clinically important variables (Royston et al., 2009). 
Stepwise selection methods with a specific stopping rule or selection 
criteria are widely used, particularly in medical applications, to balance 
simplicity, retention of clinically relevant variables, and the risk of 
overfitting Since the stopping rule with a p-value of 0.05 is a stringent 
significance level that could potentially exclude clinically relevant factors, 
p-values with a cutoff of 0.1–0.2 are frequently recommended 
(Chowdhury and Turin, 2020). In this regard, the candidate predictors 
selected by LASSO were fitted into a binary logistic model using a 

1  https://glmnet.stanford.edu

2  http://www.stats.ox.ac.uk/pub/MASS4/
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backward stepwise method with a stopping rule of 0.1 to get the final 
model. Despite considering the assumption, we did not find any 
predictors retained in the final model with p-values between 0.05 and 0.1. 
Following fitting the final model, the Hosmer–Lemeshow goodness-of-fit 
test was performed at a p-value of 0.05. The model development process 
followed the guidelines for Transparent Reporting of Individual Prognosis 
or Diagnosis (Collins et al., 2015).

2.5.2 Theoretical design
The theoretical design of the model was developed based on a 

literature review that has reported associations between retinal and 
visual changes and cognitive impairment.

Probability of MCI = f(predictor variables).
Pr (Y = 1) = f(x), where Y = 1, denotes presence of MCI (event), 

and Y = 0, indicate state of NC (no event).
Pr (Y = 1) = f(β0 + β1 age + β2 color vision+ β3 contrast sensitivity 

+ β4 retinal thickness + β5 retinal vascular features).
β0 is the intercept term, representing the baseline log-odds of 

MCI when all predictor variables are zero. β1 through β5 are the 
coefficients corresponding to each predictor variable, quantifying the 
change in the log-odds of MCI associated with a one-unit change in 
the respective predictor.

2.5.3 Nomogram construction
Based on the final model, an intuitive scoring tool, a nomogram, 

was developed. The scores of predictors in the nomogram were 

determined using the ratio method (Chen et al., 2022). The score of a 
predictor, denoted as i, is computed as:

	
( )β

β
= ∗

100Score     i i observed value of predictor i after scalling
max

	

=
−

   maximum observed value of
Observed value of

Observed value of i after scalling i
i

Where maximum     max i observed value of predictor i after scallingβ β= ∗

where β is the regression coefficient of predictor i; 100
maxβ

 is 

a scaling factor, βmax is the highest possible score of all 
predictors, and thereby the score of a predictor that provides 
βmax is set as 100. The total points were computed by summing 
the scores of each predictor. Furthermore, a dynamic nomogram 
app or web-based app was developed to simplify the application 
of the model in clinical settings. This web-based app was 
constructed using the “DynNom” version 5.1 and “rsconnect” 
version 1.5.1 functions in R to facilitate the individualized 
prediction in clinical practice. The “DynNom” package displays 
statistical model objects as a dynamic nomogram and generates 
the required scripts to publish it. The “rsconnect” function was 
used to deploy the built app to the Shiny web server at  
https://www.shinyapps.io/.

FIGURE 1

Retinal image scanning region based on the ETDRS grid. (A) Macular-centered scan showing 9 ETDRS grid. (B) Sample macular thickness 
segmentation. (C) Macular superficial vascular layer segmentation. (D) Sample macular superficial vascular layer map illustrating perfusion and vessel 
density. (E) Optic disc-centered scan of pRNFL thickness in 7 subregions of interest. (F) Sample optic disc-centered scan.
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2.5.4 Model performance evaluation and validation
The model’s diagnostic performance was evaluated using the area 

under the curve (AUC) computed from the receiver operating 
characteristic (ROC) curve, along with accuracy, sensitivity, specificity, 
positive predictive value (PPV), and negative predictive value (NPV). 
Model calibration was assessed by plotting deciles of predicted 
probability against the observed probability. The overall model 
performance was evaluated by the Brier score and Nagelkerke R-Square 
(R2), an adjusted version of the Cox and Snell R-Square (Nelson et al., 
2016; Shabir et al., 2018). The Nagelkerke R-square ranges from 0 to 1, 
with higher values indicating better performance. The Brier score 
measures the accuracy of probabilistic predictions, ranging from 0 
(perfect predictions) to 1 (worst possible predictions). The model was 
internally validated using bootstrapping to ensure its performance in 
future applications (Collins et al., 2015). Model validation by 
bootstrapping was performed by randomly generating bootstrap samples 
(B = 1,000) with replacement to evaluate the model’s optimism and 
optimism-corrected predictive performance. The optimism-corrected 
predictive performance of the model refers to the performance expected 
on unseen data. The “validate” and “val.pro” functions from the “rms” R 
package version 8.0–03 were used to compare multiple model 
performance indices. The optimal risk score cutoff points were 
determined based on the Youden index method [(sensitivity + specificity) 
− 100%] that achieved the highest possible sensitivity and specificity 
across different cutoff points to evaluate the accuracy in the stratification 
of the study subjects into clinically distinct low- and high-risk categories.

2.5.5 Decision curve analysis
Decision curve analysis (DCA) was used to evaluate the clinical 

impact of the model, a practical method that enhances clinicians’ 
decision-making (Vickers, 2008). Clinical decisions are usually navigated 
between two extreme situations: “treat all” and “treat none.” The specific 
intervention or treatment modality depends on the clinical context or 
problem under investigation. This study considered that retinal and visual 
features are risk indicators that facilitate further planning for patients 

3  https://hbiostat.org/R/rms/

attending an ophthalmic setting. The DCA compared the performance 
of retinal and visual features against two scenarios: “using cognitive tests 
for all” and “not using cognitive tests,” thereby capturing the consequences 
of decision-making based on a model that could yield false-negative or 
false-positive results. All statistical analyses, nomogram construction, and 
validation were performed using Stata/MP 17.0 (StataCorp LLC, 4095 
Lakeway Drive, College Station, United States) and R 4.4.2 software4.

3 Results

3.1 Clinical characteristics of the study 
subjects

A total of 56 subjects participated: 30 with NC (mean age, 
70.8 ± 7.7 years) and 26 with MCI (mean age, 77.9 ± 8.8 years). The 
mean cognitive score of subjects with MCI, as measured by the MMSE, 
was 20.34 ± 3.6, which was significantly lower than that of the NC 
subjects (28.08 ± 1.34, p < 0.0001). A significant proportion of the study 
subjects (75%) were females. Nearly half of the study subjects (51%) had 
chronic health conditions such as diabetes mellitus and hypertension. 
The L-, M-, and S-cone contrast thresholds were significantly reduced in 
subjects with MCI (p < 0.05). Significantly reduced contrast sensitivity 
was also observed in subjects with MCI (p = 0.0037). A significant 
sex-specific difference in cognitive score, contrast sensitivity, and 
chromatic contrast was not observed (p > 0.05) (Table 1).

3.2 Comparison of retinal thickness-related 
features

Compared with NC subjects, MCI subjects showed a statistically 
significant reduction in MRT across all ETDRS retinal subfields, 
except the inner superior subfield. In contrast, for pRNFL, the 
temporal thickness was the only subfield that exhibited a significant 

4  https://cran.r-project.org/bin/windows/base/

TABLE 1  Clinical characteristics of the study subjects.

Variables NC (n = 30) MCI (n = 26) z-test P-value

Sex (F/M) 20/10 22/4 – –

Age (years) 70.8 ± 7.7 77.9 ± 8.8 −2.838 0.0045

BCVA (logMAR) 0.05 ± 0.12 0.10 ± 0.13 −3.241 0.0012

IOP (mmHg) 13.57 ± 5.25 13.35 ± 4.15 1.003 0.3161

Mean MMSE 28.08 ± 1.34 20.34 ± 3.6 6.423 <0.0001

Diabetes mellitus (Yes/no) 4/26 4/22 – –

Hypertension (Yes/no) 12/18 17/9 – –

L-cone sensitivity 95 (87.5–102.5) 77.7 (67.7–87.7) 3.164 0.0016

M-cone sensitivity 90 (80–100) 75 (65–85) 3.634 0.0003

S-cone sensitivity 92.5 (87.5–97.5) 81.45 (68.95–93.9) 3.014 0.0026

Mean cone sensitivity 95 (88.34–101.67) 80.83 (70.83–90.83) 3.286 0.0010

Contrast sensitivity 1.64 (1.52–1.76) 1.44 (1.3–1.54) 2.861 0.0037

BCVA, best corrected visual acuity; IOP, intraocular pressure; MMSE, Mini-Mental State Examination. Bold values, statistically significant (P <0.05).
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TABLE 2  Comparison of retinal thickness-related features between MCI and NC subjects.

Predictors Retinal subfields NC (n = 30) MCI (n = 26) t-test P-value

MRT Central 269.75 ± 43.5 260.25 ± 27.0 2.46 0.0137

Inner superior 335.50 ± 22.5 330.00 ± 30.0 1.68 0.0921

Inner inferior 335.75 ± 21.0 320.25 ± 25.5 2.33 0.0196

Inner temporal 325.00 ± 29.5 315.75 ± 27.5 2.09 0.0384

Inner nasal 342.50 ± 28.5 333.50 ± 27.5 2.07 0.0384

Outer superior 295.95 ± 23.0 285.00 ± 18.0 2.42 0.0153

Outer inferior 285.75 ± 31.5 270.25 ± 16.5 3.04 0.0024

Outer temporal 297.25 ± 38.5 267.75 ± 19.0 2.44 0.0143

Outer nasal 315.50 ± 21.50 300.25 ± 21.0 2.97 0.0029

Volume 8.525 ± 0.77 8.21 ± 0.51 2.67 0.0072

MPD Central 24.25 ± 11.0 18.63 ± 11.4 0.18 0.85

Inner superior 23.42 ± 8.24 18.82 ± 8.65 2.03 0.023

Inner inferior 23.77 ± 7.69 17.52 ± 8.80 2.83 0.0032

Inner temporal 21.87 ± 7.77 17.15 ± 8.94 2.11 0.0195

Inner nasal 22.3 ± 9.35 17.05 ± 7.35 2.26 0.0138

Outer superior 27.98 ± 7.59 21.07 ± 8.02 3.30 0.0008

Outer inferior 28.74 ± 8.63 20.16 ± 8.35 3.76 0.0002

Outer temporal 24.25 ± 11.0 18.62 ± 11.4 2.6 0.0044

Outer nasal 33.48 ± 8.94 22.85 ± 9.18 4.37 <0.0001

MVD Central 2.75 ± 3.15 4.05 ± 3.25 −0.69 0.49

Inner superior 10.92 ± 3.40 10.48 ± 3.31 0.43 0.33

Inner inferior 11.30 ± 3.27 10.06 ± 4.44 1.12 0.11

Inner temporal 10.875 ± 5.95 10.15 ± 3.8 0.52 0.60

Inner nasal 17.03 ± 10.03 17.45 ± 9.32 −0.16 0.56

Outer superior 13.38 ± 5.25 13 ± 4.85 0.88 0.37

Outer inferior 13.43 ± 5.65 12.35 ± 4.3 1.54 0.12

Outer temporal 11.23 ± 3.12 9.77 ± 3.88 1.55 0.06

Outer nasal 16.5 ± 4.7 14.2 ± 5 2.04 0.04

pRNFL thickness Nasal inferior 104.40 ± 17.49 112.5 ± 23.0 −1.49 0.90

Nasal 76.13 ± 11.28 77.69 ± 13.8 −0.46 0.67

Nasal superior 110.97 ± 25.48 117.7 ± 26.1 −0.98 0.83

Temporal superior 140.28 ± 26.34 130.0 ± 29.5 1.96 0.05

Temporal 83.13 ± 12.60 77.28 ± 12.8 1.71 0.046

Temporal inferior 153.8 ± 25.90 157.1 ± 19.6 −0.53 0.70

Global 100.35 ± 12.13 100.4 ± 13.5 −0.04 0.50

pRNFL, peripapillary retinal nerve fiber layer; MRT, macular retinal thickness; MVD, macular vessel density; MPD, macular perfusion density. Bold values, statistically significant (P <0.05).

decrease in subjects with MCI compared to the NC subjects (NC: 
83.13 ± 12.69; MCI: 77.28 ± 12.77, t = 1.71, p = 0.046) (Table 2). 
Significant central retinal thickness within 3 mm diameter was noted 
in females compared to male participants (p < 0.05).

3.3 Comparison of retinal vascular features

Compared with NC subjects, subjects with MCI demonstrated 
statistically significant reductions in MPD across all ETDRS subfields, 

except the central subfield. Notably, outer nasal MPD decreased more 
in MCI subjects than in NC subjects (p < 0.0001). Similarly, outer 
superior and inferior MPD were significantly lower in subjects with 
MCI compared to the NC subjects (CI: 21.07 ± 8.02; NC: 27.98 ± 7.59, 
t = 3.30, p = 0.0008) and (MCI: 20.16 ± 8.35; NC: 28.74 ± 8.63, t = 3.76, 
p = 0.0002), respectively. However, a significant reduction in MVD was 
observed only in the outer nasal subfields in subjects with MCI, and 
this was statistically lower than in NC subjects (p = 0.04). The outer 
temporal subfield also showed a trend toward reduction in subjects 
with MCI compared to the NC subjects, although this difference was 
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not significant (p = 0.06) (Table 3). Significant sex-specific difference 
in retinal vascular changes was not observed (p > 0.05).

3.4 Predictor selection using LASSO 
regression analysis

Following screening for multicollinearity, 16 potential variables were 
examined using univariate analysis after adjusting for age (Table 4). 
These predictors were entered into the LASSO regression algorithm 
using a 10-fold cross-validation approach. Systematically, less relevant 
variables were shrunken to zero as the penalty coefficient (λ) increased. 
At the 0.056 optimal lambda value selected by cross-validation, 9 
predictors, including age, contrast sensitivity, M-cone contrast, central 
MRT, outer temporal MRT, nasal inferior pRNFL, nasal superior pRNFL, 
outer nasal MPD, and outer superior MPD, were selected. In contrast, 
the coefficients of 7 predictors were shrunken to zero (Figure 2).

3.5 Model development using multivariate 
logistic regression analysis

The selected variables were further analyzed using multivariate 
logistic regression analysis. The selected predictors were fitted into a 
multivariable binary logistic regression model using a backward stepwise 
method with a stopping rule of 0.10 to identify independent predictors 
of MCI, yielding the final model. Consequently, the final model retained 
3 predictors: central MRT, outer nasal MPD, and contrast sensitivity. The 
Hosmer-Lemeshow goodness-of-fit test yielded a p-value greater than 
0.05, indicating that the model fits the observed data well. The model 
indicated that a one-unit decrease in central MRT (β: −1.13; 95% CI: 

−0.15,-2.15; p < 0.05) and contrast sensitivity (β: 1.13; 95% CI: −2.03, 
−0.23; p < 0.05) was associated with a 1.13-fold increase in the risk of 
MCI. Similarly, a one-unit reduction in outer nasal MPD (β: 1.68; 95% 
CI: −2.92, −0.44; p = 0.008) was associated with an increase in the risk 
of MCI by 1.68 (Table 5). Based on the final regression model, the risk 
score ranged from −9.52 to 7.73. Subjects with MCI had a mean risk 
score of 1.52 ± 2.02, which was significantly higher than the mean risk 
score of −1.84 ± 2.38 in subjects with NC (p < 0.0001). The probability 
of MCI was 0.43 when central MRT (276 μm), outer nasal MPD (28.55), 
and contrast sensitivity (1.52) were all at their mean. When the central 
MRT increased by one standard deviation above the mean (318 μm), 
while outer nasal MPD (28.55) and contrast sensitivity (1.52) remained 
at their mean, the probability of MCI was 0.2. Similarly, increasing 
contrast sensitivity (1.72) by one standard deviation above the mean, 
while keeping the central MRT (276 μm) and the outer nasal MPD 
(28.55) at their means, yielded a probability of MCI of 0.20. Likewise, the 
probability of MCI was 0.13 when outer nasal MPD (38.99) was increased 
by one standard deviation above the mean, with central MRT (276 μm) 
and contrast sensitivity (1.52) at their mean. The corresponding effect 
size for increasing central MRT and contrast sensitivity by one standard 
deviation above the mean, while keeping other predictors at their means, 
is 0.23. The predictors showed 0.2 non-significant correlation to each 
other. Hence, the retrospective power analysis indicated that nearly 51 
samples were required to detect the desired effect size of 0.23.

3.6 Nomogram construction

Based on the final regression model, a nomogram incorporating 
central MRT, outer nasal MPD, and contrast sensitivity was constructed 
using the “rms” package to predict the occurrence of MCI among older 

TABLE 3  Comparison of retinal vascular features of the superficial vascular layer between subjects with MCI and NC.

Predictors Retinal subfields NC (n = 30) MCI (n = 26) t-test P-value

MPD Central 24.25 ± 11.0 18.63 ± 11.4 0.18 0.85

Inner superior 23.42 ± 8.24 18.82 ± 8.65 2.03 0.023

Inner inferior 23.77 ± 7.69 17.52 ± 8.80 2.83 0.0032

Inner temporal 21.87 ± 7.77 17.15 ± 8.94 2.11 0.0195

Inner nasal 22.3 ± 9.35 17.05 ± 7.35 2.26 0.0138

Outer superior 27.98 ± 7.59 21.07 ± 8.02 3.30 0.0008

Outer inferior 28.74 ± 8.63 20.16 ± 8.35 3.76 0.0002

Outer temporal 24.25 ± 11.0 18.62 ± 11.4 2.6 0.0044

Outer nasal 33.48 ± 8.94 22.85 ± 9.18 4.37 <0.0001

MVD Central 2.75 ± 3.15 4.05 ± 3.25 −0.69 0.49

Inner superior 10.92 ± 3.40 10.48 ± 3.31 0.43 0.33

Inner inferior 11.30 ± 3.27 10.06 ± 4.44 1.12 0.11

Inner temporal 10.87 ± 5.95 10.15 ± 3.80 0.52 0.60

Inner nasal 17.03 ± 10.03 17.45 ± 9.32 −0.16 0.56

Outer superior 13.38 ± 5.25 13.00 ± 4.85 0.88 0.37

Outer inferior 13.43 ± 5.65 12.35 ± 4.30 1.54 0.12

Outer temporal 11.23 ± 3.12 9.77 ± 3.88 1.55 0.06

Outer nasal 16.50 ± 4.70 14.2 ± 5.00 2.04 0.04

pRNFL, peripapillary retinal nerve fiber layer; MRT, macular retinal thickness; MVD, macular vessel density; MPD, macular perfusion density. Bold values, statistically significant (P <0.05).
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TABLE 4  Age-adjusted univariate analysis using a generalized linear 
model to identify potential predictors (n = 56).

Predictors β coefficients 
(95% 

confidence 
interval)

P-value

MRT Central −0.91 (−1.74, −0.877) 0.032

Inner superior −0.62 (−1.30, 0.058) 0.073

Inner inferior −0.86 (−1.75, 0.019) 0.055

Inner temporal −0.72 (−1.44, −0.02) 0.045

Inner nasal −0.61 (−1.25, 0.03) 0.063

Outer superior −0.44 (−1.06, 0.18) 0.166

Outer inferior −0.95 (−1.86, −0.05) 0.039

Outer temporal −0.76 (−1.49, −0.04) 0.039

Outer nasal 0.21 (−1.27, 0.23) 0.177

Volume −1.2 (−2.36, −0.05) 0.041

pRNFL 

thickness

Nasal inferior 0.63 (−0.088, 1.36) 0.085

Nasal superior 0.47 (−0.14, 1.08) 0.130

Temporal −0.51 (−1.16, 0.13) 0.122

MPD Inner inferior −0.60 (−1.32, 0.105) 0.095

Outer superior −0.79 (−1.59, 0.002) 0.051

Outer inferior −0.99 (−1.84, −0.15) 0.021

Outer nasal −1.33 (−2.34, −0.33) 0.009

MVD Inner nasal 0.73 (−0.021, 1.48) 0.057

Visual 

Function

L-cone sensitivity −0.043 (−0.095,0.008) 0.10

M-cone sensitivity −0.06 (−0.12, −0.002) 0.04

S-cone sensitivity −0.06 (−0.13, 0.006) 0.073

Contrast sensitivity −3.84 (−7.32, −0.36) 0.031

pRNFL, peripapillary retinal nerve fiber layer; MRT, macular retinal thickness; MVD, macular 
vessel density; MPD, macular perfusion density. Bold values, statistically significant (P <0.05).

adults. Construction of the nomogram involved computing the total score 
and the prediction index scores for each variable using the ratio method. 
The risk contribution of each predictor at a given observed value was 
scalled between 0 to 100 points, and the sum of prediction index scores for 
each variable contributed to the total score. Higher total scores indicated a 
higher risk of MCI. Furthermore, a dynamic nomogram app was also 
developed using the “DynNom” packages to visualize statistical models. 
Subsequently, the “rsconnect” function was run to deploy on a web server 
at https://mciprediction.shinyapps.io/MCIAPP1/. This web-based 
calculator has a user-friendly interface that allows manipulation of the 
predictors’ observed values and computation of the corresponding 
predicted probability of MCI (Figure 3).

3.7 Evaluation and validation of the 
nomogram

Visually, the density plot against predicted probabilities was bimodal, 
with two distinct peaks, reflecting the concentration of observed cases 
across two distinct probability ranges. Low probabilities indicate NC, and 
higher predictive probabilities represent MCI. This bimodality indicated 
that the model performed well in distinguishing MCI from NC (Figure 4).

The nomogram-based model, which integrated central MRT, outer 
nasal MPD, and contrast sensitivity, demonstrated high discriminative 
power with an AUC of 0.896 (95% confidence interval: 0.81, 0.98). 
Alternatively, models combining only outer nasal MPD and contrast 
sensitivity, as well as outer nasal MPD with central MRT, also achieved a 
discriminative power of 0.84 (95% confidence interval: 0.74, 0.94) and 
0.837 (95% confidence interval: 0.73, 0.94), respectively (Figure 1A). 
Through bootstrapping validation (B = 1,000), the bias-corrected AUC was 
0.87, with an optimism value of 0.029, indicating that high discrimination 
power was also maintained for unseen data (Figures 5A,B).

The calibration plot also showed no significant deviation, as the 
actual calibration curve (the gray-shaded area) was evenly bisected by 
the ideal calibration curve (the red line), indicating no significant 
under- or over-confidence, with a 95% confidence interval (p > 0.05). 
Following bootstrap validation, the model also showed no evidence 
that the bias-corrected calibration line deviates significantly from the 
ideal 45-degree line (Z  = −0.196, p  = 0.844), indicating good 
calibration with the test dataset (Figures 6A,B).

The overall model evaluation demonstrated reasonably high 
performance, with a Nagelkerke R-squared of 0.40. Spiegelhalter’s 
z-statistic p-value of the final model was 0.58, indicating that the 
observed and predicted probabilities were well matched and 
calibrated. The Brier score was 0.13, indicating high predictive 
accuracy. The optimism coefficients for the intercept, Brier score, and 
R2 were −0.0228, 0.06, and −0.0015, respectively, indicating the 
closeness of the bias-corrected value to the original index and ensuring 
high performance after validation (Table 6).

3.8 Optimal cutoff point determination

The optimal cutoff point for stratifying subjects into low- and 
high-risk categories for MCI, based on the model, was determined 
through sensitivity analysis using the Youden index method (Table 7). 
At a Youden index of 0.72, the optimal cutoff points of risk score and 
total points derived from the nomogram were −0.31 and 116.5, 
respectively. These optimal cutoff points achieved the highest possible 
accuracy of 85.71%, sensitivity of 84.62%, specificity of 86.67%, PPV 
of 84.6%, and NPV of 86.6% (Figure 7).

3.9 Clinical impact and utility of the model

Furthermore, the clinical impact and utility of the model were 
evaluated by DCA. In the DCA curves, the Y-axis represents the net 
benefit, while the X-axis indicates the threshold probability.

The net benefit of the model for each threshold probability was 
compared with two extreme scenarios: “treat all” and “treat none.” 
Thus, the DCA indicated that decision-making based on the model 
yields a higher net benefit for each threshold probability compared to 
the two extreme situations (Figure 8).

4 Discussion

Dementia is a heterogeneous clinical condition that is orchestrated 
by a wide range of demographic, health-related, and biological factors. 
Vision impairment has also been recognized as a potential predictor 
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that increases the risk of dementia in older adults, through limiting 
physical activity and social engagement (Shang et al., 2021; Lee et al., 
2021). Specifically, retinal diseases such as AMD, glaucoma, and 
diabetic retinopathy have shown a significant association with an 
increased risk of all-cause dementia (Feng et al., 2023). Recently, early 
retinal structural and vascular changes, prior to the onset of clinically 
detectable retinal pathologies associated with AD and MCI, have been 
identified as useful biomarkers that may signal central neurovascular 
changes underlying early cognitive decline. However, they have not 
yet been applied in clinical practice (Ge et al., 2021). Following a 
rigorous model development and validation process, this study 
introduces a user-friendly nomogram that leverages non-invasive 
visual and retinal biomarkers for the early identification of cognitive 
impairment among ophthalmic patients. The nomogram incorporates 
central MRT, outer nasal MPD, and contrast sensitivity and 

demonstrates excellent discriminative ability in both the training and 
testing datasets (AUC: 0.896) to differentiate between individuals with 
MCI and those with normal cognitive function among ophthalmic 
patients aged 60 and above, as evidenced by bootstrap validation. 
Clinical decision-making based on the model, as assessed by DCA, 
suggests a potential net benefit; however, these findings remain 
preliminary. Both retinal and visual features exhibited good diagnostic 
performance, with a discriminative power of 0.78–0.8. These findings 
align with previous research indicating the potential of contrast 
sensitivity (Risacher et al., 2013; Elvira-Hurtado et al., 2023), macular 
retinal thickness features (Almeida et al., 2019; Salobrar-García et al., 
2019; Cunha et al., 2016), and retinal vascular features (Chua et al., 
2020) as biomarkers for cognitive impairment. Combining central 
MRT and outer nasal MPD also achieved a discriminative power of 
0.84 with an accuracy of 75%, which is similar to the performance of 
retinal image-based deep learning model combining vascular features 
of the SVL, deep vascular layer, and choriocapillaris (Hao et al., 2024), 
OCT images and or retinal photograph (Shi et al., 2024; Gao et al., 
2023; Zhang et al., 2021), and ganglion cell-inner plexiform layer 
thickness with OCTA images (Wisely et al., 2024). Our study 
enhanced the ability to detect retinal features by complementing them 
with visual function. Decrease in contrast sensitivity has been 
associated with AD and MCI (Risacher et al., 2013; Risacher et 
al., 2020).

The retina, as an extension of the central nervous system, shares 
structural and vascular traits with the brain, reflecting neural changes 
in neurodegenerative diseases (London et al., 2013). Importantly, 
identification of Aβ plaques in the postmortem retina of AD patients 
has been considered a significant advancement (Koronyo-Hamaoui et 

FIGURE 2

LASSO regression analysis with 10-fold cross-validation with a minimum error criterion to determine the optimal penalization estimate of λ.

TABLE 5  Multivariable binary logistic regression analysis to predict MCI 
(n = 56).

Predictors Multivariable binary logistic regression

β coefficients
(95% confidence interval)

P-value

Outer nasal MPD −1.68 (−2.92, −0.44) 0.008

Central MRT −1.13 (−2.15–0.15) 0.029

Contrast sensitivity −1.13 (−2.03, −0.23) 0.014

Intercept −0.28 (−1.01, 0.45) 0.453

MRT, macular retinal thickness; MPD, macular perfusion density. Bold values, statistically 
significant (P <0.05).
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FIGURE 3

Dynamic nomogram application interface using central MRT, outer nasal MPD, and contrast sensitivity to simplify the risk scoring in clinical 
settings.

FIGURE 4

Density plot of predicted probabilities by MCI. The light red curve represents the density distribution for the NC group, and the light green curve 
represents the density distribution for the MCI group. The gray-green curve represents the false-positive and false-negative cases.
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al., 2011; Lee et al., 2020; Koronyo et al., 2017), driving a special 
interest in in vivo retinal imaging. Thus, several studies have shown a 
significant reduction in total macular thickness associated with 
cognitive decline (Kim and Kang, 2019; Giménez Castejón et al., 2016; 
Cunha et al., 2017; Cunha et al., 2016; Hao et al., 2023; Ito et al., 2020; 
Kao et al., 2023). Cognitive scores positively correlate with total 
macular thickness (Kim and Kang, 2019; Zhao et al., 2023; Mei et al., 
2021), with strong correlation in the superior and temporal quadrants. 
This relationship has been further substantiated by linking the 
perifoveal retinal thickness to the hippocampal volume (Tao et al., 
2019). Specifically, a positive correlation between total retinal 

thickness and hippocampal volume is more predominant in MCI 
(Chen et al., 2023). Consistent with previous findings, this study also 
observed a significant association between macular thickness in 
central, temporal, and inferior areas and cognitive decline after 
adjusting for age.

The neurovascular unit of the brain maintains the integrity of the 
blood–brain barrier and regulates cerebral blood flow, thereby 
maintaining normal brain function (Yu et al., 2020). Disruption of the 
neurovascular unit impairs oxygen and nutrient supply, as well as the 
clearance of neurotoxic substances, such as β-amyloid, resulting in the 
expression of amyloid precursor protein, capillary hypoperfusion, 

FIGURE 5

Model discrimination power indicated by AUC. (A) Model discrimination in the original dataset. The red curve represents AUC by combining outer nasal 
MPD and central MRT. The green curve indicates the AUC by combining nasal MPD and contrast sensitivity, while the pink curve denotes the AUC by 
combining central MRT and contrast sensitivity. The bold blue curve represents the AUC of the full model for detecting MCI among older adults. 
(B) Model discrimination in the bootstrap training (green curve) and testing (red curve) dataset compared to the original AUC (blue curve).

FIGURE 6

Model calibration plot. (A) Model calibration plot in the original dataset. (B) Model calibration plot after validation with the bootstrapping technique.
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TABLE 6  Model performance after validation with the bootstrapping method in detecting MCI among older adults (B = 1,000).

Metric Original index Training Test Optimism Corrected index

Dxy 0.7923 0.7972 0.7621 0.0351 0.7573

C (AUC) 0.8962 0.902 0.873 0.029 0.8672

R2 0.5594 0.5935 0.5312 0.0623 0.4971

Intercept 0 0 −0.0015 0.0015 −0.0015

Slope 1 1 0.8528 0.1472 0.8528

Emax 0 0 0.0358 0.0358 0.0920

D 0.5248 0.5795 0.4901 0.0894 0.4354

U −0.0357 −0.0357 0.0565 −0.0922 0.0565

Q 0.5606 0.6152 0.4335 0.1817 0.3789

B 0.1319 0.1222 0.1450 −0.0228 0.1547

g 3.0158 3.8173 2.8184 0.9989 2.0169

gp 0.3898 0.3925 0.3782 0.0143 0.3755

Dxy, Somer’s D index; C(AUC), area under curve; R2, Nagelkerke R Square; B, Brier score; Emax, maximum difference between raw predicted probabilities and the recalibrated probabilities; D, 
Discrimination index; U, Unreliability index; Q, Overall quality; g = g-index (Gini’s mean difference); gp, 𝑔 index on the probability scale.

neurofibrillary tangle formation, neuroinflammation, neuronal 
damage, and cognitive deficits (Ahmad et al., 2020; Kisler et al., 2017; 
Nelson et al., 2016; Shabir et al., 2018). Neurodegenerative diseases 
that cause cognitive decline are associated with reduced neurovascular 
coupling (Gao et al., 2023) and decreased cerebral blood flow (Li et al., 
2023). Similarly, many studies have documented retinal vascular 
alterations in the posterior pole associated with AD and MCI 
(Criscuolo et al., 2020; Chua et al., 2020; Fang et al., 2021; Hu et al., 
2023; Jiang et al., 2023; Jiang et al., 2018). Retinal vascular changes 
have been linked to the high burden of retinal amyloid, in which a 
severe decrease in retinal vascular zonula occludens-1 and claudin-5 
correlated with abundant arteriolar Aβ40 deposition in subjects with 
MCI and AD (Shi et al., 2023). Retinal claudin-5 deficiency has shown 
a significant association with cerebral amyloid angiopathy, while 
vascular zonula occludens-1 defects have been linked to cerebral 
pathology and cognitive decline. This study also detected a significant 
association between perfusion density in the macular area and 
cognitive impairment, suggesting an underlying neurodegenerative 
process. This evidence of altered retinal structural and neurovascular 
features provides insight into the possibility that the brain and retina 
may undergo a shared trajectory of neurodegeneration underlying 
cognitive changes. Altogether, this model comprises predictors that 
show a trend of association with cognitive changes, although some 
inconsistencies are present. This evidence suggests that the model is 
scientifically explainable, as it links the importance of retinal and 
visual features to cognitive function and their plausible 
scientific relationship.

Additionally, model interpretability is crucial to the model’s 
clinical utility. In routine clinical practice, clinicians easily collect the 
observed value of many predictive variables. However, using the 
predictors to make a holistic decision about the disease or treatment 
outcome over time requires a scientific formulation. Nomogram-
based models are increasingly considered valuable clinical tools that 
convert complex statistical models into simple, intuitive graphical risk 
indicator tools. Given that a nomogram integrates multiple prognostic 
factors into a single score, nomogram-based prediction provides 
continuous risk scores, allowing for precise stratification into 
personalized risk categories, compared with traditional clinical staging 

of disease. This tool is commonly used in tracking chronic diseases, 
particularly in the management of cancer (Vernerey et al., 2016; Liu 
et al., 2022). This study uses readily extractable predictors, without 
requiring further feature generation, which may ensure technical 
efficiency and model utilization feasibility. The scoring is intuitively 
simplified with a dynamic nomogram app, enabling rapid, efficient 
classification of the target population. Moreover, the net benefit 
analysis indicated that the model yields a higher net benefit across all 
threshold probability ranges. Thus, the net benefit suggests that the 
consequences of decision-making based on the model were cost-
effective, despite no economic evaluation having been conducted.

Although the clinical demographic profiles of ophthalmic patients 
vary with eye care models, the model may target a high-risk segment 
of patients who are readily accessible for opportunistic screening.

This approach might complement existing cognitive assessments, 
but decision-making based on the nomogram should be carefully 
contextualized within broader clinical evaluation. Moreover, because 
the model was developed with a small sample size, there may be a risk 
of overfitting and limited generalizability, despite adherence to the 
clinical prediction model development rule (Stiell and Wells, 1999) 
and the use of a rigorous variable selection method. Following 
statistically proven sample size estimation methods such as Riley’s 
approach might decrease random error (Riley et al., 2019; Riley et al., 
2020). Moreover, the retrospective power analysis obtained from this 
study may also facilitate prior sample size estimation in future 
clinical studies.

The model was internally validated with good performance, yet 
external validation with independent, larger datasets with multicenter 
cohorts is imperative to establish generalizability and clinical 
applicability. Given these limitations, this nomogram-based risk-
scoring tool should currently be regarded as a proof-of-concept that 
requires further validation before clinical application.

Additionally, MCI is a heterogeneous clinical entity with a 
complex trajectory, orchestrated by demographic, health-related, and 
biological factors, so that some progress to dementia, others remain 
stable or revert to normal (Aerts et al., 2017). Modifiable risk factors 
such as smoking, obesity, depression, and excessive alcohol 
consumption have a significant role in dementia prediction and the 
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management process (Blotenberg et al., 2025). This model has not 
incorporated these modifiable risk factors. Integrating such factors 
may substantially enhance predictive accuracy for stratifying MCI into 

progressor and non-progressor phenotypes. Hence, longitudinal 
studies are warranted to determine potential predictors of 
MCI progression.

TABLE 7  Risk score value and corresponding estimated predicted probability of MCI, along with common performance indices of risk score-based 
classification.

Cutoff points (≥) Sensitivity Specificity Accuracy LR+ LR−
4.216 100.00% 0.00% 46.43% 1

57.72 100.00% 3.33% 48.21% 1.0345 0

64.06 100.00% 6.67% 50.00% 1.0714 0

65.04 100.00% 10.00% 51.79% 1.1111 0

68.63 100.00% 16.67% 55.36% 1.2 0

82.43 100.00% 20.00% 57.14% 1.25 0

89.01 100.00% 23.33% 58.93% 1.3043 0

90.22 100.00% 26.67% 60.71% 1.3636 0

92.46 100.00% 30.00% 62.50% 1.4286 0

95.34 100.00% 40.00% 67.86% 1.6667 0

98.44 100.00% 43.33% 69.64% 1.7647 0

101.90 100.00% 46.67% 71.43% 1.875 0

105.00 96.15% 50.00% 71.43% 1.9231 0.0769

108.72 96.15% 60.00% 76.79% 2.4038 0.0641

110.00 96.15% 70.00% 82.14% 3.2051 0.0549

110.50 92.31% 70.00% 80.36% 3.0769 0.1099

112.48 88.46% 73.33% 80.36% 3.3173 0.1573

113.00 88.46% 76.67% 82.14% 3.7912 0.1505

114.90 88.46% 80.00% 83.93% 4.4231 0.1442

116.10 84.62% 83.33% 83.93% 5.0769 0.1846

116.50 84.62% 86.67% 85.71% 6.3462 0.1775

117.50 80.77% 86.67% 83.93% 6.0577 0.2219

122.70 76.92% 86.67% 82.14% 5.7692 0.2663

123.80 73.08% 86.67% 80.36% 5.4808 0.3107

124.00 69.23% 86.67% 78.57% 5.1923 0.355

128.70 65.38% 90.00% 78.57% 6.5385 0.3846

131.10 53.85% 90.00% 73.21% 5.3846 0.5128

137.10 53.85% 93.33% 75.00% 8.0769 0.4945

139.10 46.15% 93.33% 71.43% 6.9231 0.5769

140.20 46.15% 96.67% 73.21% 13.8461 0.557

142.10 38.46% 96.67% 69.64% 11.5385 0.6366

143.90 34.62% 96.67% 67.86% 10.3846 0.6764

144.19 30.77% 96.67% 66.07% 9.2308 0.7162

150.27 26.92% 96.67% 64.29% 8.0769 0.756

156.10 23.08% 96.67% 62.50% 6.9231 0.7958

160.40 19.23% 96.67% 60.71% 5.7692 0.8355

162.20 11.54% 96.67% 57.14% 3.4615 0.9151

169.27 11.54% 100.00% 58.93% 0.8846

179.00 7.69% 100.00% 57.14% 0.9231

214.51 0.00% 100.00% 53.57% 1

LR+, positive likelihood ratio; LR−, negative likelihood ratio. Bold values, optimal cutoff point with corresponding performance metrics.
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FIGURE 7

Sensitivity analysis of different cutoff thresholds of risk score based on the total points to predict MCI among older adults.

FIGURE 8

Decision curve analysis plot to demonstrate the clinical usefulness of 
the model in predicting MCI. The bold red line represents the net 
benefit of decision making based on the model at different threshold 
probabilities; the blue line represents the net benefit of treating all 
subjects with MCI; the black line represents the net benefit of the 
‘treat none’ scenario.

Furthermore, although MMSE has demonstrated a sensitivity of 
60% and a specificity of 80–87% (Tariq et al., 2006; Kaufer et al., 2008; 
Saxton et al., 2009), relying on a single global screening tool may 
therefore lead to misclassification bias. Thus, comprehensive domain-
specific cognitive assessments, including a thorough history and 
functional assessment, and conventional diagnostic clinical criteria, 
are important to increase accuracy (Petersen, 2016; McCarten, 2013; 
Markwick et al., 2012).

5 Conclusion

The study developed a simplified diagnostic prediction model that 
utilizes an intuitive nomogram scoring system, integrating both retinal 
features and visual function parameters. The model demonstrated 
relatively good performance and net benefit across all ranges of 
threshold probabilities, which might complement visual and 
neurovascular evidence with cognitive tests. Using a well-validated 
model trained on a large dataset, in conjunction with cognitive tests, 
might support early detection of MCI in the ophthalmic setting. Thus, 
further external validation is essential prior to clinical application 
and generalization.
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