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Association of white matter
hyperintensity with systemic
inflammation markers and
cognitive assessments: a
cross-sectional study via SHAP
analysis
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Yiming Liu1, Xia Guo 1* and Lie Wu1*
1Department of Neurology, The First Affiliated Hospital of Baotou Medical College, Baotou, China,
2BaogangHospital of Inner Mongolia, Baotou, China

Background: White matter hyperintensity (WMH), a common neuroimaging

feature in the older adults, has not been systematically elucidated regarding its

association with cognitive function and systemic inflammation.

Aim: To develop and validate a clinical model for higher WMH burden

integrating MoCA and CBC-derived inflammatory markers, and to quantify their

independent and joint associations with WMH severity.

Methods: This study retrospectively collected data from patients with WMH

at the First Affiliated Hospital of Baotou Medical College (December 2023–

December 2024). We used univariate and multivariate logistic regression

analyses to identify WMH-related variables. Then, we constructed an

artificial neural network model and performed 10-fold cross-validation for

internal validation and model performance comparison. The Shapley Additive

Explanations (SHAP) method was employed to evaluate both models.

Results: Correlation analysis revealed a significant association between the

systemic inflammation response index (SIRI) and WMH burden (P< 0.01).

Multivariate logistic regression analysis identified age, hypertension, high-

density lipoprotein (HDL), previous cerebrovascular disease, the systemic

inflammation response index (SIRI), and the Montreal Cognitive Assessment

(MoCA) score as independent predictors of WMH burden. Ten-fold cross-

validation showed that the set neural network model performed as well as the

logistic regression model (AUC = 0.824). SHAP-based visual analysis identified

age, MoCA score, and hypertension as key driving factors.

Conclusion: Age, hypertension, previous cerebrovascular disease, HDL, SIRI, and

MoCA score are independent risk factors for moderate to severe WMH occurred.
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The model integrating MoCA and inflammatory markers accurately predicts 

moderate to Severe WMH. This study offers a multidimensional assessment 

framework for WMH risk stratification and early intervention. 

KEYWORDS 

white matter hyperintensity, Montreal Cognitive Assessment, systemic inflammation 
response index, model comparison and internal validation, SHAP analysis 

1 Introduction 

White matter hyperintensity (WMH) is a significant 
neuroimaging marker on brain magnetic resonance imaging 
(MRI), appearing as characteristic hyperintensities on T2-
weighted and fluid-attenuated inversion recovery (FLAIR) 
sequences. Its underlying pathology includes demyelination, 
axonal degeneration, and gliosis (Karvelas and Elahi, 2023). 
Epidemiological studies demonstrate a marked increase in WMH 
prevalence with age: ranging from 11 to 21% in healthy individuals 
aged 64 years (Debette and Markus, 2010) to 94% in those aged 
82 years. Among individuals with vascular risk factors, WMH 
prevalence is 68–87% in those aged 60–70 years, rising to 95% 
for periventricular WMH (PVWMH) in octogenarians and 
nonagenarians (80–90 years) (da Silva et al., 2022; Debette and 
Markus, 2010). Individuals with WMH have a 2.6–4.4 times 
higher risk of stroke, a 1.3–2.8 times greater risk of dementia, 
and nearly twice the risk of mortality compared to those without 
WMH (Debette and Markus, 2010). Studies have confirmed that 
WMH volume is positively correlated with cognitive impairment 
(da Silva et al., 2022). Furthermore, rapid WMH progression 
has been established as a significant predictor for the transition 
from preclinical Alzheimer’s disease to clinical dementia (Egle 
et al., 2022; Gu et al., 2022; Saleh et al., 2021; Tully et al., 2020). 
Longitudinal studies suggest spatial heterogeneity in WMH 
progression, with annual increases of 0.2% in subcortical and 0.4% 
in periventricular regions (Salvadó et al., 2019). 

WMH represents a characteristic neuroimaging manifestation 
of cerebral small vessel disease (CSVD). Its etiology is 
multifactorial, encompassing demyelination, axonal injury, 
and vascular pathology secondary to chronic hypoperfusion. 
These pathological alterations disrupt neural connectivity and 
ultimately lead to cognitive decline. Age and hypertension are 
established independent risk factors (Salvadó et al., 2019), while 
non-traditional factors such as metabolic dysregulation and 
sleep-disordered breathing also contribute to the pathological 
process (Salvadó et al., 2019). The pathogenesis of vascular-
related WMH likely involves a synergistic interaction among 
cerebral hypoperfusion, blood–brain barrier (BBB) disruption, and 
oxidative stress (Karvelas and Elahi, 2023). Emerging evidence 
highlights the pivotal role of neuroinflammation in WMH 
pathogenesis: BBB disruption facilitates infiltration of peripheral 
immune cells and release of pro-inflammatory cytokines, initiating 
a vicious cycle of inflammation-endothelial damage-ischemia 
(Jiang et al., 2022). Animal studies confirm that spontaneously 
hypertensive rats (SHRs) recapitulate the neuroinflammatory 
features and white matter damage observed in patients with CSVD 

(Kaiser et al., 2014). Genetic studies support the involvement 
of inflammatory pathways (Jickling et al., 2022). Meanwhile, 
readily accessible complete blood count-derived inflammatory 
indices, such as the systemic immune-inflammation index 
[SII (neutrophils × platelets/lymphocytes)] and neutrophil-
to-lymphocyte ratio [NLR (neutrophils/lymphocytes)], its 
accessibility provides a new idea for WMH evaluation (Del Brutto 
et al., 2023; Jiang et al., 2022; Liang et al., 2023; Nam et al., 2022; 
Wang et al., 2022). 

However, current clinical practice faces dual challenges: 
the high cost of multi-sequence MRI restricts its widespread 
application in primary care settings, and the precise mechanisms 
linking inflammatory markers to WMH remain incompletely 
elucidated. This study aims to systematically explore the 
relationship between systemic inflammatory markers (including 
SII, NLR, etc.) and WMH burden, construct a predictive model 
integrating clinical data and inflammatory indices, and thereby 
provide an evidence-based foundation for early WMH screening 
and intervention. The findings provide an important basis for 
optimizing diagnostic-therapeutic pathways and promoting the 
clinical translation of community-based WMH prevention and 
management strategies. 

2 Materials and methods 

2.1 Research design and participants 

This retrospective study enrolled 327 patients who visited the 
Department of Neurology at the First Aÿliated Hospital of Baotou 
Medical College between December 2023 and December 2024. 
Inclusion criteria were: (1) Presence of WMH on brain MRI; (2) 
Age ≥ 40 years; (3) Availability of complete laboratory and imaging 
data. Exclusion criteria comprised: (1) Concurrent hematological 
disorders, acute infectious diseases, or other significant systemic 
illnesses; (2) A history of acute cerebral infarction (within 14 
days), acute cerebral hemorrhage, aneurysms, or arteriovenous 
malformations; (3) Non-vascular white matter pathologies (e.g., 
multiple sclerosis, encephalitis, toxic leukoencephalopathy, 
hydrocephalus, traumatic brain injury); (4) Epilepsy, malignant 
tumors, or severe cardiac, pulmonary, hepatic, or renal dysfunction; 
(5) Inability to cooperate with cognitive function assessment during 
the study period. The study protocol was approved by the Ethics 
Committee of the First Aÿliated Hospital of Baotou Medical 
College (Approval No. 2024-K044-01). All procedures were 
conducted in strict accordance with ethical guidelines, and we 
applied for exemption from written informed consent. 
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2.2 Data collection and systemic 
inflammatory marker assessment 

Comprehensive demographic data, including age, sex, and 
lifestyle factors, were collected for each patient. Laboratory 
tests at admission included complete blood count, fasting 
plasma glucose (FPG), low-density lipoprotein cholesterol 
(LDL-C), and other relevant parameters. Cognitive function 
was assessed using the Montreal Cognitive Assessment (MoCA) 
(Salvadori et al., 2021). Several systemic inflammatory markers 
were calculated, including: neutrophil-to-lymphocyte ratio 
(NLR = neutrophil count/lymphocyte count), derived neutrophil-
to-lymphocyte ratio [dNLR = neutrophil count/(white blood 
cell count − neutrophil count)], lymphocyte-to-monocyte 
ratio (LMR = lymphocyte count/monocyte count), platelet-to-
lymphocyte ratio (PLR = platelet count/lymphocyte count), 
systemic immune-inflammation index (SII = neutrophil 
count × latelet count/lymphocyte count), lymphocyte-to-
white blood cell ratio (LWR = lymphocyte count/white blood cell 
count), neutrophil-to-white blood cell ratio (NWR = neutrophil 
count/white blood cell count), platelet-to-neutrophil ratio 
(PNR = platelet count/neutrophil count), systemic inflammation 
response index [SIRI = (neutrophil count × monocyte 
count)/lymphocyte count], and eosinophil-to-lymphocyte ratio 
(ELR = eosinophil count/lymphocyte count). All data were 
collected by trained neurologists at the First Aÿliated Hospital 
of Baotou Medical College, with strict confidentiality measures 
implemented to protect participant information throughout and 
after data collection. 

2.3 Cognitive assessment 

MoCA evaluated eight cognitive domains: 
visuospatial/executive function, naming, memory, attention, 
language, abstraction, delayed recall, and orientation. Total 
score: 30 points; ≥26 indicated normal cognition. One point 
was added for individuals with ≤12 years of education. 
Assessments were completed within 3 days of enrollment by 
trained neuropsychologists. 

2.4 MRI acquisition and evaluation 

Brain MRI was conducted using a 3.0T scanner with sequences 
including T1-weighted imaging (T1WI), T2-weighted imaging 
(T2WI), diusion-weighted imaging (DWI), fluid-attenuated 
inversion recovery (FLAIR), and susceptibility-weighted imaging 
(SWI). Two experienced neuroradiologists, blinded to clinical data, 
independently rated WMH burden using the Fazekas scale. Inter-
rater agreement for categorical scores was evaluated using weighted 
kappa (κ), while the reliability of continuous measurements 
was assessed with intraclass correlation coeÿcients (ICC). All 
MRI scans were independently evaluated according to the most 
recent expert consensus (Duering et al., 2023). Any discrepancies 
were resolved through consensus discussion or adjudication by 
a third expert. WMH lesions were defined as punctate or 
patchy hyperintensities on T2WI/FLAIR sequences, appearing 

FIGURE 1 

T2 FLAIR imaging reports of head MRI. Periventricular WMH 
(PVWMH) fazekas scores: (A) 0 points, (B) 1 point, (C) 2 points, (D) 3 
points; Deep WMH (DWMH) Fazekas scores: (E) 0 points, (F) 1 point, 
(G) 2 points, (H) 3 points. 

FIGURE 2 

The flow chart of this study. ROC, receiver operator characteristic; 
DCA, decision curve analysis; CIC, clinical impact curve. 

isointense or hypointense on T1WI without cavitation, typically 
exhibiting bilateral symmetric distribution. WMH severity was 
graded according to the Fazekas scale: 

- Periventricular WMH (PVWMH): 0 (none), 1 (caps or pencil-
thin lining), 2 (smooth halo), 3 (irregular extension into deep white 
matter) 

- Deep WMH (DWMH): 0 (none), 1 (punctate foci), 2 
(beginning confluence), 3 (large confluent areas) 

Total Fazekas scores (0–6) were used to classify patients into 
mild (0–2) and moderate-to-severe (3–6) WMH groups (Figure 1). 

2.5 Model development 

Univariate and multivariate logistic regression analyses were 
performed for variable selection. Variance inflation factor (VIF) 
analysis was applied to control multicollinearity, retaining variables 
with VIF < 5. The predictive model was evaluated based on 
the area under the receiver operating characteristic curve (AUC), 
calibration curves, decision curve analysis (DCA), and clinical 
impact curves (CIC) to assess its predictive performance and 
clinical utility. We further developed an artificial neural network 
model based on independent predictors from the logistic regression 
model, and conducted internal validation and model performance 
comparison. Model interpretability was examined using SHapley 
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Additive exPlanations (SHAP), including feature importance 
rankings, beeswarm plots, and individual force plots. The complete 
experimental procedure is shown in Figure 2. 

2.6 Statistical analysis 

Data analysis and visualization were conducted using SPSS 
version 26.0 and R version 4.2.2. Continuous variables with normal 
distribution were expressed as mean ± standard deviation (SD) 
and compared using independent t-tests. Non-normally distributed 
and ordinal variables were presented as median (interquartile 
range, IQR) and compared using the Mann–Whitney U test. 
Spearman’s rank correlation was used to assess the relationships 
among inflammatory markers, imaging features, and cognitive 
scores. Backward stepwise binary logistic regression was used to 
identify independent risk factors. Receiver operating characteristic 
(ROC) analysis was conducted to evaluate predictive performance, 
and a nomogram was constructed. Based on the independent 
factors identified from the complete dataset, a single-hidden-layer 
feedforward neural network was constructed with the following 
specifications: 3 hidden nodes, weight decay regularization (decay 
factor = 0.1), and a maximum of 1,000 training iterations. 
The discriminative performance of neural networks and logistic 
regression models was evaluated using the ROC curve, which 
was plotted based on 10-fold cross-validation results. The AUC 
and its 95% confidence interval were employed to quantify model 
performance. The DeLong test was applied to compare ROC 
curve dierences between neural networks and logistic regression 
models, with a significance level set at α = 0.05. Additionally, 
SHAP was utilized to quantify the contribution of each feature to 
the model predictions, with statistical significance defined as P < 
0.05. R packages including pROC, CBCgrps, rms, and rmda were 
employed for data processing and visualization. 

3 Results 

3.1 Clinical characteristics of WMH 
patients 

A total of 327 patients with WMH were enrolled, including 152 
with mild WMH and 175 with moderate-to-severe. No significant 
dierences were observed between WMH severity groups in terms 
of sex, smoking status, alcohol consumption, or triglyceride levels 
(P > 0.05). However, significant dierences were observed in 
age, and the prevalence of diabetes, hypertension, and cognitive 
impairment between the two groups (P< 0.05). Compared to 
the mild WMH group, the moderate-to-severe group showed 
significantly lower levels of low-density lipoprotein cholesterol 
(LDL-C, p = 0.004), high-density lipoprotein cholesterol (HDL-
C, p = 0.005), total cholesterol (TC, p < 0.001), lymphocyte-
to-monocyte ratio (LMR, p < 0.001), and platelet-to-neutrophil 
ratio (PNR, p = 0.019), along with significantly higher levels of 
fasting plasma glucose (FPG, p = 0.005), uric acid (UA, p = 0.009), 
neutrophil-to-lymphocyte ratio (NLR, p = 0.029), and systemic 
inflammation response index (SIRI, p = 0.002) (Table 1). 

3.2 Correlation analysis of WMH 

Two neurologists assessed the WMH burden. Inter-rater 
agreement was excellent (weighted κ = 0.91, 95% CI 0.89– 
0.94, p < 0.001; ICC = 0.98, 95% CI 0.98–0.99, p < 0.001), 
ensuring consistent WMH classification. Correlation analysis of 
17 dierentially expressed variables revealed that WMH burden 
showed a significant positive correlation with Siri (r = 0.19, P<0.01) 
and a significant negative correlation with MoCA scores (r = –0.55, 
P<0.001). However, no significant correlation was found between 
fasting plasma glucose (FPG), NLR, and LMR and WMH (p> 0.05) 
(Figure 3A). Figure 3B illustrates the correlation between WMH 
scores and various subgroups in the MOCA. 

3.3 Feature selection 

The association analysis in this study included 14 variables 
encompassing demographic characteristics, metabolic parameters, 
and systemic inflammatory markers. To improve model accuracy, 
age is analyzed as a stratified categorical variable. Variables showing 
statistical significance (P < 0.1) in univariate analysis were entered 
into a multivariate backward stepwise logistic regression model, 
with a retention criterion of P < 0.05 in the final model. Age, 
hypertension, HDL-C, SIRI, previous cerebrovascular disease and 
MoCA score were identified as independent risk factors for 
moderate to severe WMH occurred (Table 2). Convert the age 
group variable in the model to numeric. Subsequently, a nomogram 
was constructed and the predictive model was evaluated (Figure 4). 

3.4 Analysis of predictive efficacy of risk 
factors for moderate to severe WMH 
patients 

ROC curve analysis based on the variables from the final 
model yielded the following results: For SIRI, AUC was 0.599 (95% 
CI: 0.537–0.660, P = 0.002), with a Youden index of 0.197, an 
optimal cuto value of 1.016, and corresponding sensitivity and 
specificity of 65.1 and 54.6%, respectively. For MoCA score, the 
AUC was 0.749 (95% CI: 0.696–0.802, P< 0.001), with a Youden 
index of 0.422, an optimal cuto of 19.5 points, and sensitivity 
and specificity of 60.0 and 82.2%, respectively. The combined 
predictive model achieved an AUC of 0.824 (95% CI: 0.779–0.868, 
P< 0.001), with a Youden index of 0.528, an optimal cuto of 0.656, 
and sensitivity and specificity of 64.6 and 88.2%, respectively. The 
combined model demonstrated superior predictive performance 
for moderate-to-severe WMH compared with either marker alone 
(Figure 5A). 

The calibration curve analysis indicated excellent calibration 
agreement between the model’s predictions and the actual observed 
outcomes (Figure 5B). DCA showed that within a threshold 
probability range of 0.05–1.0, the nomogram yielded greater 
net benefit than both the “treat-none” and “treat-all” strategies 
(Figure 5C). CIC was used to evaluate the clinical utility of the risk 
prediction nomogram (Figure 5D). The CIC visually demonstrated 
superior overall net benefit for the nomogram across a wide 
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TABLE 1 Baseline characteristic of the study subject. 

Variables Total (n = 327) Mild (n = 152) Moderate-severe 
(n = 175) 

Statistic P 

Demographic features 

Male, n(%) 162 (49.54) 67 (44.08) 95 (54.29) χ2 = 3.39 0.066 

Age, years 66.18 ± 9.17 63.32 ± 8.36 68.67 ± 9.14 t = –5.49 <0.001 

[40,56] 45 (13.76) 29 (19.08) 16 (9.14) χ2 = 16.05 <0.001 

[57,73] 203 (62.08) 100 (65.79) 103 (58.86) 

[74,90] 79 (24.16) 23 (15.13) 56 (32.00) 

Smoking, n(%) 76 (23.24) 28 (18.42) 48 (27.43) χ2 = 3.70 0.054 

Alcohol history, n(%) 43 (13.15) 20 (13.16) 23 (13.14) χ2 = 0.00 0.997 

Previous cerebrovascular disease, n(%) 93 (28.44) 19 (12.50) 74 (42.29) χ2 = 35.46 <0.001 

Metabolic related indicators 

Hypertension, n(%) 201 (61.47) 75 (49.34) 126 (72.00) χ2 = 17.63 <0.001 

BMI 24.98 ± 3.51 24.73 ± 3.56 25.19 ± 3.46 t = –1.17 0.242 

Diabetes, n(%) 81 (24.77) 26 (17.11) 55 (31.43) χ2 = 8.96 0.003 

LDL, mmol/L 2.56 (2.08, 3.19) 2.76 (2.21, 3.41) 2.45 (1.98, 3.05) Z = –2.85 0.004 

HDL, mmol/L 1.11 (0.94, 1.31) 1.14 (0.98, 1.34) 1.08 (0.91, 1.24) Z = –2.83 0.005 

FPG, mmol/L 5.50 (4.90, 6.40) 5.30 (4.80, 6.03) 5.60 (5.00, 6.85) Z = –2.80 0.005 

TC, mmol/L 4.17 (3.52, 4.97) 4.46 (3.76, 5.13) 3.97 (3.33, 4.79) Z = –3.37 <0.001 

TG, mmol/L 1.44 (0.99, 2.02) 1.38 (0.99, 2.08) 1.44 (1.00, 1.98) Z = –0.14 0.886 

UA, µmol/L 323.00 (267.00, 387.50) 313.50 (249.75, 367.75) 340.00 (277.00, 399.50) Z = –2.61 0.009 

Systemic inflammatory markers 

Neutrophils, × 10∧9/L 4.26 (3.23, 5.37) 4.18 (3.05, 5.23) 4.28 (3.44, 5.47) Z= –1.00 0.316 

Lymphocytes, × 10∧9/L 1.54 (1.20, 2.00) 1.67 (1.23, 2.07) 1.50 (1.18, 1.89) Z = –1.78 0.076 

Platelets, × 10∧9/L 212.00 (171.50, 251.00) 216.50 (178.00, 258.25) 206.00 (167.00, 243.00) Z = –2.24 0.025 

WBC, ×10∧9/L 6.55 (5.50, 7.76) 6.49 (5.42, 7.83) 6.59 (5.61, 7.72) Z = –0.56 0.575 

HGB, g/L 143.00 (134.00, 155.00) 143.00 (135.75, 152.25) 143.00 (132.00, 157.50) Z = –0.20 0.844 

Monocyte, ×10∧9/L 0.43 (0.34, 0.54) 0.39 (0.32, 0.52) 0.47 (0.35, 0.58) Z = –3.20 0.001 

Eosinophils, ×10∧9/L 0.07 (0.03, 0.14) 0.07 (0.04, 0.14) 0.07 (0.03, 0.13) Z = –0.13 0.899 

Basophils, × 10∧9/L 0.03 (0.02, 0.04) 0.03 (0.01, 0.04) 0.03 (0.02, 0.04) Z = –1.04 0.298 

NLR 2.62 (1.89, 3.73) 2.42 (1.73, 3.49) 2.80 (2.02, 3.89) Z = –2.19 0.029 

dNLR 0.65 (0.59, 0.72) 0.64 (0.57, 0.72) 0.67 (0.60, 0.73) Z = –1.62 0.106 

PLR 133.06 (104.68, 173.14) 133.73 (104.71, 175.75) 132.16 (104.96, 172.71) Z = –0.26 0.795 

LMR 3.64 (2.68, 4.88) 4.12 (3.00, 5.06) 3.30 (2.48, 4.67) Z = –3.94 <0.001 

LWR 0.25 (0.19, 0.31) 0.26 (0.20, 0.33) 0.24 (0.19, 0.29) Z = –2.40 0.017 

NWR 0.65 (0.59, 0.72) 0.64 (0.57, 0.72) 0.67 (0.60, 0.73) Z = –1.62 0.106 

PNR 50.87 (37.39, 64.47) 53.75 (40.51, 68.44) 48.23 (36.89, 60.57) Z = –2.34 0.019 

ELR 0.05 (0.02, 0.08) 0.04 (0.02, 0.08) 0.05 (0.02, 0.08) Z = –0.73 0.466 

SII 533.43 (377.90, 815.03) 515.83 (363.12, 808.27) 542.15 (393.02, 815.03) Z = –0.74 0.457 

SIRI 1.15 (0.73, 1.76) 0.99 (0.67, 1.50) 1.27 (0.82, 1.82) Z = –3.08 0.002 

Cognition and emotion 

MOCA 22 (15, 27) 25 (21, 27) 17 (12, 23) Z = –7.80 <0.001 

Values for continuous variables are expressed as mean ± standard deviation or interquartile range; values for categorical data are given as numbers (percent). Mild: WMH total score ≤2 points. 
Moderate-Severe: WMH total score >2 points. NLR, Neutrophil Count/Lymphocyte Count; dNLR, Neutrophil Count/(White Blood Cell Count - Neutrophil Count); LMR, Lymphocyte 
Count/Monocyte Count; PLR, Platelet Count/Lymphocyte Count; SII, Neutrophil Count × Platelet Count/Lymphocyte Count; LWR, Lymphocyte Count/White Blood Cell Count; NWR, 
Neutrophil Count/White Blood Cell Count; PNR, Platelet Count/Neutrophil Count; SIRI, (Neutrophil Count × Monocyte Count)/Lymphocyte Count; ELR, Eosinophil Count/Lymphocyte 
Count; p-values are compared between Mild and Moderate-Severe groups. T, t-test; Z, Mann-Whitney test; χ2 , Chi-square test. 
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FIGURE 3 

(A,B) Spearman correlation heat map of WMH variables. The upper triangle of the figure shows the significant relationship between each variable, 
and the lower triangle shows the correlation coefficient. The size of the circle represents the correlation coefficient, and the depth of color 
represents the correlation coefficient (r-value), ∗ <0.05; ∗∗ <0.01; ∗∗∗ <0.001. 
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TABLE 2 Univariate and multivariate logistic regression analysis. 

Variables Single factor Multiple factor 

β S.E Z P OR (95%CI) β S.E Z P OR (95%CI) 

Age 

42–58 1.00 (Reference) 1.00 (Reference) 

59–75 0.62 0.34 1.83 0.068 1.87 (0.96 ∼ 3.65) 0.24 0.40 0.60 0.552 1.27 (0.58 ∼ 2.76) 

76–92 1.48 0.40 3.73 <0.001 4.41 (2.02 ∼ 9.63) 0.98 0.47 2.10 0.036 2.67 (1.07 ∼ 6.70) 

Hypertension 0.97 0.23 4.15 <0.001 2.64 (1.67 ∼ 4.17) 0.71 0.28 2.53 0.011 2.03 (1.17 ∼ 3.52) 

Previous cerebrovascular 

disease 

1.63 0.29 5.66 <0.001 5.13 (2.91 ∼ 9.04) 1.06 0.33 3.20 0.001 2.89 (1.51 ∼ 5.52) 

HDL –1.27 0.42 –3.03 0.002 0.28 (0.12 ∼ 0.64) –0.99 0.49 –2.02 0.043 0.37 (0.14 ∼ 0.97) 

LDL –0.33 0.13 –2.53 0.011 0.72 (0.55 ∼ 0.93) 

TC –0.32 0.11 –2.92 0.004 0.73 (0.59 ∼ 0.90) 

UA 0.01 0.00 2.58 0.010 1.01 (1.01 ∼ 1.01) 

Monocyte 1.87 0.65 2.87 0.004 6.47 (1.81 ∼ 23.11) 

Platelets –0.01 0.00 –2.35 0.019 0.99 (0.99 ∼ 0.99) 

LWR –2.55 1.22 –2.09 0.037 0.08 (0.01 ∼ 0.86) 

PNR –0.01 0.01 –2.44 0.015 0.99 (0.98 ∼ 0.99) 

SIRI 0.36 0.13 2.84 0.005 1.44 (1.12 ∼ 1.85) 0.27 0.14 1.96 0.049 1.31 (1.01 ∼ 1.72) 

MOCA –0.16 0.02 –7.36 <0.001 0.85 (0.81 ∼ 0.89) –0.13 0.02 –5.62 <0.001 0.87 (0.83 ∼ 0.92) 

OR, odds ratio; CI, confidence interval. 

FIGURE 4 

The nomogram used to evaluate WMH burden. The vertical line at the top of the bar chart represents the total score for each independent variable 
(0–100 points). The total scores of all variables are added to determine the predicted risk value above the bottom of the prediction line. For 
categorical variables, “0” indicates the absence of disease or condition, and “1” indicates the presence of disease or condition. Among the 
categorical variables, “0” indicates the absence of previous cerebrovascular disease and hypertension, while 1’ indicates their presence. HDL, 
high-density lipoprotein; Siri, systemic inflammation marker; MOCA, Montreal Cognitive Assessment Scale. 
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FIGURE 5 

Six variables combined to predict performance. (A) The receiver operating characteristic curve (ROCauc) curve six variables combined to predict 
performance. (B) The calibration curve of six variables combined to predict performance. (C) The decision curve analysis (DCA) of six variables 
combined to predict performance. (D) The clinical impact curve (CIC) of six variables combined to predict performance. 

range of threshold probabilities and in scenarios impacting patient 
outcomes, indicating significant predictive value of the model. 

3.5 Internal validation and model 
comparison 

Using the independent predictors from the logistic regression 
model, an artificial neural network was developed (Figure 6). Both 
models demonstrated comparable discriminatory performance in 
10-fold cross-validation (DeLong test, P = 0.587), with AUCs of 
0.813 (95% CI: 0.756–0.853) for the neural network and 0.814 (95% 
CI: 0.766–0.858) for the logistic regression model. 

Internal validation confirmed that both models maintained 
good predictive performance and comparable classification 
accuracy. The neural network further validated the robustness 

of the logistic regression model. Although the neural network 
approach oers greater flexibility in capturing complex nonlinear 
patterns, the logistic regression model provides superior clinical 
applicability and interpretability while maintaining comparable 
predictive performance. 

3.6 Model interpretability 

3.6.1 SHAP analysis for logistic regression model 
SHAP analysis identified MoCA score, previous 

cerebrovascular disease, hypertension, and age as the predominant 
predictors (Figure 7A). In the SHAP beeswarm plot, data points 
for hypertensive patients shifted to the right (indicating higher 
SHAP values), suggesting a stronger contribution to WMH burden 
(Figure 7B). 
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FIGURE 6 

The ROCauc curve of subjects’ working characteristics was used to compare the predictive performance of the two combined models. 

Individual SHAP force plots (Figure 7C) illustrated the 
contribution of each feature: low MoCA score (++0.28 SHAP) and 
previous cerebrovascular disease (+0.122) increased the predicted 
risk, whereas a low SIRI score (−0.032) reduced it. These findings 
confirm the dierential impacts of the inflammatory marker (SIRI) 
and the cognitive factor (MoCA) on WMH risk. Figure 7D further 
visualizes the contribution of individual features to the model’s 
decision boundary. 

3.6.2 SHAP feature importance analysis for neural 
network models 

To further validate the interpretability of the neural network 
model, SHAP analysis was performed using the final model 
trained on the complete dataset. Specifically, 200 instances were 
randomly sampled to establish the background dataset. SHAP 
values were then approximated using 50 randomly selected 
background samples per prediction. The resulting SHAP summary 
plot identified MoCA, hypertension, age, and SIRI as the primary 
predictors (Figure 7E). 

4 Discussion 

WMH are common neuroimaging findings in the aging 
population, whose severity is positively correlated with cognitive 
impairment, neuropsychiatric symptoms, and increased mortality 
risk (Chen et al., 2021; Debette et al., 2019; Moroni et al., 
2020; Schoemaker et al., 2022). We developed and internally 
validated two predictive models. Both models demonstrated 
good discriminatory performance in 10-fold cross-validation 
(AUC = 0.81). For the current prediction task, the relatively 
simple logistic regression model adequately captured key predictive 
relationships, while the more complex neural network did 
not provide significant performance improvement in internal 
validation. These findings provide empirical support for selecting 
more parsimonious and interpretable models in clinical practice. 
Correlation analyses revealed significant associations between 
moderate-to-severe WMH and age, hypertension, diabetes, and 
previous cerebrovascular disease. Among these, hypertension, 
MoCA score, SIRI, HDL levels, age, and previous cerebrovascular 
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FIGURE 7 

SHAP interpretation of model constructed by human–machine collaboration group. (A) Importance chart of SHAP variables, with the included 
features sorted by the average absolute value of SHAP from highest to lowest. (B) Each point represents a feature value, and different colors 
represent the final influence of the feature on the model output results, where deep color represents a larger value and light color represents a 
smaller value. (C,D) SHAP force plot for two cases: Color indicates the contribution of each feature, red indicates that the feature has a negative 
effect on the prediction (arrow to the left, SHAP value decreases), and yellow indicates that the feature has a positive effect on the prediction (arrow 
to the right, SHAP value increases). The length of the color bar indicates the strength of the contribution, and E[f(x)] indicates the SHAP reference 
value, which is the mean predicted by the model. [f (x)] represents the SHAP value of the individual. 0 is no and 1 is yes. (E) The SHAP variable 
importance plot of the neural network model, with features sorted by relative SHAP value from highest to lowest. 

disease were confirmed as independent risk factors for moderate-
to-severe WMH. SHAP analysis of both models further identified 
MoCA, hypertension, and age as key determinants. Our findings 
highlight several modifiable risk factors for WMH progression. 
Notably, both blood pressure control and antihypertensive therapy 
has been consistently shown to slow the progression of WMH 
(Lai et al., 2020; van Middelaar et al., 2018), underscoring the 
importance of vascular risk management. At the tissue level, 
the pathological correlates of WMH, including demyelination 
and gliosis, represent potential mechanisms through which these 

vascular risk factors ultimately lead to cognitive impairment. This 
mechanistic understanding supports the potential value of early 
cognitive rehabilitation strategies for high-risk WMH patients, 
though this requires validation in prospective studies. In our 
cohort, the prevalence of diabetes mellitus was significantly higher 
in the moderate-to-severe WMH group than in the mild group (P 
< 0.05). However, no significant associations were found between 
smoking or alcohol and WMH burden, possibly due to the limited 
sample size. Among participants aged ≥ 40 years, no significant 
sex-based dierences in WMH severity were observed. 
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4.1 Biological significance and predictive 
value of SIRI in CSVD 

Our study demonstrated that SIRI (neutrophil 
count × monocyte count)/lymphocyte count], derived from 
neutrophils, monocytes, and lymphocytes, exhibits significant 
predictive value for moderate-severe WMH and correlates 
significantly with WMH burden. These findings are consistent with 
previous research on other inflammatory biomarkers such as NLR 
(Chuang et al., 2023; Nam et al., 2022; Xiao et al., 2023). Notably, 
SIRI showed a stronger correlation with PVWMH (r = 0.22, P < 
0.01) than with subcortical WMH (r = 0.13, P = 0.16), suggesting 
that inflammatory processes may preferentially aect perivascular 
regions where the blood–brain barrier is relatively weaker. This 
finding is consistent with the report by Wang et al. (2021), which 
linked neutrophil and monocyte counts to outcomes following 
acute cerebrovascular events. 

Prior studies demonstrate that reduced peripheral 
lymphocyte counts independently predict adverse outcomes 
post-cerebrovascular events (Gong et al., 2021). We observed a 
positive correlation between the SIRI and WMH burden (r = 0.19, 
P < 0.001). This suggests that SIRI may reflect the balance 
between adaptive immune responses (indicated by lymphocyte 
levels) and inflammatory responses (reflected by neutrophil 
counts), providing new insights into the role of adaptive immunity 
in WMH pathogenesis. Potential mechanisms may involve 
lymphocyte-mediated vascular repair through anti-inflammatory 
cytokines such as IL-10 (Huang et al., 2021), while patients 
with WMH often exhibit immunosenescence, characterized by 
lymphopenia and elevated C-reactive protein (CRP) levels (Lian 
et al., 2020; Soto-Heredero et al., 2023). This immune dysregulation 
may exacerbate neurovascular injury through SASP, indicating 
that maintaining immune homeostasis could serve as a novel 
therapeutic strategy. 

The immune system, inflammation, and hypertension are 
pathophysiologically interconnected (Manzano et al., 2025; Costa 
et al., 2001). The innate and adaptive immune systems trigger 
inflammatory processes that contribute to elevated blood pressure 
and subsequent organ damage (Roy et al., 2022). Cells of the innate 
immune system produce reactive oxygen species (ROS), including 
superoxide and hydrogen peroxide, primarily to eliminate 
pathogens. Prolonged inflammation enhances ROS production, 
resulting in oxidative stress that induces endothelial dysfunction. 
The endothelium regulates vascular tone and structure. Persistent 
inflammation reduces nitric oxide (NO) bioavailability, impairing 
its vasodilatory function and compromising vascular relaxation. 
Eector T cells and regulatory lymphocytes—components of 
the adaptive immune system—contribute to vasoconstriction 
in hypertension. Signals from the central nervous system and 
antigen-presenting cells (APCs) activate eector T lymphocyte 
dierentiation, promoting polarization toward Th-1 and Th-17 
phenotypes (Ciprandi et al., 2009). Th-1 and Th-17 eector cells 
drive inflammatory responses that promote WMH development 
(Ochando et al., 2023). 

Compared to indices such as NLR and SII, SIRI provides 
a more precise reflection of neurovascular inflammation and 
immune responses by integrating homeostasis information 
from multiple immune cell lineages. Its principal advantage 
lies in the comprehensive integration of three key leukocyte 

subsets, thereby oering a more complete representation 
of systemic inflammatory status. Unlike single-parameter 
measurements (e.g., CRP) or two-parameter ratios (e.g., NLR), 
SIRI simultaneously quantifies neutrophils (representing acute 
innate immunity), lymphocytes (reflecting adaptive immune 
regulation), and monocytes (involved in chronic inflammation and 
immunothrombosis). This integrated approach better captures the 
complex inflammatory network implicated in WMH pathogenesis, 
particularly in processes involving endothelial dysfunction and 
blood-brain barrier disruption. 

Our findings align with emerging evidence across various 
disease domains. For instance, recent studies demonstrate that in 
statin-treated patients, SIRI shows superior value to traditional 
biomarkers like high-sensitivity C-reactive protein (hs-CRP) for 
predicting cardiovascular mortality risk stratification (Xia et al., 
2023). Similarly, in metabolic dysfunction-associated steatotic 
liver disease, SIRI showed better performance in predicting 
cardiovascular risk than traditional inflammatory indices (Huang 
et al., 2025). Notably, neither our study nor the regional 
investigation by Jiang et al. (2022) found significant associations 
between NLR and WMH, suggesting that geographical or 
population-specific dierences may influence the utility of certain 
inflammatory markers. Given the high-salt and high-fat dietary 
patterns in Inner Mongolia, which are more likely to trigger 
cardiovascular and cerebrovascular diseases compared to other 
regions, our study included patients with prior cerebrovascular 
disease. This may be related to early statin prophylaxis in such 
patients, where the anti-inflammatory and antioxidant eects of 
statins could normalize NLR levels. Local lifestyle factors and 
medication practices may also influence model results. Therefore, 
we recommend SIRI as a complementary biomarker within 
existing assessment frameworks rather than a replacement for 
traditional inflammatory markers. Future multi-center cohort 
studies with external validation could further confirm the model’s 
generalizability. 

4.2 Neurobiological mechanisms of 
cognitive impairment and WMH 
progression 

Our cross-sectional study identified MoCA score as an 
independent risk factor for Moderate-severe WMH. Multimodal 
magnetic resonance imaging studies (Wang N. et al., 2023) have 
demonstrated that WMH disrupt the structure-function coupling, 
thereby reducing global network eÿciency and ultimately leading 
to cognitive impairment. We used ROC curve to evaluate the 
ability of patients with dierent cognitive levels to distinguish 
WMH patients. Significant dierences in cognitive impairment 
were observed between the mild and moderate-to-severe WMH 
groups (P < 0.001). The MoCA score demonstrated an AUC of 
0.749 (P < 0.001) for predicting moderate-to-severe WMH, with 
60.0% sensitivity and 82.2% specificity. The optimal MoCA cuto 
was 19.5, consistent with established thresholds for predicting 
cognitive impairment and functional decline in clinical practice. 
This stratification approach assists clinicians in identifying high-
risk individuals for targeted interventions. A recent Southeast 
Asian study (Wang J. D. J. et al., 2023) confirmed the association 
between white matter hyperintensities and cognitive performance 
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Our study revealed that although PVWMH and DWMH showed 
similar correlation trends across multiple MoCA subdomains, they 
exhibited distinct eects on specific cognitive domains. PVWMH 
demonstrated stronger correlations with attention and delayed 
recall performance, suggesting its primary eect through impaired 
information processing speed, which subsequently disrupts task 
execution and memory retrieval. In contrast, DWMH showed 
comparable association strengths to PVWMH across naming, 
language, abstract thinking, and orientation domains without 
distinct specificity. The relatively weaker and more diuse pattern 
of cognitive associations suggests that DWMH’s eects may not be 
independent but rather involve interactions with other underlying 
brain pathologies, resulting in complex and distributed cognitive 
consequences. These findings highlight the potential value of our 
model in early community-based dementia prevention strategies. 

Beyond inflammatory markers, emerging evidence suggests 
perivascular spaces (PVS) as promising biomarkers for vascular 
cognitive impairment (Wang et al., 2025). PVS burden correlates 
with GFAP, Aβ42/40 ratio, and cognitive domains aected in 
WMH. Future studies should integrate PVS quantification with 
inflammatory profiles to elucidate glymphatic system involvement 
in WMH pathogenesis. 

4.3 The effect of other related factors on 
WMH burden 

The findings indicate that individuals with moderate to severe 
WMH exhibit lower levels of LDL, HDL, and TC, which may 
be attributable to multiple factors. First, the moderate-to-severe 
WMH group likely had a higher prevalence of pre-existing clinical 
cardiovascular disease, leading to more intensive and long-standing 
statin therapy. The potent lipid-lowering eects of these widely 
prescribed medications could significantly confound the observed 
association. Moreover, our data concurrently showed elevated 
systemic inflammatory markers (e.g., SIRI, NLR) in the severe 
group. Chronic low-grade inflammation is known to alter hepatic 
lipoprotein synthesis and accelerate catabolism, consequently 
reducing circulating LDL-C and HDL-C levels (Nyavor and Obeng-
Gyasi, 2025). Finally, this is a cross-sectional study, and the 
observed lipid levels are a single snapshot in time. The lower 
levels may reflect long-term consequences of the disease process 
rather than initial risk factors. Higher lipid levels might have 
been present earlier in the disease course and contributed to 
WMH pathogenesis, but their levels dropped over time due to the 
mechanisms above. 

In summary, the lower lipid levels in Moderate-severe WMH 
cohort are unlikely to be protective but rather may be a 
consequence of the disease’s severity, associated comorbidities, and 
treatments. This highlights the complex interplay between lipids, 
inflammation, and progression in WMH burden. 

4.4 Exploration of novel biomarkers and 
clinical transformation pathway 

In our study, SIRI demonstrated better predictive performance 
than traditional markers such as NLR (Chuang et al., 2023). 

For clinical translation, we propose a stratified management 
strategy: individuals with a predicted probability ≥65.6% (high 
risk) should be prioritized for MRI screening, whereas those 
with a probability < 65.6% (low risk) could be managed with 
annual follow-up. Our model stratifies patients into low versus 
high WMH burden groups (Fazekas scores 0–2 vs. 3–6), aligning 
with established clinical thresholds for predicting cognitive 
impairment and functional decline. This stratification may help 
clinicians identify high-risk individuals for targeted interventions. 
Furthermore, our findings support the exploration of anti-
inflammatory strategies aimed at slowing WMH progression 
and mitigating cognitive decline. Current management strategies 
primarily focus on controlling risk factors (e.g., hypertension) 
to slow disease progression, as no disease-modifying WMH 
therapies exist. These inflammatory mechanisms highlight the 
therapeutic potential of anti-inflammatory agents like colchicine, 
currently under investigation as adjunct therapy for secondary 
prevention in mild ischemic stroke (Kelly et al., 2024; Low et al., 
2019). The integration of inflammatory biomarkers into clinical 
protocols may improve WMH management and contribute to the 
shift toward precision medicine and individualized therapeutic 
approaches. Notably, combining anti-inflammatory treatments 
with complementary strategies may enhance the overall therapeutic 
eÿcacy for WMH. Therefore, future research should focus on 
developing multi-target interventions that simultaneously address 
hypertension and neuroinflammation (Solé-Guardia et al., 2023), 
potentially slowing WMH progression and improving patient 
outcomes. 

Longitudinal data from the Fremington Stroke Risk Profile 
(FSRP) study (Youssef et al., 2024) confirmed that higher 
FSRP scores (65 years or older, smoking history, systolic blood 
pressure over 130 mmHg, diabetes, coronary heart disease, atrial 
fibrillation, left ventricular hypertrophy, and antihypertensive 
medication use) were associated with accelerated white matter 
hyperintensity (WMH) progression and cognitive decline. This 
consistency underscores the potential validity of our identified 
factors, though our cross-sectional design requires longitudinal 
confirmation. However, given the limited specificity of most 
blood-based biomarkers, their clinical utility requires integration 
with established risk factors and/or more specific laboratory 
tests to enhance diagnostic accuracy. Second, as this was 
an observational study with heterogeneous inclusion criteria, 
potential selection and publication biases should be acknowledged. 
Finally, cross-sectional studies cannot assess the longitudinal 
association between biomarkers and WMH. Therefore, multicenter 
prospective cohort studies are required to validate the model 
externally, enhance its generalizability, and further establish causal 
relationships. 

5 Conclusion 

In summary, this study developed and validated a predictive 
model integrating metabolic parameters with complete blood 
count-derived inflammatory markers, and systematically 
demonstrated the combined value of SIRI and MoCA score 
in predicting moderate-to-severe WMH. Furthermore, we 
established a clinically-based risk stratification model and 
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conducted mechanistic analysis of the incorporated 
variables. Future studies should prioritize external validation 
through multicenter cohort studies, which represents 
a crucial step for verifying the model’s clinical utility 
across broader populations. Additionally, exploration 
of interventions targeting SIRI modulation and in-
depth investigation into the mechanistic eects of 
metabolic and inflammatory factors on WMH progression 
are warranted. 
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