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Association of white matter
hyperintensity with systemic
inflammation markers and
cognitive assessments: a
cross-sectional study via SHAP
analysis

Dewang Gao © ', Jiayu Lv!, Xinhui Lit, Wen Yong?,
Wenlong Yu?!, Lu Wang?, Shangjia Ma?, Hua Li?,
Shuaigiang Zhang!, Zi Guot, Hao Yan?!, Zhipeng Ju?,
Yiming Liu?, Xia Guo @ ** and Lie Wu'*

'Department of Neurology, The First Affiliated Hospital of Baotou Medical College, Baotou, China,
2BaogangHospital of Inner Mongolia, Baotou, China

Background: White matter hyperintensity (WMH), a common neuroimaging
feature in the older adults, has not been systematically elucidated regarding its
association with cognitive function and systemic inflammation.

Aim: To develop and validate a clinical model for higher WMH burden
integrating MoCA and CBC-derived inflammatory markers, and to quantify their
independent and joint associations with WMH severity.

Methods: This study retrospectively collected data from patients with WMH
at the First Affiliated Hospital of Baotou Medical College (December 2023-
December 2024). We used univariate and multivariate logistic regression
analyses to identify WMH-related variables. Then, we constructed an
artificial neural network model and performed 10-fold cross-validation for
internal validation and model performance comparison. The Shapley Additive
Explanations (SHAP) method was employed to evaluate both models.

Results: Correlation analysis revealed a significant association between the
systemic inflammation response index (SIRI) and WMH burden (P< 0.01).
Multivariate logistic regression analysis identified age, hypertension, high-
density lipoprotein (HDL), previous cerebrovascular disease, the systemic
inflammation response index (SIRI), and the Montreal Cognitive Assessment
(MoCA) score as independent predictors of WMH burden. Ten-fold cross-
validation showed that the set neural network model performed as well as the
logistic regression model (AUC = 0.824). SHAP-based visual analysis identified
age, MoCA score, and hypertension as key driving factors.

Conclusion: Age, hypertension, previous cerebrovascular disease, HDL, SIRI, and
MoCA score are independent risk factors for moderate to severe WMH occurred.
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The model integrating MoCA and inflammatory markers accurately predicts
moderate to Severe WMH. This study offers a multidimensional assessment
framework for WMH risk stratification and early intervention.
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white matter hyperintensity, Montreal Cognitive Assessment, systemic inflammation
response index, model comparison and internal validation, SHAP analysis

1 Introduction

White matter hyperintensity (WMH) is a
neuroimaging marker on brain magnetic resonance imaging

significant

(MRI), appearing as characteristic hyperintensities on T2-
weighted and fluid-attenuated inversion recovery (FLAIR)
sequences. Its underlying pathology includes demyelination,
axonal degeneration, and gliosis (Karvelas and Elahi, 2023).
Epidemiological studies demonstrate a marked increase in WMH
prevalence with age: ranging from 11 to 21% in healthy individuals
aged 64 years (Debette and Markus, 2010) to 94% in those aged
82 years. Among individuals with vascular risk factors, WMH
prevalence is 68-87% in those aged 60-70 years, rising to 95%
for periventricular WMH (PVWMH) in octogenarians and
nonagenarians (80-90 years) (da Silva et al., 2022; Debette and
Markus, 2010). Individuals with WMH have a 2.6-4.4 times
higher risk of stroke, a 1.3-2.8 times greater risk of dementia,
and nearly twice the risk of mortality compared to those without
WMH (Debette and Markus, 2010). Studies have confirmed that
WMH volume is positively correlated with cognitive impairment
(da Silva et al, 2022). Furthermore, rapid WMH progression
has been established as a significant predictor for the transition
from preclinical Alzheimer’s disease to clinical dementia (Egle
et al., 2022; Gu et al.,, 2022; Saleh et al., 2021; Tully et al., 2020).
Longitudinal studies suggest spatial heterogeneity in WMH
progression, with annual increases of 0.2% in subcortical and 0.4%
in periventricular regions (Salvado et al,, 2019).
WMH represents a characteristic neuroimaging manifestation
small vessel disease (CSVD).
encompassing demyelination,

of cerebral Its etiology is

multifactorial, axonal injury,
and vascular pathology secondary to chronic hypoperfusion.
These pathological alterations disrupt neural connectivity and
ultimately lead to cognitive decline. Age and hypertension are
established independent risk factors (Salvado et al., 2019), while
non-traditional factors such as metabolic dysregulation and
sleep-disordered breathing also contribute to the pathological
process (Salvado et al, 2019). The pathogenesis of vascular-
related WMH likely involves a synergistic interaction among
cerebral hypoperfusion, blood-brain barrier (BBB) disruption, and
oxidative stress (Karvelas and Elahi, 2023). Emerging evidence
highlights the pivotal role of neuroinflammation in WMH
pathogenesis: BBB disruption facilitates infiltration of peripheral
immune cells and release of pro-inflammatory cytokines, initiating
a vicious cycle of inflammation-endothelial damage-ischemia
(Jiang et al., 2022). Animal studies confirm that spontaneously
hypertensive rats (SHRs) recapitulate the neuroinflammatory

features and white matter damage observed in patients with CSVD

Frontiers in Aging Neuroscience

(Kaiser et al, 2014). Genetic studies support the involvement
of inflammatory pathways (Jickling et al, 2022). Meanwhile,
readily accessible complete blood count-derived inflammatory
indices, such as the systemic immune-inflammation index
[SII (neutrophils x platelets/lymphocytes)] and neutrophil-
to-lymphocyte [NLR (neutrophils/lymphocytes)], its
accessibility provides a new idea for WMH evaluation (Del Brutto
et al., 2023; Jiang et al., 2022; Liang et al., 2023; Nam et al., 2022;
Wang et al., 2022).

However, current clinical practice faces dual challenges:

ratio

the high cost of multi-sequence MRI restricts its widespread
application in primary care settings, and the precise mechanisms
linking inflammatory markers to WMH remain incompletely
elucidated. This study aims to systematically explore the
relationship between systemic inflammatory markers (including
SII, NLR, etc.) and WMH burden, construct a predictive model
integrating clinical data and inflammatory indices, and thereby
provide an evidence-based foundation for early WMH screening
and intervention. The findings provide an important basis for
optimizing diagnostic-therapeutic pathways and promoting the
clinical translation of community-based WMH prevention and
management strategies.

2 Materials and methods

2.1 Research design and participants

This retrospective study enrolled 327 patients who visited the
Department of Neurology at the First Affiliated Hospital of Baotou
Medical College between December 2023 and December 2024.
Inclusion criteria were: (1) Presence of WMH on brain MRI; (2)
Age > 40 years; (3) Availability of complete laboratory and imaging
data. Exclusion criteria comprised: (1) Concurrent hematological
disorders, acute infectious diseases, or other significant systemic
illnesses; (2) A history of acute cerebral infarction (within 14
days), acute cerebral hemorrhage, aneurysms, or arteriovenous
malformations; (3) Non-vascular white matter pathologies (e.g.,
multiple sclerosis, encephalitis, toxic leukoencephalopathy,
hydrocephalus, traumatic brain injury); (4) Epilepsy, malignant
tumors, or severe cardiac, pulmonary, hepatic, or renal dysfunction;
(5) Inability to cooperate with cognitive function assessment during
the study period. The study protocol was approved by the Ethics
Committee of the First Affiliated Hospital of Baotou Medical
College (Approval No. 2024-K044-01). All procedures were
conducted in strict accordance with ethical guidelines, and we
applied for exemption from written informed consent.
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2.2 Data collection and systemic
inflammatory marker assessment

Comprehensive demographic data, including age, sex, and
lifestyle factors, were collected for each patient. Laboratory
tests at admission included complete blood count, fasting
plasma glucose (FPG), low-density lipoprotein cholesterol
(LDL-C), and other relevant parameters. Cognitive function
was assessed using the Montreal Cognitive Assessment (MoCA)
(Salvadori et al.,, 2021). Several systemic inflammatory markers
were calculated, including: neutrophil-to-lymphocyte ratio
(NLR = neutrophil count/lymphocyte count), derived neutrophil-
to-lymphocyte ratio [dNLR = neutrophil count/(white blood
cell count — neutrophil count)], lymphocyte-to-monocyte
ratio (LMR = lymphocyte count/monocyte count), platelet-to-
lymphocyte ratio (PLR = platelet count/lymphocyte count),
systemic immune-inflammation index (SII = neutrophil
count x latelet count/lymphocyte count), lymphocyte-to-
white blood cell ratio (LWR = lymphocyte count/white blood cell
count), neutrophil-to-white blood cell ratio (NWR = neutrophil
count/white blood cell count), platelet-to-neutrophil ratio
(PNR = platelet count/neutrophil count), systemic inflammation
[SIRI =

count)/lymphocyte count], and eosinophil-to-lymphocyte ratio

response index (neutrophil count x monocyte
(ELR = eosinophil count/lymphocyte count). All data were
collected by trained neurologists at the First Affiliated Hospital
of Baotou Medical College, with strict confidentiality measures
implemented to protect participant information throughout and

after data collection.

2.3 Cognitive assessment

MoCA
visuospatial/executive function, naming, memory, attention,

evaluated eight cognitive domains:
language, abstraction, delayed recall, and orientation. Total
score: 30 points; >26 indicated normal cognition. One point
was added for individuals with <12 years of education.
Assessments were completed within 3 days of enrollment by

trained neuropsychologists.

2.4 MRI acquisition and evaluation

Brain MRI was conducted using a 3.0T scanner with sequences
including T1-weighted imaging (T1WI), T2-weighted imaging
(T2WI), diffusion-weighted imaging (DWI), fluid-attenuated
inversion recovery (FLAIR), and susceptibility-weighted imaging
(SWI). Two experienced neuroradiologists, blinded to clinical data,
independently rated WMH burden using the Fazekas scale. Inter-
rater agreement for categorical scores was evaluated using weighted
kappa (k), while the reliability of continuous measurements
was assessed with intraclass correlation coeflicients (ICC). All
MRI scans were independently evaluated according to the most
recent expert consensus (Duering et al., 2023). Any discrepancies
were resolved through consensus discussion or adjudication by
a third expert. WMH lesions were defined as punctate or
patchy hyperintensities on T2WI/FLAIR sequences, appearing
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FIGURE 1

T2 FLAIR imaging reports of head MRI. Periventricular WMH
(PVWMH) fazekas scores: (A) 0 points, (B) 1 point, (C) 2 points, (D) 3
points; Deep WMH (DWMH) Fazekas scores: (E) O points, (F) 1 point,
(G) 2 points, (H) 3 points.

A total of 327 patients with cerebral small vessel
disease were include in the study (n=327)

Variable selection:
1.Correlation analysis
2.Univariate analysis

3.Logistic regression

Artificial Neural Network
Model

ROC curve
Calibration curve
DCA curve
CIC curve
Nomogram

Model visualizati }

o

FIGURE 2

The flow chart of this study. ROC, receiver operator characteristic;
DCA, decision curve analysis; CIC, clinical impact curve.

isointense or hypointense on T1WI without cavitation, typically
exhibiting bilateral symmetric distribution. WMH severity was
graded according to the Fazekas scale:

- Periventricular WMH (PVWMH): 0 (none), 1 (caps or pencil-
thin lining), 2 (smooth halo), 3 (irregular extension into deep white
matter)

- Deep WMH (DWMH): 0 (none), 1 (punctate foci), 2
(beginning confluence), 3 (large confluent areas)

Total Fazekas scores (0-6) were used to classify patients into
mild (0-2) and moderate-to-severe (3-6) WMH groups (Figure 1).

2.5 Model development

Univariate and multivariate logistic regression analyses were
performed for variable selection. Variance inflation factor (VIF)
analysis was applied to control multicollinearity, retaining variables
with VIF < 5. The predictive model was evaluated based on
the area under the receiver operating characteristic curve (AUC),
calibration curves, decision curve analysis (DCA), and clinical
impact curves (CIC) to assess its predictive performance and
clinical utility. We further developed an artificial neural network
model based on independent predictors from the logistic regression
model, and conducted internal validation and model performance
comparison. Model interpretability was examined using SHapley

frontiersin.org


https://doi.org/10.3389/fnagi.2025.1667025
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/

Gao et al.

Additive exPlanations (SHAP), including feature importance
rankings, beeswarm plots, and individual force plots. The complete
experimental procedure is shown in Figure 2.

2.6 Statistical analysis

Data analysis and visualization were conducted using SPSS
version 26.0 and R version 4.2.2. Continuous variables with normal
distribution were expressed as mean =+ standard deviation (SD)
and compared using independent ¢-tests. Non-normally distributed
and ordinal variables were presented as median (interquartile
range, IQR) and compared using the Mann-Whitney U test.
Spearman’s rank correlation was used to assess the relationships
among inflammatory markers, imaging features, and cognitive
scores. Backward stepwise binary logistic regression was used to
identify independent risk factors. Receiver operating characteristic
(ROC) analysis was conducted to evaluate predictive performance,
and a nomogram was constructed. Based on the independent
factors identified from the complete dataset, a single-hidden-layer
feedforward neural network was constructed with the following
specifications: 3 hidden nodes, weight decay regularization (decay
factor = 0.1), and a maximum of 1,000 training iterations.
The discriminative performance of neural networks and logistic
regression models was evaluated using the ROC curve, which
was plotted based on 10-fold cross-validation results. The AUC
and its 95% confidence interval were employed to quantify model
performance. The DeLong test was applied to compare ROC
curve differences between neural networks and logistic regression
models, with a significance level set at a = 0.05. Additionally,
SHAP was utilized to quantify the contribution of each feature to
the model predictions, with statistical significance defined as P <
0.05. R packages including pROC, CBCgrps, rms, and rmda were
employed for data processing and visualization.

3 Results

3.1 Clinical characteristics of WMH
patients

A total of 327 patients with WMH were enrolled, including 152
with mild WMH and 175 with moderate-to-severe. No significant
differences were observed between WMH severity groups in terms
of sex, smoking status, alcohol consumption, or triglyceride levels
(P > 0.05). However, significant differences were observed in
age, and the prevalence of diabetes, hypertension, and cognitive
impairment between the two groups (P< 0.05). Compared to
the mild WMH group, the moderate-to-severe group showed
significantly lower levels of low-density lipoprotein cholesterol
(LDL-C, p = 0.004), high-density lipoprotein cholesterol (HDL-
C, p = 0.005), total cholesterol (TC, p < 0.001), lymphocyte-
to-monocyte ratio (LMR, p < 0.001), and platelet-to-neutrophil
ratio (PNR, p = 0.019), along with significantly higher levels of
fasting plasma glucose (FPG, p = 0.005), uric acid (UA, p = 0.009),
neutrophil-to-lymphocyte ratio (NLR, p = 0.029), and systemic
inflammation response index (SIRI, p = 0.002) (Table 1).
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3.2 Correlation analysis of WMH

Two neurologists assessed the WMH burden. Inter-rater
agreement was excellent (weighted k = 0.91, 95% CI 0.89-
0.94, p < 0.001; ICC = 0.98, 95% CI 0.98-0.99, p < 0.001),
ensuring consistent WMH classification. Correlation analysis of
17 differentially expressed variables revealed that WMH burden
showed a significant positive correlation with Siri (r = 0.19, P<0.01)
and a significant negative correlation with MoCA scores (r = -0.55,
P<0.001). However, no significant correlation was found between
fasting plasma glucose (FPG), NLR, and LMR and WMH (p> 0.05)
(Figure 3A). Figure 3B illustrates the correlation between WMH
scores and various subgroups in the MOCA.

3.3 Feature selection

The association analysis in this study included 14 variables
encompassing demographic characteristics, metabolic parameters,
and systemic inflammatory markers. To improve model accuracy,
age is analyzed as a stratified categorical variable. Variables showing
statistical significance (P < 0.1) in univariate analysis were entered
into a multivariate backward stepwise logistic regression model,
with a retention criterion of P < 0.05 in the final model. Age,
hypertension, HDL-C, SIRI, previous cerebrovascular disease and
MoCA score were identified as independent risk factors for
moderate to severe WMH occurred (Table 2). Convert the age
group variable in the model to numeric. Subsequently, a nomogram
was constructed and the predictive model was evaluated (Figure 4).

3.4 Analysis of predictive efficacy of risk
factors for moderate to severe WMH
patients

ROC curve analysis based on the variables from the final
model yielded the following results: For SIRI, AUC was 0.599 (95%
CI: 0.537-0.660, P = 0.002), with a Youden index of 0.197, an
optimal cutoff value of 1.016, and corresponding sensitivity and
specificity of 65.1 and 54.6%, respectively. For MoCA score, the
AUC was 0.749 (95% CI: 0.696-0.802, P< 0.001), with a Youden
index of 0.422, an optimal cutoff of 19.5 points, and sensitivity
and specificity of 60.0 and 82.2%, respectively. The combined
predictive model achieved an AUC of 0.824 (95% CI: 0.779-0.868,
P<0.001), with a Youden index of 0.528, an optimal cutoff of 0.656,
and sensitivity and specificity of 64.6 and 88.2%, respectively. The
combined model demonstrated superior predictive performance
for moderate-to-severe WMH compared with either marker alone
(Figure 5A).

The calibration curve analysis indicated excellent calibration
agreement between the model’s predictions and the actual observed
outcomes (Figure 5B). DCA showed that within a threshold
probability range of 0.05-1.0, the nomogram yielded greater
net benefit than both the “treat-none” and “treat-all” strategies
(Figure 5C). CIC was used to evaluate the clinical utility of the risk
prediction nomogram (Figure 5D). The CIC visually demonstrated
superior overall net benefit for the nomogram across a wide
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TABLE 1 Baseline characteristic of the study subject.
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Variables Total (n = 327) Mild (n = 152) Moderate-severe | Statistic

(n = 175)
Demographic features
Male, n(%) 162 (49.54) 67 (44.08) 95 (54.29) %2 =339 0.066
Age, years 66.18 £ 9.17 63.32 & 8.36 68.67 & 9.14 t=-5.49 <0.001
[40,56] 45 (13.76) 29 (19.08) 16 (9.14) ¥2 =16.05 <0.001
[57,73] 203 (62.08) 100 (65.79) 103 (58.86)
[74,90] 79 (24.16) 23 (15.13) 56 (32.00)
Smoking, n(%) 76 (23.24) 28 (18.42) 48 (27.43) ¥2 =370 0.054
Alcohol history, n(%) 43 (13.15) 20 (13.16) 23 (13.14) ¥2 =0.00 0.997
Previous cerebrovascular disease, n(%) 93 (28.44) 19 (12.50) 74 (42.29) ¥? =35.46 <0.001
Metabolic related indicators
Hypertension, n(%) 201 (61.47) 75 (49.34) 126 (72.00) ¥2 =17.63 <0.001
BMI 24.98 £ 3.51 24.73 £ 3.56 25.19 & 3.46 t=-1.17 0.242
Diabetes, n(%) 81 (24.77) 26 (17.11) 55 (31.43) ¥2 =8.96 0.003
LDL, mmol/L 2.56 (2.08, 3.19) 2.76 (2.21, 3.41) 2.45 (1.98, 3.05) Z=-285 0.004
HDL, mmol/L 1.11 (0.94, 1.31) 1.14 (0.98, 1.34) 1.08 (0.91, 1.24) Z=-283 0.005
FPG, mmol/L 5.50 (4.90, 6.40) 5.30 (4.80, 6.03) 5.60 (5.00, 6.85) Z=-2.80 0.005
TC, mmol/L 4.17 (3.52,4.97) 4.46 (3.76,5.13) 3.97 (3.33, 4.79) Z=-337 <0.001
TG, mmol/L 1.44 (0.99, 2.02) 1.38 (0.99, 2.08) 1.44 (1.00, 1.98) Z=-0.14 0.886
UA, pmol/L 323.00 (267.00, 387.50) 313.50 (249.75, 367.75) 340.00 (277.00, 399.50) Z=-261 0.009
Systemic inflammatory markers
Neutrophils, x 10"9/L 4.26 (3.23,5.37) 4.18 (3.05, 5.23) 4.28 (3.44, 5.47) Z=-1.00 0.316
Lymphocytes, x 10"9/L 1.54 (1.20, 2.00) 1.67 (1.23,2.07) 1.50 (1.18, 1.89) Z=-178 0.076
Platelets, x 10"9/L 212.00 (171.50, 251.00) 216.50 (178.00, 258.25) 206.00 (167.00, 243.00) Z=-2.24 0.025
WBC, x10"9/L 6.55 (5.50, 7.76) 6.49 (5.42,7.83) 6.59 (5.61,7.72) Z=-0.56 0.575
HGB, g/L 143.00 (134.00, 155.00) 143.00 (135.75, 152.25) 143.00 (132.00, 157.50) Z=-0.20 0.844
Monocyte, x 10"9/L 0.43 (0.34, 0.54) 0.39 (0.32, 0.52) 0.47 (0.35, 0.58) Z=-3.20 0.001
Eosinophils, x10"9/L 0.07 (0.03, 0.14) 0.07 (0.04, 0.14) 0.07 (0.03, 0.13) Z=-0.13 0.899
Basophils, x 10"9/L 0.03 (0.02, 0.04) 0.03 (0.01, 0.04) 0.03 (0.02, 0.04) Z=-1.04 0.298
NLR 2.62 (1.89, 3.73) 2.42 (1.73, 3.49) 2.80 (2.02, 3.89) Z=-219 0.029
dNLR 0.65 (0.59, 0.72) 0.64 (0.57, 0.72) 0.67 (0.60, 0.73) Z=-1.62 0.106
PLR 133.06 (104.68, 173.14) 133.73 (104.71, 175.75) 132.16 (104.96, 172.71) Z=-0.26 0.795
LMR 3.64 (2.68, 4.88) 4.12 (3.00, 5.06) 3.30 (2.48, 4.67) Z=-3.94 <0.001
LWR 0.25 (0.19, 0.31) 0.26 (0.20, 0.33) 0.24 (0.19, 0.29) Z=-2.40 0.017
NWR 0.65 (0.59, 0.72) 0.64 (0.57, 0.72) 0.67 (0.60, 0.73) Z=-1.62 0.106
PNR 50.87 (37.39, 64.47) 53.75 (40.51, 68.44) 48.23 (36.89, 60.57) Z=-234 0.019
ELR 0.05 (0.02, 0.08) 0.04 (0.02, 0.08) 0.05 (0.02, 0.08) Z=-0.73 0.466
SII 533.43 (377.90, 815.03) 515.83 (363.12, 808.27) 542.15 (393.02, 815.03) 7 =-0.74 0.457
SIRI 1.15 (0.73, 1.76) 0.99 (0.67, 1.50) 1.27 (0.82, 1.82) Z=-3.08 0.002
Cognition and emotion
MOCA 22(15,27) 25(21,27) 17 (12, 23) Z=-7.80 <0.001

Values for continuous variables are expressed as mean =+ standard deviation or interquartile range; values for categorical data are given as numbers (percent). Mild: WMH total score <2 points.
Moderate-Severe: WMH total score >2 points. NLR, Neutrophil Count/Lymphocyte Count; dNLR, Neutrophil Count/(White Blood Cell Count - Neutrophil Count); LMR, Lymphocyte
Count/Monocyte Count; PLR, Platelet Count/Lymphocyte Count; SII, Neutrophil Count x Platelet Count/Lymphocyte Count; LWR, Lymphocyte Count/White Blood Cell Count; NWR,
Neutrophil Count/White Blood Cell Count; PNR, Platelet Count/Neutrophil Count; SIRI, (Neutrophil Count x Monocyte Count)/Lymphocyte Count; ELR, Eosinophil Count/Lymphocyte
Count; p-values are compared between Mild and Moderate-Severe groups. T, ¢-test; Z, Mann-Whitney test; X2 Chi-square test.
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FIGURE 3

(A,B) Spearman correlation heat map of WMH variables. The upper triangle of the figure shows the significant relationship between each variable,
and the lower triangle shows the correlation coefficient. The size of the circle represents the correlation coefficient, and the depth of color
represents the correlation coefficient (r-value), * <0.05; ** <0.01; *** <0.001.
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TABLE 2 Univariate and multivariate logistic regression analysis.

10.3389/fnagi.2025.1667025

Variables Single factor Multiple factor
SE | Z P OR (95%Cl) B | SE | Z P OR (95%Cl)
Age
42-58 1.00 (Reference) 1.00 (Reference)
59-75 0.62 0.34 1.83 0.068 1.87 (0.96 ~ 3.65) 0.24 0.40 0.60 0.552 1.27 (0.58 ~ 2.76)
76-92 1.48 0.40 3.73 <0.001 4.41 (2.02 ~9.63) 0.98 0.47 2.10 0.036 2.67 (1.07 ~ 6.70)
Hypertension 0.97 0.23 4.15 <0.001 2.64 (1.67 ~ 4.17) 0.71 0.28 2.53 0.011 2.03 (1.17 ~ 3.52)
Previous cerebrovascular 1.63 0.29 5.66 <0.001 5.13 (2.91 ~9.04) 1.06 0.33 3.20 0.001 2.89 (1.51 ~ 5.52)
disease
HDL -1.27 0.42 -3.03 0.002 0.28 (0.12 ~ 0.64) -0.99 0.49 -2.02 0.043 0.37 (0.14 ~ 0.97)
LDL -0.33 0.13 -2.53 0.011 0.72 (0.55 ~ 0.93)
TC -0.32 0.11 -2.92 0.004 0.73 (0.59 ~ 0.90)
UA 0.01 0.00 2.58 0.010 1.01 (1.01 ~ 1.01)
Monocyte 1.87 0.65 2.87 0.004 6.47 (1.81 ~ 23.11)
Platelets -0.01 0.00 -2.35 0.019 0.99 (0.99 ~ 0.99)
LWR -2.55 1.22 -2.09 0.037 0.08 (0.01 ~ 0.86)
PNR -0.01 0.01 -2.44 0.015 0.99 (0.98 ~ 0.99)
SIRI 0.36 0.13 2.84 0.005 1.44 (1.12 ~ 1.85) 0.27 0.14 1.96 0.049 1.31(1.01 ~ 1.72)
MOCA -0.16 0.02 -7.36 <0.001 0.85 (0.81 ~ 0.89) -0.13 0.02 -5.62 <0.001 0.87 (0.83 ~ 0.92)

OR, odds ratio; CI, confidence interval.

Nomogram for White Matter Hyperintensity Risk Prediction

FIGURE 4

Based on Multivariate Logistic Regression Analysis
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The nomogram used to evaluate WMH burden. The vertical line at the top of the bar chart represents the total score for each independent variable
(0-100 points). The total scores of all variables are added to determine the predicted risk value above the bottom of the prediction line. For
categorical variables, “0" indicates the absence of disease or condition, and “1" indicates the presence of disease or condition. Among the
categorical variables, “0" indicates the absence of previous cerebrovascular disease and hypertension, while 1" indicates their presence. HDL,
high-density lipoprotein; Siri, systemic inflammation marker; MOCA, Montreal Cognitive Assessment Scale.
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Six variables combined to predict performance. (A) The receiver operating characteristic curve (ROCauc) curve six variables combined to predict
performance. (B) The calibration curve of six variables combined to predict performance. (C) The decision curve analysis (DCA) of six variables
combined to predict performance. (D) The clinical impact curve (CIC) of six variables combined to predict performance.
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range of threshold probabilities and in scenarios impacting patient
outcomes, indicating significant predictive value of the model.

3.5 Internal validation and model
comparison

Using the independent predictors from the logistic regression
model, an artificial neural network was developed (Figure 6). Both
models demonstrated comparable discriminatory performance in
10-fold cross-validation (DeLong test, P = 0.587), with AUCs of
0.813 (95% CI: 0.756-0.853) for the neural network and 0.814 (95%
CI: 0.766-0.858) for the logistic regression model.

Internal validation confirmed that both models maintained
good predictive performance and comparable classification
accuracy. The neural network further validated the robustness

Frontiers in Aging Neuroscience

of the logistic regression model. Although the neural network
approach offers greater flexibility in capturing complex nonlinear
patterns, the logistic regression model provides superior clinical
applicability and interpretability while maintaining comparable
predictive performance.

3.6 Model interpretability

3.6.1 SHAP analysis for logistic regression model

SHAP identified MoCA
cerebrovascular disease, hypertension, and age as the predominant
predictors (Figure 7A). In the SHAP beeswarm plot, data points
for hypertensive patients shifted to the right (indicating higher
SHAP values), suggesting a stronger contribution to WMH burden
(Figure 7B).

analysis score,  previous
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The ROCauc curve of subjects’ working characteristics was used to compare the predictive performance of the two combined models.

Individual SHAP force plots (Figure 7C) illustrated the
contribution of each feature: low MoCA score (++0.28 SHAP) and
previous cerebrovascular disease (+0.122) increased the predicted
risk, whereas a low SIRI score (—0.032) reduced it. These findings
confirm the differential impacts of the inflammatory marker (SIRI)
and the cognitive factor (MoCA) on WMH risk. Figure 7D further
visualizes the contribution of individual features to the model’s
decision boundary.

3.6.2 SHAP feature importance analysis for neural
network models

To further validate the interpretability of the neural network
model, SHAP analysis was performed using the final model
trained on the complete dataset. Specifically, 200 instances were
randomly sampled to establish the background dataset. SHAP
values were then approximated using 50 randomly selected
background samples per prediction. The resulting SHAP summary
plot identified MoCA, hypertension, age, and SIRI as the primary
predictors (Figure 7E).

Frontiers in Aging Neuroscience

4 Discussion

WMH are common neuroimaging findings in the aging
population, whose severity is positively correlated with cognitive
impairment, neuropsychiatric symptoms, and increased mortality
risk (Chen et al, 2021; Debette et al, 2019; Moroni et al,
2020; Schoemaker et al, 2022). We developed and internally
validated two predictive models. Both models demonstrated
good discriminatory performance in 10-fold cross-validation
(AUC = 0.81). For the current prediction task, the relatively
simple logistic regression model adequately captured key predictive
relationships, while the more complex neural network did
not provide significant performance improvement in internal
validation. These findings provide empirical support for selecting
more parsimonious and interpretable models in clinical practice.
Correlation analyses revealed significant associations between
moderate-to-severe WMH and age, hypertension, diabetes, and
previous cerebrovascular disease. Among these, hypertension,
MoCA score, SIRI, HDL levels, age, and previous cerebrovascular
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disease were confirmed as independent risk factors for moderate-
to-severe WMH. SHAP analysis of both models further identified
MoCA, hypertension, and age as key determinants. Our findings
highlight several modifiable risk factors for WMH progression.
Notably, both blood pressure control and antihypertensive therapy
has been consistently shown to slow the progression of WMH
(Lai et al, 2020; van Middelaar et al., 2018), underscoring the
importance of vascular risk management. At the tissue level,
the pathological correlates of WMH, including demyelination
and gliosis, represent potential mechanisms through which these

Frontiers in Aging Neuroscience 10

vascular risk factors ultimately lead to cognitive impairment. This
mechanistic understanding supports the potential value of early
cognitive rehabilitation strategies for high-risk WMH patients,
though this requires validation in prospective studies. In our
cohort, the prevalence of diabetes mellitus was significantly higher
in the moderate-to-severe WMH group than in the mild group (P
< 0.05). However, no significant associations were found between
smoking or alcohol and WMH burden, possibly due to the limited
sample size. Among participants aged > 40 years, no significant
sex-based differences in WMH severity were observed.
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4.1 Biological significance and predictive
value of SIRI in CSVD

Our that  SIRI
count x monocyte count)/lymphocyte count], derived from

study  demonstrated (neutrophil
neutrophils, monocytes, and lymphocytes, exhibits significant
predictive value for moderate-severe WMH and correlates
significantly with WMH burden. These findings are consistent with
previous research on other inflammatory biomarkers such as NLR
(Chuang et al., 2023; Nam et al., 2022; Xiao et al., 2023). Notably,
SIRI showed a stronger correlation with PVWMH (r = 0.22, P <
0.01) than with subcortical WMH (r = 0.13, P = 0.16), suggesting
that inflammatory processes may preferentially affect perivascular
regions where the blood-brain barrier is relatively weaker. This
finding is consistent with the report by Wang et al. (2021), which
linked neutrophil and monocyte counts to outcomes following
acute cerebrovascular events.

that
lymphocyte counts independently predict adverse outcomes

Prior studies demonstrate reduced  peripheral
post-cerebrovascular events (Gong et al., 2021). We observed a
positive correlation between the SIRT and WMH burden (r = 0.19,
P < 0.001). This suggests that SIRI may reflect the balance
between adaptive immune responses (indicated by lymphocyte
levels) and inflammatory responses (reflected by neutrophil
counts), providing new insights into the role of adaptive immunity
in WMH pathogenesis. Potential mechanisms may involve
lymphocyte-mediated vascular repair through anti-inflammatory
cytokines such as IL-10 (Huang et al, 2021), while patients
with WMH often exhibit immunosenescence, characterized by
lymphopenia and elevated C-reactive protein (CRP) levels (Lian
etal,, 2020; Soto-Heredero et al., 2023). This immune dysregulation
may exacerbate neurovascular injury through SASP, indicating
that maintaining immune homeostasis could serve as a novel
therapeutic strategy.

The immune system, inflammation, and hypertension are
pathophysiologically interconnected (Manzano et al., 2025; Costa
et al, 2001). The innate and adaptive immune systems trigger
inflammatory processes that contribute to elevated blood pressure
and subsequent organ damage (Roy et al., 2022). Cells of the innate
immune system produce reactive oxygen species (ROS), including
superoxide and hydrogen peroxide, primarily to eliminate
pathogens. Prolonged inflammation enhances ROS production,
resulting in oxidative stress that induces endothelial dysfunction.
The endothelium regulates vascular tone and structure. Persistent
inflammation reduces nitric oxide (NO) bioavailability, impairing
its vasodilatory function and compromising vascular relaxation.
Effector T cells and regulatory lymphocytes—components of
the adaptive immune system—contribute to vasoconstriction
in hypertension. Signals from the central nervous system and
antigen-presenting cells (APCs) activate effector T lymphocyte
differentiation, promoting polarization toward Th-1 and Th-17
phenotypes (Ciprandi et al., 2009). Th-1 and Th-17 effector cells
drive inflammatory responses that promote WMH development
(Ochando et al., 2023).

Compared to indices such as NLR and SII, SIRI provides
a more precise reflection of neurovascular inflammation and
immune responses by integrating homeostasis information
from multiple immune cell lineages. Its principal advantage
lies in the comprehensive integration of three key leukocyte
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subsets, thereby offering a more complete representation
of Unlike
measurements (e.g., CRP) or two-parameter ratios (e.g., NLR),
SIRI simultaneously quantifies neutrophils (representing acute

systemic inflammatory status. single-parameter

innate immunity), lymphocytes (reflecting adaptive immune
regulation), and monocytes (involved in chronic inflammation and
immunothrombosis). This integrated approach better captures the
complex inflammatory network implicated in WMH pathogenesis,
particularly in processes involving endothelial dysfunction and
blood-brain barrier disruption.

Our findings align with emerging evidence across various
disease domains. For instance, recent studies demonstrate that in
statin-treated patients, SIRI shows superior value to traditional
biomarkers like high-sensitivity C-reactive protein (hs-CRP) for
predicting cardiovascular mortality risk stratification (Xia et al,
2023). Similarly, in metabolic dysfunction-associated steatotic
liver disease, SIRI showed better performance in predicting
cardiovascular risk than traditional inflammatory indices (Huang
et al, 2025). Notably, neither our study nor the regional
investigation by Jiang et al. (2022) found significant associations
between NLR and WMH, suggesting that geographical or
population-specific differences may influence the utility of certain
inflammatory markers. Given the high-salt and high-fat dietary
patterns in Inner Mongolia, which are more likely to trigger
cardiovascular and cerebrovascular diseases compared to other
regions, our study included patients with prior cerebrovascular
disease. This may be related to early statin prophylaxis in such
patients, where the anti-inflammatory and antioxidant effects of
statins could normalize NLR levels. Local lifestyle factors and
medication practices may also influence model results. Therefore,
we recommend SIRI as a complementary biomarker within
existing assessment frameworks rather than a replacement for
traditional inflammatory markers. Future multi-center cohort
studies with external validation could further confirm the model’s
generalizability.

4.2 Neurobiological mechanisms of
cognitive impairment and WMH
progression

Our cross-sectional study identified MoCA score as an
independent risk factor for Moderate-severe WMH. Multimodal
magnetic resonance imaging studies (Wang N. et al., 2023) have
demonstrated that WMH disrupt the structure-function coupling,
thereby reducing global network efficiency and ultimately leading
to cognitive impairment. We used ROC curve to evaluate the
ability of patients with different cognitive levels to distinguish
WMH patients. Significant differences in cognitive impairment
were observed between the mild and moderate-to-severe WMH
groups (P < 0.001). The MoCA score demonstrated an AUC of
0.749 (P < 0.001) for predicting moderate-to-severe WMH, with
60.0% sensitivity and 82.2% specificity. The optimal MoCA cutoff
was 19.5, consistent with established thresholds for predicting
cognitive impairment and functional decline in clinical practice.
This stratification approach assists clinicians in identifying high-
risk individuals for targeted interventions. A recent Southeast
Asian study (Wang J. D. J. et al., 2023) confirmed the association
between white matter hyperintensities and cognitive performance
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Our study revealed that although PVWMH and DWMH showed
similar correlation trends across multiple MoCA subdomains, they
exhibited distinct effects on specific cognitive domains. PVWMH
demonstrated stronger correlations with attention and delayed
recall performance, suggesting its primary effect through impaired
information processing speed, which subsequently disrupts task
execution and memory retrieval. In contrast, DWMH showed
comparable association strengths to PVWMH across naming,
language, abstract thinking, and orientation domains without
distinct specificity. The relatively weaker and more diffuse pattern
of cognitive associations suggests that DWMH’s effects may not be
independent but rather involve interactions with other underlying
brain pathologies, resulting in complex and distributed cognitive
consequences. These findings highlight the potential value of our
model in early community-based dementia prevention strategies.

Beyond inflammatory markers, emerging evidence suggests
perivascular spaces (PVS) as promising biomarkers for vascular
cognitive impairment (Wang et al., 2025). PVS burden correlates
with GFAP, AB42/40 ratio, and cognitive domains affected in
WMH. Future studies should integrate PVS quantification with
inflammatory profiles to elucidate glymphatic system involvement
in WMH pathogenesis.

4.3 The effect of other related factors on
WMH burden

The findings indicate that individuals with moderate to severe
WMH exhibit lower levels of LDL, HDL, and TC, which may
be attributable to multiple factors. First, the moderate-to-severe
WMH group likely had a higher prevalence of pre-existing clinical
cardiovascular disease, leading to more intensive and long-standing
statin therapy. The potent lipid-lowering effects of these widely
prescribed medications could significantly confound the observed
association. Moreover, our data concurrently showed elevated
systemic inflammatory markers (e.g., SIRI, NLR) in the severe
group. Chronic low-grade inflammation is known to alter hepatic
lipoprotein synthesis and accelerate catabolism, consequently
reducing circulating LDL-C and HDL-C levels (Nyavor and Obeng-
Gyasi, 2025). Finally, this is a cross-sectional study, and the
observed lipid levels are a single snapshot in time. The lower
levels may reflect long-term consequences of the disease process
rather than initial risk factors. Higher lipid levels might have
been present earlier in the disease course and contributed to
WMH pathogenesis, but their levels dropped over time due to the
mechanisms above.

In summary, the lower lipid levels in Moderate-severe WMH
cohort are unlikely to be protective but rather may be a
consequence of the disease’s severity, associated comorbidities, and
treatments. This highlights the complex interplay between lipids,
inflammation, and progression in WMH burden.

4.4 Exploration of novel biomarkers and
clinical transformation pathway

In our study, SIRI demonstrated better predictive performance
than traditional markers such as NLR (Chuang et al, 2023).
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For clinical translation, we propose a stratified management
strategy: individuals with a predicted probability >65.6% (high
risk) should be prioritized for MRI screening, whereas those
with a probability < 65.6% (low risk) could be managed with
annual follow-up. Our model stratifies patients into low versus
high WMH burden groups (Fazekas scores 0-2 vs. 3-6), aligning
with established clinical thresholds for predicting cognitive
impairment and functional decline. This stratification may help
clinicians identify high-risk individuals for targeted interventions.
Furthermore, our findings support the exploration of anti-
inflammatory strategies aimed at slowing WMH progression
and mitigating cognitive decline. Current management strategies
primarily focus on controlling risk factors (e.g., hypertension)
to slow disease progression, as no disease-modifying WMH
therapies exist. These inflammatory mechanisms highlight the
therapeutic potential of anti-inflammatory agents like colchicine,
currently under investigation as adjunct therapy for secondary
prevention in mild ischemic stroke (Kelly et al., 2024; Low et al,,
2019). The integration of inflammatory biomarkers into clinical
protocols may improve WMH management and contribute to the
shift toward precision medicine and individualized therapeutic
approaches. Notably, combining anti-inflammatory treatments
with complementary strategies may enhance the overall therapeutic
efficacy for WMH. Therefore, future research should focus on
developing multi-target interventions that simultaneously address
hypertension and neuroinflammation (Solé-Guardia et al., 2023),
potentially slowing WMH progression and improving patient
outcomes.

Longitudinal data from the Fremington Stroke Risk Profile
(FSRP) study (Youssef et al, 2024) confirmed that higher
FSRP scores (65 years or older, smoking history, systolic blood
pressure over 130 mmHg, diabetes, coronary heart disease, atrial
fibrillation, left ventricular hypertrophy, and antihypertensive
medication use) were associated with accelerated white matter
hyperintensity (WMH) progression and cognitive decline. This
consistency underscores the potential validity of our identified
factors, though our cross-sectional design requires longitudinal
confirmation. However, given the limited specificity of most
blood-based biomarkers, their clinical utility requires integration
with established risk factors and/or more specific laboratory
tests to enhance diagnostic accuracy. Second, as this was
an observational study with heterogeneous inclusion criteria,
potential selection and publication biases should be acknowledged.
Finally, cross-sectional studies cannot assess the longitudinal
association between biomarkers and WMH. Therefore, multicenter
prospective cohort studies are required to validate the model
externally, enhance its generalizability, and further establish causal
relationships.

5 Conclusion

In summary, this study developed and validated a predictive
model integrating metabolic parameters with complete blood
count-derived  inflammatory markers, and systematically
demonstrated the combined value of SIRI and MoCA score
in predicting moderate-to-severe  WMH. Furthermore, we

established a clinically-based risk stratification model and
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of the
variables. Future studies should prioritize external validation
which
verifying the model’s

Additionally,
of interventions SIRI in-
depth the of
metabolic and inflammatory factors on WMH progression

conducted  mechanistic  analysis incorporated

through  multicenter  cohort studies, represents

a crucial step for clinical utility

across  broader  populations. exploration

targeting modulation and

investigation  into mechanistic  effects

are warranted.
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