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Background: The prevalence of cognitive impairment is increasing along with
global aging. Early retinal structural and vascular changes, prior to the onset of
clinically detectable retinal pathologies, have been increasingly associated with
cognitive changes. However, the evidence related to the predictive performance
of these biomarkers remains limited. Therefore, this study aimed to develop and
validate a nomogram-based scoring tool for opportunistic screening of mild
cognitive impairment (MCI).

Methods: This study prospectively recruited participants aged 60 years or
older, including those with normal cognitive function. The retinal images were
scanned using optical coherence tomography and angiography. Following
the selection of potential predictors, a logistic regression model was built to
predict MCI. Subsequently, a dynamic nomogram was developed to facilitate
risk scoring in a clinical setting. The model’s discriminative ability was evaluated
using the area under the receiver operating characteristic curve, along with
diagnostic metrics of sensitivity and specificity at 95% confidence interval (ClI).
The model was internally validated using bootstrapping. Decision curve analysis
was conducted to evaluate the model’s clinical impact and utility.

Results: The model indicated that central macular thickness (5: —1.13; 95% ClI:
—0.15,-2.15; p < 0.05), outer nasal perfusion density in the macular area (p: 1.68; 95%
Cl: =2.92, —044; p = 0.008), and contrast sensitivity (B: —=1.13; 95% Cl: —2.03, —0.23;
p < 0.05) were independently associated with MCI. This nomogram demonstrated a
discriminative power of 0.90 (95% CI: 0.81, 0.98). The model also demonstrated good
performance during bootstrap validation, achieving an AUC of 0.87. The optimal
cutoff points achieved an accuracy of 86%, a sensitivity of 85% and a specificity of
87%. The decision curve analysis showed that the model provides a high net benefit.
Conclusion: Thisstudy developed andinternally validated a dynamic, nomogram-
based scoring tool for early detection of MCI that integrates non-invasive retinal
and visual biomarkers. The model demonstrated high discriminative power and
substantial clinical net benefit. Further evaluation of the model's prognostic
value in predicting further cognitive decline may support its clinical utility.
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1 Introduction

Mild cognitive impairment (MCI) is a transitional cognitive
impairment with daily functioning largely preserved (Rodrigues and
Moreno, 2023). Globally, the prevalence of MCI is estimated at
15-23% among older adults (Bai et al., 2022; Chen et al., 2023; Song
et al,, 2023; Salari et al., 2025). The underlying pathological changes
may commence approximately a decade before the onset of mild
cognitive changes, reflecting an asynchrony between structural and
functional alterations that likely relate to neural compensatory
mechanisms masking early deficits (Beason-Held et al., 2013; Reuter-
Lorenz and Park, 2014). MCI is a pressing public health issue,
characterized by a heterogeneous trajectory that may either progress
to dementia with annual conversion rate of 7-16% (Tifratene et al.,
2015; Roberts et al., 2014) or undergo reversion to normal cognitive
function (Yu et al., 2025), which is orchestrated by a wide range of
demographic, health-related, and biological factors. Higher risk of
dementia is associated with higher age, cardiometabolic diseases,
haemorrhagic stroke, depression, physical inactivity (Baik et al., 2025),
higher body mass index (McGirr et al., 20225 Rosenberg et al., 2019),
higher beta amyloid burden (Ottoy et al., 2019), and presence of tau
(Smith et al., 2023; Bucci et al., 2021; Mendes et al., 2024). Vision
impairment has also been recognized as a potential predictor that
increases the risk of dementia in older adults, through limiting
physical activity and social engagement (Shang et al., 2021; Lee et al.,
2021). Age-related macular degeneration (AMD), glaucoma, and
diabetic retinopathy have shown a significant association with an
increased risk of all-cause dementia (Feng et al., 2023; Son et al., 2025;
Shang et al., 2023). Predicting dementia based on these pathological
changes may lack sensitivity for early prediction of cognitive decline,
as it relies on pathological alterations rather than on preceding
functional and structural disruption. Thus, objective biomarkers
based on early structural and functional changes prior to the onset of
pathological changes are the best strategy for early intervention. Given
that the retina originates from the central nervous system and shares
many structural and vascular traits (Lamb et al., 2007), several studies
have investigated early retinal structural and vascular changes prior to
the onset of clinically detectable retinal pathologies in AD and
MCI. The studies reported reduction of retinal thickness (Sanchez et
al., 2020; Cunha et al., 2017; Mei et al., 2021; Kim and Kang, 2019),
retinal nerve fiber layer thickness (Szegedi et al., 2020; Yan et al,,
2021), vessel density (Yoon et al., 2019; Wang et al., 2020; Ma et al.,
2023), and perfusion density (Robbins et al., 2022; Ma et al., 2023).
These retinal changes have been shown to correlate moderately with
structural and functional brain changes (Hao et al., 2023; Wong et al.,
2021). This indicated that retinal structural, vascular, and
electrophysiological features are useful biomarkers that may signal the
central neurovascular changes underlying early cognitive decline (Ge
et al,, 2021). Similarly, significant alterations in visual function have
also been observed, including color vision deficiency (Cabrera DeBuc
et al., 2018; Elvira-Hurtado et al., 2023; Salobrar-Garcia et al., 2019;
Vidal et al., 2022) and reduced contrast sensitivity (Risacher et al.,
2013; Risacher et al, 2020). These early visual and retinal
neurovascular changes might serve as cost-effective, non-invasive
biomarkers for early detection of cognitive decline. However, the
evidence related to the predictive performance of these biomarkers
remains limited. Given that over one-third of ophthalmic patients are
older adults aged 65 years or older (Guest et al., 1993), an integrated
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opportunistic screening program could be a potential strategy for this
high-risk demographic. Thus, developing user-friendly risk assessment
tools for this targeted population may facilitate early screening and
bridge the gap between research findings and their practical
application. Thus, transforming statistical models into nomograms
provides an intuitive graphical scoring system that enhances the
interpretability and applicability of the model by visually representing
individual risk contributions (Jalali et al., 2019). Therefore, this study
aimed to develop and validate a simplified clinical risk scoring tool for
opportunistic screening of MCL

2 Materials and methods
2.1 Study subjects

The Institutional Review Board of The Hong Kong Polytechnic
University ethically approved this study. The study subjects underwent
a comprehensive eye examination by licensed optometrists, in
accordance with the principles outlined in the Declaration of Helsinki.
Written informed consent was obtained from all subjects before the
procedures. The inclusion criteria involved older adults aged 60 years
or older, with best-corrected visual acuity equal to or better than 0.2
LogMAR, intraocular pressure of <21 mmHg, and refractive error of
<#5.00 D. Subjects with a history of eye injury, dense cataract,
glaucoma, AMD, diabetic retinopathy, or hypertensive retinopathy
were excluded. Sample size adequacy was assessed using the clinical
prediction model rule (Peduzzi et al., 1996). This study collected
multiple retinal and visual features that could correlate with cognitive
decline. However, most retinal features are highly correlated and lack
unique predictive power for cognitive impairment. Hence, we
considered retaining 4 to 5 predictors in the final model based on the
following rationale: According to the clinical prediction model
development rule (Stiell and Wells, 1999), a minimum of 5 and a
maximum of 10 events are required for each predictor variable
(Vittinghoff and McCulloch, 2007). Accordingly, a minimum of 15 and
a maximum of 25 participants with MCI, as well as a comparable
number of participants with NC, were required to fit the model. In this
regard, our sample was adequate for developing the prediction model.
Similarly, power analysis following the model fitting showed that nearly
51 samples were required to detect the desired effect size (section 3.5).

2.2 Cognitive assessments

The cognitive assessment process involved thorough history-
taking and cognitive assessment (Petersen, 2016; McCarten, 2013).
The participants were probed for evidence of cognitive concerns. A
cognitive assessment was performed using the Cantonese version of
the Mini-Mental State Examination (MMSE) (Chiu et al., 1994),
administered by trained research personnel. MMSE assesses working
memory, short-term memory, attention, concentration, language,
visuospatial abilities, and orientation. The MMSE score ranges from 0
to 30. Following cognitive assessment, the study subjects were
categorized as having MCI or being cognitively normal (NC) based
on an MMSE score < 26 (Salis et al., 2023) and reported cognitive
concerns. Participants with MCI and those with NC independently
conduct daily activities.
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2.3 Eye health examinations

Comprehensive eye examinations, including thorough history,
visual function assessment, and retinal imaging, were conducted by
an optometrist, who was an independent assessor blinded to the
subjects’ cognitive status and research hypothesis.

2.3.1 Visual function assessment

2.3.1.1 Chromatic sensitivity

Chromatic sensitivity was evaluated using the tablet-based Rabin
Cone Contrast Test (RCCT) (Innova Medical, Inc., United States)
(White et al., 2023). The test consisted of a randomized series of letters
selected from the British Standards Institution’ letter set, including
letters with similar legibility (H, N, V, R, U, E, D, E P, Z). The letters
assigned for L- and M-cone subtend 1.22 LogMAR, whereas those
used for S-cone contrast have a size of 1.34 LogMAR. The letters are
displayed on a gray background with a luminance of 21.5 cd/m?, with
decreasing steps of 0.16 log units toward the cone-contrast threshold
(L- and M-cone: 27.5-1%; S-cone: 173-7%), robustly indicating the
red, green, and blue sensitivities, respectively. During the test, a single
letter appears at the center of the screen at a fixed visual angle and
viewing distance of 75 cm (Cabrera DeBuc et al,, 2018). The subject
must select the letter seen from an adjacent 10-letter matching display.

2.3.1.2 Contrast sensitivity

Contrast sensitivity was measured using the Mars contrast
sensitivity test (Mars Perceptrix, Chappaqua, NY, United States)
(Dougherty et al., 2005). This chart has eight rows of six letters,
comprising 48 letters, designed to subtend a visual acuity of 1.38
LogMAR. The letters’ contrast ranges from 91% (—0.04 log units) to
1.2% (—1.92 log units), arranged in steps of 0.04 log units. During
assessment, uniform illumination of 85 cd/m? was adjusted, along
with a proper testing distance of 50 cm, using near correction glass.

2.4 Retinal image acquisitions and
extraction

2.4.1 Optical coherence tomography

Macular retinal thickness (MRT) and peripapillary retinal nerve
fiber layer (pRNFL) thickness were scanned using Heidelberg
HRA-OCT (Heidelberg Engineering, Heidelberg,
Germany). MRT was obtained with a macula-centered acquisition
based on the Early Treatment Diabetic Retinopathy Study (ETDRS)
strategy, encompassing a total of 30° (8.7 mm) with nine subfields:

Spectralis

central 1 mm? inner 3 mm?, (including inner superior, inner inferior,
inner temporal, inner nasal, and outer) 6 mm?, (including outer
superior, outer inferior, outer temporal and outer nasal). The pRNFL
thickness was captured with an optic disk-centered scan covering 15°
across seven subregions of interest: temporal superior, nasal superior,
temporal inferior, nasal inferior, nasal, temporal, and global.

2.4.2 Optical coherence tomography
angiography

Optical coherence tomography angiography (OCTA) was performed
using the spectral-domain Cirrus 6,000 (Carl Zeiss Meditec AG, Jena,
Germany). The macular vessel density (MVD) and macular perfusion
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density (MPD) were scanned with a 6 x 6 mm? scanning field. Images
with a quality score of less than 7 and severely affected by motion artifacts
were rescanned. The OCTA built-in algorithm segments the superficial
vascular layer (SVL) from the inner boundary at the internal limiting
membrane to the outer boundary of the inner plexiform layer. The MPD
and MVD, along with the foveal avascular zone (FAZ) area, circularity
(FC), and perimeter (FP), were extracted using the built-in algorithm
(Figures 1A-F) (Samara et al., 2017; Laotaweerungsawat et al., 2020).

Total area occupied by
perfused vasculature ( pixels)

Perfusion density =
Y (total scan area —FAZ area) (pixels)

Total length of skeletonized vasculature (mm)
(Total scan area —FAZ area) (mmZ)

Vessel density =

2.5 Data processing and analysis

2.5.1 Predictor selection and model development

The collected data were checked for missing values and
consistency. Retinal images taken from both were processed. Only
two subjects had retinal imaging from only one eye due to poor
image quality in the contralateral eye. The data collected were
processed and analyzed. This, missing data was not observed at the
subject-level. Following data processing, summary statistics were
performed to characterize the visual, retinal, and cognitive profiles
of the participants. Retinal and visual features were compared
between participants with MCI and those with NC using an
independent t-test and its nonparametric version, the Mann-
Whitney test (z-test). A two-sided p < 0.05 was considered statistically
significant. Predictors were screened using a generalized linear model
(GLM) after adjusting for age. Multicollinearity was checked with a
variable inflation factor (VIF). Potential predictors with less than 10
VIF were selected by the Least Absolute Shrinkage and Selection
Operator (LASSO) regression model by using the “glmnet” R
packages version 4.1-9' and “MASS” R packages version 7.3-61,>
which penalizes less relevant features to zero coefficients and prevents
overfitting (Ranstam and Cook, 2018).

Although there is no consensus on the ideal method for developing
a model, simple models with fewer variables are usually preferred over
complex models, as they are easier to interpret and apply in practice,
despite excluding clinically important variables (Royston et al., 2009).
Stepwise selection methods with a specific stopping rule or selection
criteria are widely used, particularly in medical applications, to balance
simplicity, retention of clinically relevant variables, and the risk of
overfitting Since the stopping rule with a p-value of 0.05 is a stringent
significance level that could potentially exclude clinically relevant factors,
p-values with a cutoff of 0.1-0.2 are frequently recommended
(Chowdhury and Turin, 2020). In this regard, the candidate predictors
selected by LASSO were fitted into a binary logistic model using a

1 https://glmnet.stanford.edu
2 http://www.stats.ox.ac.uk/pub/MASS4/
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FIGURE 1

Retinal image scanning region based on the ETDRS grid. (A) Macular-centered scan showing 9 ETDRS grid. (B) Sample macular thickness
segmentation. (C) Macular superficial vascular layer segmentation. (D) Sample macular superficial vascular layer map illustrating perfusion and vessel
density. (E) Optic disc-centered scan of pRNFL thickness in 7 subregions of interest. (F) Sample optic disc-centered scan.

backward stepwise method with a stopping rule of 0.1 to get the final
model. Despite considering the assumption, we did not find any
predictors retained in the final model with p-values between 0.05 and 0.1.
Following fitting the final model, the Hosmer-Lemeshow goodness-of-fit
test was performed at a p-value of 0.05. The model development process
followed the guidelines for Transparent Reporting of Individual Prognosis
or Diagnosis (Collins et al., 2015).

2.5.2 Theoretical design

The theoretical design of the model was developed based on a
literature review that has reported associations between retinal and
visual changes and cognitive impairment.

Probability of MCI = f(predictor variables).

Pr (Y = 1) = f(x), where Y = 1, denotes presence of MCI (event),
and Y = 0, indicate state of NC (no event).

Pr (Y =1) = f(p0 + p1 age + 2 color vision+ p3 contrast sensitivity
+ P4 retinal thickness + p5 retinal vascular features).

S0 is the intercept term, representing the baseline log-odds of
MCI when all predictor variables are zero. 1 through p5 are the
coefficients corresponding to each predictor variable, quantifying the
change in the log-odds of MCI associated with a one-unit change in
the respective predictor.

2.5.3 Nomogram construction

Based on the final model, an intuitive scoring tool, a nomogram,
was developed. The scores of predictors in the nomogram were
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determined using the ratio method (Chen et al., 2022). The score of a
predictor, denoted as i, is computed as:

100

Scorei= ([J’i *observed value of predictor i after scalling) 7
max

Observed value of i after scalling = maximum observed value of i
—Observed value of i

Where fmax = fi* maximum observed value of predictor i after scalling

is

where f is the regression coefficient of predictor i;
max

a scaling factor, Pmax is the highest possible score of all
predictors, and thereby the score of a predictor that provides
fmax is set as 100. The total points were computed by summing
the scores of each predictor. Furthermore, a dynamic nomogram
app or web-based app was developed to simplify the application
of the model in clinical settings. This web-based app was
constructed using the “DynNom” version 5.1 and “rsconnect”
version 1.5.1 functions in R to facilitate the individualized
prediction in clinical practice. The “DynNom” package displays
statistical model objects as a dynamic nomogram and generates
the required scripts to publish it. The “rsconnect” function was
used to deploy the built app to the Shiny web server at
https://www.shinyapps.io/.
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TABLE 1 Clinical characteristics of the study subjects.

10.3389/fnagi.2025.1669948

Variables NC (n = 30) MCI (n = 26) z-test P-value
Sex (F/M) 20/10 22/4 - -
Age (years) 708 +7.7 77.9 £ 8.8 —2.838 0.0045
BCVA (logMAR) 0.05+0.12 0.10+0.13 —3.241 0.0012
I0OP (mmHg) 13.57 £5.25 13.35+4.15 1.003 0.3161
Mean MMSE 28.08 £1.34 20.34+£3.6 6.423 <0.0001
Diabetes mellitus (Yes/no) 4/26 4/22 - -
Hypertension (Yes/no) 12/18 17/9 - -
L-cone sensitivity 95 (87.5-102.5) 77.7 (67.7-87.7) 3.164 0.0016
M-cone sensitivity 90 (80-100) 75 (65-85) 3.634 0.0003
S-cone sensitivity 92.5 (87.5-97.5) 81.45 (68.95-93.9) 3.014 0.0026
Mean cone sensitivity 95 (88.34-101.67) 80.83 (70.83-90.83) 3.286 0.0010
Contrast sensitivity 1.64 (1.52-1.76) 1.44 (1.3-1.54) 2.861 0.0037

BCVA, best corrected visual acuity; IOP, intraocular pressure; MMSE, Mini-Mental State Examination. Bold values, statistically significant (P <0.05).

2.5.4 Model performance evaluation and validation

The model’s diagnostic performance was evaluated using the area
under the curve (AUC) computed from the receiver operating
characteristic (ROC) curve, along with accuracy, sensitivity, specificity,
positive predictive value (PPV), and negative predictive value (NPV).
Model calibration was assessed by plotting deciles of predicted
probability against the observed probability. The overall model
performance was evaluated by the Brier score and Nagelkerke R-Square
(R?), an adjusted version of the Cox and Snell R-Square (Nelson et al.,
2016; Shabir et al., 2018). The Nagelkerke R-square ranges from 0 to 1,
with higher values indicating better performance. The Brier score
measures the accuracy of probabilistic predictions, ranging from 0
(perfect predictions) to 1 (worst possible predictions). The model was
internally validated using bootstrapping to ensure its performance in
future applications (Collins et al, 2015). Model validation by
bootstrapping was performed by randomly generating bootstrap samples
(B =1,000) with replacement to evaluate the model’s optimism and
optimism-corrected predictive performance. The optimism-corrected
predictive performance of the model refers to the performance expected
on unseen data. The “validate” and “val.pro” functions from the “rms” R
package version 8.0-0° were used to compare multiple model
performance indices. The optimal risk score cutoff points were
determined based on the Youden index method [(sensitivity + specificity)
— 100%)] that achieved the highest possible sensitivity and specificity
across different cutoff points to evaluate the accuracy in the stratification
of the study subjects into clinically distinct low- and high-risk categories.

2.5.5 Decision curve analysis

Decision curve analysis (DCA) was used to evaluate the clinical
impact of the model, a practical method that enhances clinicians’
decision-making (Vickers, 2008). Clinical decisions are usually navigated
between two extreme situations: “treat all” and “treat none” The specific
intervention or treatment modality depends on the clinical context or
problem under investigation. This study considered that retinal and visual
features are risk indicators that facilitate further planning for patients

3 https://hbiostat.org/R/rms/
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attending an ophthalmic setting. The DCA compared the performance
of retinal and visual features against two scenarios: “using cognitive tests
for all” and “not using cognitive tests;” thereby capturing the consequences
of decision-making based on a model that could yield false-negative or
false-positive results. All statistical analyses, nomogram construction, and
validation were performed using Stata/MP 17.0 (StataCorp LLC, 4095
Lakeway Drive, College Station, United States) and R 4.4.2 software".

3 Results

3.1 Clinical characteristics of the study
subjects

A total of 56 subjects participated: 30 with NC (mean age,
70.8 £ 7.7 years) and 26 with MCI (mean age, 77.9 + 8.8 years). The
mean cognitive score of subjects with MCI, as measured by the MMSE,
was 20.34 + 3.6, which was significantly lower than that of the NC
subjects (28.08 + 1.34, p < 0.0001). A significant proportion of the study
subjects (75%) were females. Nearly half of the study subjects (51%) had
chronic health conditions such as diabetes mellitus and hypertension.
The L-, M-, and S-cone contrast thresholds were significantly reduced in
subjects with MCI (p < 0.05). Significantly reduced contrast sensitivity
was also observed in subjects with MCI (p = 0.0037). A significant
sex-specific difference in cognitive score, contrast sensitivity, and
chromatic contrast was not observed (p > 0.05) (Table 1).

3.2 Comparison of retinal thickness-related
features

Compared with NC subjects, MCI subjects showed a statistically
significant reduction in MRT across all ETDRS retinal subfields,
except the inner superior subfield. In contrast, for pRNFL, the
temporal thickness was the only subfield that exhibited a significant

4 https://cran.r-project.org/bin/windows/base/
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decrease in subjects with MCI compared to the NC subjects (NC:
83.13 + 12.69; MCI: 77.28 + 12.77, t=1.71, p=0.046) (Table 2).
Significant central retinal thickness within 3 mm diameter was noted

in females compared to male participants (p < 0.05).

3.3 Comparison of retinal vascular features

Compared with NC subjects, subjects with MCI demonstrated
statistically significant reductions in MPD across all ETDRS subfields,

10.3389/fnagi.2025.1669948

except the central subfield. Notably, outer nasal MPD decreased more
in MCI subjects than in NC subjects (p < 0.0001). Similarly, outer
superior and inferior MPD were significantly lower in subjects with
MCI compared to the NC subjects (CI: 21.07 + 8.02; NC: 27.98 + 7.59,
t=3.30, p = 0.0008) and (MCI: 20.16 + 8.35; NC: 28.74 + 8.63, t = 3.76,
p =0.0002), respectively. However, a significant reduction in MVD was

observed only in the outer nasal subfields in subjects with MCI, and
this was statistically lower than in NC subjects (p = 0.04). The outer
temporal subfield also showed a trend toward reduction in subjects
with MCI compared to the NC subjects, although this difference was

TABLE 2 Comparison of retinal thickness-related features between MCl and NC subjects.

Predictors Retinal subfields NC (n = 30) MCI (n = 26) t-test P-value
MRT Central 269.75 + 43.5 260.25 £ 27.0 2.46 0.0137
Inner superior 335.50 £22.5 330.00 £ 30.0 1.68 0.0921
Inner inferior 335.75 £ 21.0 320.25 £25.5 2.33 0.0196
Inner temporal 325.00 +£29.5 315.75+£27.5 2.09 0.0384
Inner nasal 342.50 +£28.5 333.50 £27.5 2.07 0.0384
Outer superior 295.95 +23.0 285.00 £ 18.0 2.42 0.0153
Outer inferior 285.75 + 31.5 270.25 £ 16.5 3.04 0.0024
Outer temporal 297.25+38.5 267.75+19.0 2.44 0.0143
Outer nasal 315.50 +21.50 300.25 £ 21.0 2.97 0.0029
Volume 8.525+0.77 8.21 +0.51 2.67 0.0072
MPD Central 2425+11.0 18.63+11.4 0.18 0.85
Inner superior 2342 +8.24 18.82 +8.65 2.03 0.023
Inner inferior 23.77 £7.69 17.52 + 8.80 2.83 0.0032
Inner temporal 21.87+7.77 17.15+8.94 2.11 0.0195
Inner nasal 22.3+9.35 17.05+7.35 2.26 0.0138
Outer superior 27.98 £7.59 21.07 £ 8.02 3.30 0.0008
Outer inferior 28.74 + 8.63 20.16 + 8.35 3.76 0.0002
Outer temporal 24.25+11.0 18.62+11.4 2.6 0.0044
Outer nasal 33.48 +8.94 22.85+9.18 4.37 <0.0001
MVD Central 2.75+3.15 4.05+3.25 —0.69 0.49
Inner superior 10.92 + 3.40 10.48 +3.31 0.43 0.33
Inner inferior 11.30 +3.27 10.06 + 4.44 1.12 0.11
Inner temporal 10.875 £ 5.95 10.15+3.8 0.52 0.60
Inner nasal 17.03 £ 10.03 17.45+9.32 —0.16 0.56
Outer superior 13.38 +5.25 13 +4.85 0.88 0.37
Outer inferior 13.43 +5.65 12.35+4.3 1.54 0.12
Outer temporal 1123 +3.12 9.77 +£3.88 1.55 0.06
Outer nasal 16.5+4.7 1425 2.04 0.04
PpRNEFL thickness Nasal inferior 104.40 + 17.49 112.5+23.0 —1.49 0.90
Nasal 76.13 +11.28 77.69 +13.8 —0.46 0.67
Nasal superior 110.97 +25.48 117.7 £ 26.1 —0.98 0.83
Temporal superior 140.28 +26.34 130.0 £29.5 1.96 0.05
Temporal 83.13 £ 12.60 77.28 £12.8 1.71 0.046
Temporal inferior 153.8 £25.90 157.1+£19.6 —-0.53 0.70
Global 100.35+12.13 100.4 £ 13.5 —0.04 0.50

PRNFL, peripapillary retinal nerve fiber layer; MRT, macular retinal thickness; MVD, macular vessel density; MPD, macular perfusion density. Bold values, statistically significant (P <0.05).
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not significant (p = 0.06) (Table 3). Significant sex-specific difference
in retinal vascular changes was not observed (p > 0.05).

3.4 Predictor selection using LASSO
regression analysis

Following screening for multicollinearity, 16 potential variables were
examined using univariate analysis after adjusting for age (Table 4).
These predictors were entered into the LASSO regression algorithm
using a 10-fold cross-validation approach. Systematically, less relevant
variables were shrunken to zero as the penalty coefficient (1) increased.
At the 0.056 optimal lambda value selected by cross-validation, 9
predictors, including age, contrast sensitivity, M-cone contrast, central
MRT, outer temporal MRT, nasal inferior pRNFL, nasal superior pRNFL,
outer nasal MPD, and outer superior MPD, were selected. In contrast,
the coeflicients of 7 predictors were shrunken to zero (Figure 2).

3.5 Model development using multivariate
logistic regression analysis

The selected variables were further analyzed using multivariate
logistic regression analysis. The selected predictors were fitted into a
multivariable binary logistic regression model using a backward stepwise
method with a stopping rule of 0.10 to identify independent predictors
of MC], yielding the final model. Consequently, the final model retained
3 predictors: central MRT, outer nasal MPD, and contrast sensitivity. The
Hosmer-Lemeshow goodness-of-fit test yielded a p-value greater than
0.05, indicating that the model fits the observed data well. The model
indicated that a one-unit decrease in central MRT (f: —1.13; 95% CI:

10.3389/fnagi.2025.1669948

—0.15,-2.15; p < 0.05) and contrast sensitivity (f: 1.13; 95% CI: —2.03,
—0.23; p < 0.05) was associated with a 1.13-fold increase in the risk of
MCI. Similarly, a one-unit reduction in outer nasal MPD (f: 1.68; 95%
CI: —2.92, —0.44; p = 0.008) was associated with an increase in the risk
of MCI by 1.68 (Table 5). Based on the final regression model, the risk
score ranged from —9.52 to 7.73. Subjects with MCI had a mean risk
score of 1.52 + 2.02, which was significantly higher than the mean risk
score of —1.84 + 2.38 in subjects with NC (p < 0.0001). The probability
of MCI was 0.43 when central MRT (276 pm), outer nasal MPD (28.55),
and contrast sensitivity (1.52) were all at their mean. When the central
MRT increased by one standard deviation above the mean (318 um),
while outer nasal MPD (28.55) and contrast sensitivity (1.52) remained
at their mean, the probability of MCI was 0.2. Similarly, increasing
contrast sensitivity (1.72) by one standard deviation above the mean,
while keeping the central MRT (276 pum) and the outer nasal MPD
(28.55) at their means, yielded a probability of MCI of 0.20. Likewise, the
probability of MCI was 0.13 when outer nasal MPD (38.99) was increased
by one standard deviation above the mean, with central MRT (276 pm)
and contrast sensitivity (1.52) at their mean. The corresponding effect
size for increasing central MRT and contrast sensitivity by one standard
deviation above the mean, while keeping other predictors at their means,
is 0.23. The predictors showed 0.2 non-significant correlation to each
other. Hence, the retrospective power analysis indicated that nearly 51
samples were required to detect the desired effect size of 0.23.

3.6 Nomogram construction

Based on the final regression model, a nomogram incorporating
central MRT, outer nasal MPD, and contrast sensitivity was constructed
using the “rms” package to predict the occurrence of MCI among older

TABLE 3 Comparison of retinal vascular features of the superficial vascular layer between subjects with MCl and NC.

Predictors Retinal subfields NC (n = 30) MCI (n = 26) t-test

MPD Central 24.25+11.0 18.63 + 11.4 0.18 0.85
Inner superior 2342 +8.24 18.82 + 8.65 2.03 0.023
Inner inferior 23.77 £7.69 17.52 + 8.80 2.83 0.0032
Inner temporal 21.87+7.77 17.15+8.94 2.11 0.0195
Inner nasal 22.3+9.35 17.05 +7.35 2.26 0.0138
Outer superior 27.98 £7.59 21.07 +£8.02 3.30 0.0008
Outer inferior 28.74 + 8.63 20.16 £ 8.35 3.76 0.0002
Outer temporal 24.25+11.0 18.62+11.4 2.6 0.0044
Outer nasal 33.48 +£8.94 22.85+9.18 4.37 <0.0001

MVD Central 2.75+3.15 4.05+3.25 —-0.69 0.49
Inner superior 10.92 +3.40 10.48 +3.31 0.43 0.33
Inner inferior 11.30 +3.27 10.06 + 4.44 1.12 0.11
Inner temporal 10.87 +5.95 10.15 + 3.80 0.52 0.60
Inner nasal 17.03 £ 10.03 17.45+9.32 —-0.16 0.56
Outer superior 13.38 +5.25 13.00 + 4.85 0.88 0.37
Outer inferior 13.43 +5.65 12.35 +4.30 1.54 0.12
Outer temporal 11.23 £3.12 9.77 + 3.88 1.55 0.06
Outer nasal 16.50 + 4.70 14.2 + 5.00 2.04 0.04

PRNFL, peripapillary retinal nerve fiber layer; MRT, macular retinal thickness; MVD, macular vessel density; MPD, macular perfusion density. Bold values, statistically significant (P <0.05).
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adults. Construction of the nomogram involved computing the total score
and the prediction index scores for each variable using the ratio method.
The risk contribution of each predictor at a given observed value was
scalled between 0 to 100 points, and the sum of prediction index scores for
each variable contributed to the total score. Higher total scores indicated a
higher risk of MCI. Furthermore, a dynamic nomogram app was also
developed using the “DynNom” packages to visualize statistical models.
Subsequently, the “rsconnect” function was run to deploy on a web server
at  https://mciprediction.shinyapps.io/MCIAPP1/. This web-based
calculator has a user-friendly interface that allows manipulation of the
predictors’ observed values and computation of the corresponding
predicted probability of MCI (Figure 3).

3.7 Evaluation and validation of the
nomogram

Visually, the density plot against predicted probabilities was bimodal,
with two distinct peaks, reflecting the concentration of observed cases
across two distinct probability ranges. Low probabilities indicate NC, and
higher predictive probabilities represent MCI. This bimodality indicated
that the model performed well in distinguishing MCI from NC (Figure 4).

TABLE 4 Age-adjusted univariate analysis using a generalized linear
model to identify potential predictors (n = 56).

Predictors B coefficients P-value
(95%
confidence
interval)
MRT Central —0.91 (—1.74, —0.877) 0.032
Inner superior —0.62 (—1.30, 0.058) 0.073
Inner inferior —0.86 (—1.75,0.019) 0.055
Inner temporal —0.72 (—1.44, —0.02) 0.045
Inner nasal —0.61 (—1.25, 0.03) 0.063
Outer superior —0.44 (—1.06, 0.18) 0.166
Outer inferior —0.95 (—1.86, —0.05) 0.039
Outer temporal —0.76 (—1.49, —0.04) 0.039
Outer nasal 0.21 (-1.27,0.23) 0.177
Volume —1.2 (-2.36, —0.05) 0.041
pRNFL Nasal inferior 0.63 (—0.088, 1.36) 0.085
thickness sl superior 0.47 (~0.14, 1.08) 0.130
Temporal —0.51 (—1.16, 0.13) 0.122
MPD Inner inferior —0.60 (—1.32,0.105) 0.095
Outer superior —0.79 (—1.59, 0.002) 0.051
Outer inferior —0.99 (—1.84, —0.15) 0.021
Outer nasal —1.33 (—2.34, —0.33) 0.009
MVD Inner nasal 0.73 (—0.021, 1.48) 0.057
Visual L-cone sensitivity —0.043 (—0.095,0.008) 0.10
Function M-cone sensitivity —0.06 (—0.12, —0.002) 0.04
S-cone sensitivity —0.06 (—0.13, 0.006) 0.073
Contrast sensitivity —3.84 (-7.32, —0.36) 0.031

PRNEFL, peripapillary retinal nerve fiber layer; MRT, macular retinal thickness; MVD, macular
vessel density; MPD, macular perfusion density. Bold values, statistically significant (P <0.05).
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The nomogram-based model, which integrated central MRT, outer
nasal MPD, and contrast sensitivity, demonstrated high discriminative
power with an AUC of 0.896 (95% confidence interval: 0.81, 0.98).
Alternatively, models combining only outer nasal MPD and contrast
sensitivity, as well as outer nasal MPD with central MRT, also achieved a
discriminative power of 0.84 (95% confidence interval: 0.74, 0.94) and
0.837 (95% confidence interval: 0.73, 0.94), respectively (Figure 1A).
Through bootstrapping validation (B = 1,000), the bias-corrected AUC was
0.87, with an optimism value of 0.029, indicating that high discrimination
power was also maintained for unseen data (Figures 5A,B).

The calibration plot also showed no significant deviation, as the
actual calibration curve (the gray-shaded area) was evenly bisected by
the ideal calibration curve (the red line), indicating no significant
under- or over-confidence, with a 95% confidence interval (p > 0.05).
Following bootstrap validation, the model also showed no evidence
that the bias-corrected calibration line deviates significantly from the
ideal 45-degree line (Z =-0.196, p =0.844), indicating good
calibration with the test dataset (Figures 6A,B).

The overall model evaluation demonstrated reasonably high
performance, with a Nagelkerke R-squared of 0.40. Spiegelhalter’s
z-statistic p-value of the final model was 0.58, indicating that the
observed and predicted probabilities were well matched and
calibrated. The Brier score was 0.13, indicating high predictive
accuracy. The optimism coefficients for the intercept, Brier score, and
R2 were —0.0228, 0.06, and —0.0015, respectively, indicating the
closeness of the bias-corrected value to the original index and ensuring
high performance after validation (Table 6).

3.8 Optimal cutoff point determination

The optimal cutoff point for stratifying subjects into low- and
high-risk categories for MCI, based on the model, was determined
through sensitivity analysis using the Youden index method (Table 7).
At a Youden index of 0.72, the optimal cutoff points of risk score and
total points derived from the nomogram were —0.31 and 116.5,
respectively. These optimal cutoff points achieved the highest possible
accuracy of 85.71%, sensitivity of 84.62%, specificity of 86.67%, PPV
of 84.6%, and NPV of 86.6% (Figure 7).

3.9 Clinical impact and utility of the model

Furthermore, the clinical impact and utility of the model were
evaluated by DCA. In the DCA curves, the Y-axis represents the net
benefit, while the X-axis indicates the threshold probability.

The net benefit of the model for each threshold probability was
compared with two extreme scenarios: “treat all” and “treat none.”
Thus, the DCA indicated that decision-making based on the model
yields a higher net benefit for each threshold probability compared to
the two extreme situations (Figure 8).

4 Discussion

Dementia is a heterogeneous clinical condition that is orchestrated
by a wide range of demographic, health-related, and biological factors.
Vision impairment has also been recognized as a potential predictor
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FIGURE 2
LASSO regression analysis with 10-fold cross-validation with a minimum error criterion to determine the optimal penalization estimate of A.

TABLE 5 Multivariable binary logistic regression analysis to predict MCI
(n =56).

Predictors Multivariable binary logistic regression
B coefficients P-value
(95% confidence interval)
Outer nasal MPD —1.68 (—2.92, —0.44) 0.008
Central MRT —1.13 (—2.15-0.15) 0.029
Contrast sensitivity —1.13 (-2.03, —0.23) 0.014
Intercept —0.28 (—1.01, 0.45) 0.453

MRT, macular retinal thickness; MPD, macular perfusion density. Bold values, statistically
significant (P <0.05).

that increases the risk of dementia in older adults, through limiting
physical activity and social engagement (Shang et al., 2021; Lee et al.,
2021). Specifically, retinal diseases such as AMD, glaucoma, and
diabetic retinopathy have shown a significant association with an
increased risk of all-cause dementia (Feng et al., 2023). Recently, early
retinal structural and vascular changes, prior to the onset of clinically
detectable retinal pathologies associated with AD and MCI, have been
identified as useful biomarkers that may signal central neurovascular
changes underlying early cognitive decline. However, they have not
yet been applied in clinical practice (Ge et al., 2021). Following a
rigorous model development and validation process, this study
introduces a user-friendly nomogram that leverages non-invasive
visual and retinal biomarkers for the early identification of cognitive
impairment among ophthalmic patients. The nomogram incorporates
central MRT, outer nasal MPD, and contrast sensitivity and

Frontiers in Aging Neuroscience

demonstrates excellent discriminative ability in both the training and
testing datasets (AUC: 0.896) to differentiate between individuals with
MCI and those with normal cognitive function among ophthalmic
patients aged 60 and above, as evidenced by bootstrap validation.
Clinical decision-making based on the model, as assessed by DCA,
suggests a potential net benefit; however, these findings remain
preliminary. Both retinal and visual features exhibited good diagnostic
performance, with a discriminative power of 0.78-0.8. These findings
align with previous research indicating the potential of contrast
sensitivity (Risacher et al., 2013; Elvira-Hurtado et al., 2023), macular
retinal thickness features (Almeida et al.,, 2019; Salobrar-Garcia et al.,
2019; Cunha et al,, 2016), and retinal vascular features (Chua et al.,
2020) as biomarkers for cognitive impairment. Combining central
MRT and outer nasal MPD also achieved a discriminative power of
0.84 with an accuracy of 75%, which is similar to the performance of
retinal image-based deep learning model combining vascular features
of the SVL, deep vascular layer, and choriocapillaris (Hao et al., 2024),
OCT images and or retinal photograph (Shi et al., 2024; Gao et al.,
2023; Zhang et al., 2021), and ganglion cell-inner plexiform layer
thickness with OCTA images (Wisely et al., 2024). Our study
enhanced the ability to detect retinal features by complementing them
with visual function. Decrease in contrast sensitivity has been
associated with AD and MCI (Risacher et al., 2013; Risacher et
al., 2020).

The retina, as an extension of the central nervous system, shares
structural and vascular traits with the brain, reflecting neural changes
in neurodegenerative diseases (London et al., 2013). Importantly,
identification of AP plaques in the postmortem retina of AD patients
has been considered a significant advancement (Koronyo-Hamaoui et
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(B) Model discrimination in the bootstrap training (green curve) and testing (red curve) dataset compared to the original AUC (blue curve).
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Model calibration plot. (A) Model calibration plot in the original dataset. (B) Model calibration plot after validation with the bootstrapping technique.

al., 2011; Lee et al,, 2020; Koronyo et al., 2017), driving a special ~ thickness and hippocampal volume is more predominant in MCI
interest in in vivo retinal imaging. Thus, several studies have showna  (Chen et al., 2023). Consistent with previous findings, this study also
significant reduction in total macular thickness associated with  observed a significant association between macular thickness in
cognitive decline (Kim and Kang, 2019; Giménez Castejon et al,, 2016;  central, temporal, and inferior areas and cognitive decline after
Cunha etal,, 2017; Cunha et al,, 2016; Hao et al., 2023; Ito et al., 2020;  adjusting for age.

Kao et al,, 2023). Cognitive scores positively correlate with total The neurovascular unit of the brain maintains the integrity of the
macular thickness (Kim and Kang, 2019; Zhao et al,, 2023; Meietal,  blood-brain barrier and regulates cerebral blood flow, thereby
2021), with strong correlation in the superior and temporal quadrants. ~ maintaining normal brain function (Yu et al., 2020). Disruption of the
This relationship has been further substantiated by linking the  neurovascular unit impairs oxygen and nutrient supply, as well as the
perifoveal retinal thickness to the hippocampal volume (Tao et al,,  clearance of neurotoxic substances, such as -amyloid, resulting in the
2019). Specifically, a positive correlation between total retinal  expression of amyloid precursor protein, capillary hypoperfusion,
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TABLE 6 Model performance after validation with the bootstrapping method in detecting MClI among older adults (B = 1,000).

Metric Original index Training Test Optimism Corrected index
Dxy 0.7923 0.7972 0.7621 0.0351 0.7573
C (AUC) 0.8962 0.902 0.873 0.029 0.8672
R? 0.5594 05935 05312 0.0623 0.4971
Intercept 0 0 —0.0015 0.0015 —0.0015
Slope 1 1 0.8528 0.1472 0.8528
Emax 0 0 0.0358 0.0358 0.0920
D 0.5248 05795 0.4901 0.0894 0.4354
U ~0.0357 —0.0357 0.0565 —0.0922 0.0565
Q 0.5606 0.6152 0.4335 0.1817 03789
B 0.1319 0.1222 0.1450 —0.0228 0.1547
g 3.0158 3.8173 2.8184 0.9989 2.0169
ep 0.3898 03925 03782 0.0143 03755

Dxy, Somer’s D index; C(AUC), area under curve; R, Nagelkerke R Square; B, Brier score; Emax, maximum difference between raw predicted probabilities and the recalibrated probabilities; D,
Discrimination index; U, Unreliability index; Q, Overall quality; g = g-index (Gini’s mean difference); gp, g index on the probability scale.

neurofibrillary tangle formation, neuroinflammation, neuronal  of disease. This tool is commonly used in tracking chronic diseases,
damage, and cognitive deficits (Ahmad et al., 2020; Kisler et al., 2017;  particularly in the management of cancer (Vernerey et al., 2016; Liu
Nelson et al., 2016; Shabir et al., 2018). Neurodegenerative diseases et al., 2022). This study uses readily extractable predictors, without
that cause cognitive decline are associated with reduced neurovascular ~ requiring further feature generation, which may ensure technical
coupling (Gao et al., 2023) and decreased cerebral blood flow (Lietal,  efficiency and model utilization feasibility. The scoring is intuitively
2023). Similarly, many studies have documented retinal vascular  simplified with a dynamic nomogram app, enabling rapid, efficient
alterations in the posterior pole associated with AD and MCI  classification of the target population. Moreover, the net benefit
(Criscuolo et al., 2020; Chua et al., 2020; Fang et al, 2021; Hu et al.,  analysis indicated that the model yields a higher net benefit across all
2023; Jiang et al., 2023; Jiang et al., 2018). Retinal vascular changes  threshold probability ranges. Thus, the net benefit suggests that the
have been linked to the high burden of retinal amyloid, in whicha  consequences of decision-making based on the model were cost-
severe decrease in retinal vascular zonula occludens-1 and claudin-5  effective, despite no economic evaluation having been conducted.
correlated with abundant arteriolar AB40 deposition in subjects with Although the clinical demographic profiles of ophthalmic patients
MClIand AD (Shi et al., 2023). Retinal claudin-5 deficiency has shown  vary with eye care models, the model may target a high-risk segment
a significant association with cerebral amyloid angiopathy, while  of patients who are readily accessible for opportunistic screening.
vascular zonula occludens-1 defects have been linked to cerebral This approach might complement existing cognitive assessments,
pathology and cognitive decline. This study also detected a significant ~ but decision-making based on the nomogram should be carefully
association between perfusion density in the macular area and  contextualized within broader clinical evaluation. Moreover, because
cognitive impairment, suggesting an underlying neurodegenerative  the model was developed with a small sample size, there may be a risk
process. This evidence of altered retinal structural and neurovascular  of overfitting and limited generalizability, despite adherence to the
features provides insight into the possibility that the brain and retina  clinical prediction model development rule (Stiell and Wells, 1999)
may undergo a shared trajectory of neurodegeneration underlying  and the use of a rigorous variable selection method. Following
cognitive changes. Altogether, this model comprises predictors that  statistically proven sample size estimation methods such as Riley’s
show a trend of association with cognitive changes, although some  approach might decrease random error (Riley et al., 2019; Riley et al.,
inconsistencies are present. This evidence suggests that the model is ~ 2020). Moreover, the retrospective power analysis obtained from this
scientifically explainable, as it links the importance of retinal and  study may also facilitate prior sample size estimation in future
visual features to cognitive function and their plausible  clinical studies.
scientific relationship. The model was internally validated with good performance, yet
Additionally, model interpretability is crucial to the models  external validation with independent, larger datasets with multicenter
clinical utility. In routine clinical practice, clinicians easily collect the ~ cohorts is imperative to establish generalizability and clinical
observed value of many predictive variables. However, using the  applicability. Given these limitations, this nomogram-based risk-
predictors to make a holistic decision about the disease or treatment  scoring tool should currently be regarded as a proof-of-concept that
outcome over time requires a scientific formulation. Nomogram-  requires further validation before clinical application.
based models are increasingly considered valuable clinical tools that Additionally, MCI is a heterogeneous clinical entity with a
convert complex statistical models into simple, intuitive graphical risk ~ complex trajectory, orchestrated by demographic, health-related, and
indicator tools. Given that a nomogram integrates multiple prognostic ~ biological factors, so that some progress to dementia, others remain
factors into a single score, nomogram-based prediction provides  stable or revert to normal (Aerts et al., 2017). Modifiable risk factors
continuous risk scores, allowing for precise stratification into  such as smoking, obesity, depression, and excessive alcohol
personalized risk categories, compared with traditional clinical staging ~ consumption have a significant role in dementia prediction and the

Frontiers in Aging Neuroscience 12 frontiersin.org


https://doi.org/10.3389/fnagi.2025.1669948
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org

Hussen et al. 10.3389/fnagi.2025.1669948

TABLE 7 Risk score value and corresponding estimated predicted probability of MCI, along with common performance indices of risk score-based
classification.

Cutoff points (>) Sensitivity Specificity Accuracy

4216 100.00% 0.00% 46.43% 1

57.72 100.00% 3.33% 48.21% 1.0345 0
64.06 100.00% 6.67% 50.00% 1.0714 0
65.04 100.00% 10.00% 51.79% L1111 0
68.63 100.00% 16.67% 55.36% 1.2 0
82.43 100.00% 20.00% 57.14% 1.25 0
89.01 100.00% 23.33% 58.93% 1.3043 0
90.22 100.00% 26.67% 60.71% 1.3636 0
92.46 100.00% 30.00% 62.50% 1.4286 0
95.34 100.00% 40.00% 67.86% 1.6667 0
98.44 100.00% 43.33% 69.64% 1.7647 0
101.90 100.00% 46.67% 71.43% 1.875 0
105.00 96.15% 50.00% 71.43% 1.9231 0.0769
108.72 96.15% 60.00% 76.79% 2.4038 0.0641
110.00 96.15% 70.00% 82.14% 32051 0.0549
110.50 92.31% 70.00% 80.36% 3.0769 0.1099
112.48 88.46% 73.33% 80.36% 33173 0.1573
113.00 88.46% 76.67% 82.14% 3.7912 0.1505
114.90 88.46% 80.00% 83.93% 44231 0.1442
116.10 84.62% 83.33% 83.93% 5.0769 0.1846
116.50 84.62% 86.67% 85.71% 6.3462 0.1775
117.50 80.77% 86.67% 83.93% 6.0577 0.2219
122.70 76.92% 86.67% 82.14% 5.7692 0.2663
123.80 73.08% 86.67% 80.36% 5.4808 03107
124.00 69.23% 86.67% 78.57% 5.1923 0.355
128.70 65.38% 90.00% 78.57% 6.5385 0.3846
131.10 53.85% 90.00% 73.21% 5.3846 05128
137.10 53.85% 93.33% 75.00% 8.0769 0.4945
139.10 46.15% 93.33% 71.43% 6.9231 0.5769
140.20 46.15% 96.67% 73.21% 13.8461 0.557
142.10 38.46% 96.67% 69.64% 11.5385 0.6366
143.90 34.62% 96.67% 67.86% 10.3846 0.6764
144.19 30.77% 96.67% 66.07% 9.2308 0.7162
15027 26.92% 96.67% 64.29% 8.0769 0.756
156.10 23.08% 96.67% 62.50% 6.9231 0.7958
160.40 19.23% 96.67% 60.71% 5.7692 0.8355
162.20 11.54% 96.67% 57.14% 3.4615 0.9151
169.27 11.54% 100.00% 58.93% 0.8846

179.00 7.69% 100.00% 57.14% 0.9231

214.51 0.00% 100.00% 53.57% 1

LR+, positive likelihood ratio; LR—, negative likelihood ratio. Bold values, optimal cutoff point with corresponding performance metrics.

management process (Blotenberg et al., 2025). This model has not  progressor and non-progressor phenotypes. Hence, longitudinal
incorporated these modifiable risk factors. Integrating such factors  studies are warranted to determine potential predictors of
may substantially enhance predictive accuracy for stratifying MClinto ~ MCI progression.
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FIGURE 7

Sensitivity analysis of different cutoff thresholds of risk score based on the total points to predict MCl among older adults.
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FIGURE 8
Decision curve analysis plot to demonstrate the clinical usefulness of
the model in predicting MCI. The bold red line represents the net
benefit of decision making based on the model at different threshold
probabilities; the blue line represents the net benefit of treating all
subjects with MCI; the black line represents the net benefit of the
‘treat none’ scenario.

Furthermore, although MMSE has demonstrated a sensitivity of
60% and a specificity of 80-87% (Tariq et al., 2006; Kaufer et al., 2008;
Saxton et al., 2009), relying on a single global screening tool may
therefore lead to misclassification bias. Thus, comprehensive domain-
specific cognitive assessments, including a thorough history and
functional assessment, and conventional diagnostic clinical criteria,
are important to increase accuracy (Petersen, 2016; McCarten, 2013;
Markwick et al., 2012).
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5 Conclusion

The study developed a simplified diagnostic prediction model that
utilizes an intuitive nomogram scoring system, integrating both retinal
features and visual function parameters. The model demonstrated
relatively good performance and net benefit across all ranges of
threshold probabilities, which might complement visual and
neurovascular evidence with cognitive tests. Using a well-validated
model trained on a large dataset, in conjunction with cognitive tests,
might support early detection of MCI in the ophthalmic setting. Thus,
further external validation is essential prior to clinical application
and generalization.
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