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Brain tumors exhibit some of the major challenges in the field of oncology
owing to their highly heterogeneous, complex, and aggressive nature. The
complex anatomy and aggressiveness of the cancer contribute to high mortality
and morbidity worldwide. Moreover, the complexity of genetic mutations and
dysregulation molecular processes often culminates into treatment resistance.
Consequently, brain tumors have become a serious threat to patients’ lives
and overall health. Although advancements in the treatment strategies have
been made, but the current knowledge amounts to a drop in the ocean,
and many patients still struggling with the disease and exhibit poor prognosis.
Hence, there is an urgent need to rigorously expand and fasten the ongoing
research to address this clinical challenge. This review explores the components
of the brain microenvironment that influence tumor homing and progression
toward the aggressive phenotype, with the special emphasis on how these
pathways could be therapeutically targeted. The complex milieu of brain
niche is further amplified by the infiltrating immune cells, which reshape the
brain connectome through novel interactions with resident brain cells. We
also discuss the different targeted chemotherapeutic, immunotherapeutic, and
combinatorial strategies to limit brain metastasis, which currently has limited
therapeutic options. Therefore, this review will discuss all the aspects of brain
tumor microenvironment (TME), current strategies, and futuristic insights. We
will be discussing the individual components of the tumor microenvironment
like BBB, stem cells, astrocytes, immune cells, and non-cellular components like
ECM. Further, we also shed some light on current therapies and future strategies
targeting these microenvironment components.
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Introduction

The brain microenvironment represents one of the most
complex and unique biological territories in the human body,
markedly distinct from that of other tumors (Alvaro-Espinosa
et al, 2021; Boire et al, 2020). This complexity arises not
only from our incomplete understanding of brain homeostasis
and the organ’s inherent structural heterogeneity, but also from
pathological conditions such as tumors, which further amplify the
cellular and molecular diversity of the brain microenvironment
(Alvaro-Espinosa et al., 2021). Recent times have seen a rise in the
incidence of brain tumors. Although they account for only about
5% of all adult malignancies, however, brain tumors represent up to
70% of solid tumors in children. Additionally, approximately 20%—
30% of systemic malignancies eventually metastasize to the brain
(Zhao et al., 2017). Both benign and malignant brain tumors can
elevate intracranial pressure and compress brain tissue, resulting
in CNS dysfunction that may become life-threatening (Zhao
et al., 2017). Despite advancements in diagnostic techniques and
therapeutic strategies, improvements in overall survival for brain
tumor patients remains limited (Zhao et al., 2017). Brain or CNS
tumors represent the most prevalent cancer type in individuals aged
0-19 years, where an average annual age-adjusted occurrence rate is
5.42 per 100,000 (Zhao et al., 2017; Gittleman et al., 2014). In adults,
the most common types of CNS tumors include meningiomas
(15%), glioblastomas (GBs) (20%), and metastatic brain tumors
(40%) (Bikfalvi et al., 2023; Tripathy et al., 2024).

The brain TME is a highly diverse structure, both in its
timing from early to late disease stages and in its spatial
architecture. This variation is noticeable across different tumor
types, among individuals with the same diagnosis, between various
non-neoplastic cell types and their functional states, and even
among individual tumor cell clones (Klemm et al., 2020; Quail
and Joyce, 2017; Valiente et al., 2020; Masmudi-Martin et al,
2021; Andersen et al, 2021). All cellular components of the
TME, including fibroblasts, pericytes, endothelial cells, glial cells,
leukocytes, and tumor cells, engage in complex intercellular
communication that promotes brain tumor progression (Figure 1;
Quail and Joyce, 2017). A wide variety of immune and stromal
cell types, such as dendritic cells (Quail and Joyce, 2017; Pombo
Antunes et al., 2021; Yan et al., 2019), neutrophils (Klemm et al.,
2020; Zhang L. et al., 2020), macrophages (Klemm et al., 2020;
Pyonteck et al., 2013; Bowman et al., 2016; Sankowski et al,
2019; Guldner et al., 2020; Akkari et al, 2020), and astrocytes
(Priego et al, 2018; Henrik Heiland et al, 2019), modulate
the TME and play crucial roles in shaping T cell responses
within brain tumors. In addition to these cellular components,
the TME is protected by the blood-brain barrier (BBB), which
contributes to the brain’s status as a relatively immune-privileged
organ. Immune-privileged organs are characterized by tightly
regulated immune activity, leading to an inherently more
immunosuppressive environment (Tomaszewski et al, 2019).
This unique complexity of the brain underscores the need for
comprehensive pharmacological strategies capable of overcoming
the specific technical and biological challenges posed by the brain
(Alvaro-Espinosa et al., 2021). Recent technological advances have
facilitated in-depth multi-omic analyses of the TME, revealing
multiple cell subsets and activation states across development,
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health, and neurodegenerative and neuroinflammatory diseases. In
this review, we explored the roles of individual cellular components
within the brain TME in driving tumor progression. We also
discussed the signaling processes, the mechanisms involved in
tumor progression, and their therapeutic significance. A deeper
understanding of these cells and related signaling may provide new
insights into the development of brain cancers and pave way for the
development of more effective therapeutic strategies.

Brain tumor

Brain tumor is one of the most feared malignancies, with
a mortality rate of around 80% (Schwehr and Achanta, 2025).
It includes medulloblastoma, one of the common malignant
brain tumors in children, and high-grade glioblastoma, the most
lethal adult cancers (Louis et al., 2016; Azzarelli et al., 2018).
The treatment of these diseases requires both chemotherapy
and radiotherapy, which can lead to various adverse effects.
Therefore, it is essential to gain a deeper understanding of
the biology of these diseases. This knowledge will help ensure
that during treatment, only the malignant cells are effectively
targeted, sparing the surrounding healthy tissue (Azzarelli et al.,
2018).

There are nearly 150 different types of brain cancer, which can
be categorized into two main groups: primary and metastatic. The
most common tumors in the brain and CNS typically arise from
glial cells. Treating these tumors can be challenging due to their
diverse growth patterns, and their characteristics are still being
explored. It is essential to identify the key features and growth
factors of brain tumors, differentiate them from other tumor
types, examine treatment options, and investigate drug resistance
to improve treatment outcomes. Malignant brain tumors account
for the second-highest number of cancer-related deaths in the
United States, representing 2.4% of all cancer cases (Sarkar et al,
2023; Azzarelli et al., 2018; Kaza et al., 2012; Xu et al., 2007;
Ostrom et al., 2016). Gliomas are the primary brain tumors that
originate from the glial cells, and they may be classified as low-
grade or high-grade. The low-grade gliomas (grade I and II) are
slow growing, usually have better prognosis and may not require
aggressive treatment, while high-grade gliomas (grade III and IV)
are highly aggressive and require an intense treatment regimen.
High-grade gliomas (usually grade IV) are referred as glioblastoma
(GB), and are among the most common types of brain (Louis
et al., 2007). In addition to glial cells, these tumors may contain
nerves, blood vessels, glands, and other cells that contribute to their
structure. While most brain tumors that metastasize originate in
the brain, some can develop in other areas of the body and spread
to the brain through the circulatory system. This is often seen in
patients with breast or lung cancers. To better understand their
development, outcomes, treatment options, drug resistance, and
potential for recurrence, it is crucial to investigate their origins,
including the formation of cancer stem and progenitor cells (Sarkar
et al., 2023; Azzarelli et al., 2018; Abou-Antoun et al., 2017; Zhang
et al., 2025). The classification of brain tumors is based on their
type, metastatic potential, and prognosis. The complexity and
outlook for brain tumors depend on their origin, development, and
progression.
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FIGURE 1

Diagram illustrating the process from primary tumor site to brain microenvironment. (A) Brain tumor categorization: primary or metastatica. (B)
Cancer cell migration from other organs to the brain, highlighting cancer cell invasion, crossing the blood-brain barrier, and astrocyte interaction. (C)
Brain tumor microenvironment with various cells: neurons, macrophages, astrocytes, lymphocyte T cells, cancer cells, dendritic cells, and cytokines.

Brain metastatic tumor

Brain metastasis is a major contributor to intracranial
neoplasms and plays a significant role in cancer-related death
(Campbell et al., 2022). The probability of cancer spreading
to the brain to form a tumor is ten times higher than that
of developing primary brain cancer (Campbell et al, 2022).
Approximately 8%-10% of cancer patients experience brain
metastases, with around 200,000 new cases diagnosed each
year in the United States (Vogelbaum et al, 2022; Miccio
2024). Additionally, between 14% and 20% of cancer
patients will develop brain metastasis at some point during
their treatment (Campbell et al, 2022; Hatiboglu et al., 2013).
It shows that every year, 1.7 million new cancer patients are
diagnosed in the USA, and around 340,000 are expected to
develop brain metastasis during their disease course (Campbell
et al., 2022).
the time of initial cancer diagnosis varies significantly across

et al.,

The occurrence of brain metastases (BrM) at
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different cancer types. The highest rates of brain metastases
at the time of initial diagnosis are seen in lung cancer and
This is followed by
renal cancer at 10%, breast cancer at 7%, and head and

melanoma, with occurrences of 25%.

neck or esophageal cancers at 5%. Non-esophageal metastatic
gastrointestinal cancers have an occurrence rate of around
2% (Cagney et al, 2017). Many patients may develop brain
metastases after their initial diagnosis. Depending on the
type of cancer, the percentage of patients who experience
brain metastases within 1 year can vary significantly. For
instance, approximately 20% of patients with lung cancer may
develop brain metastases, while the rates for patients with
breast cancer, renal cell cancer, and melanoma range from
5% to 7% (Vogelbaum et al, 2022; Davis 2012).

However, irrespective of the tumor type (primary or metastatic),

et al.,

the surrounding microenvironment influences and guides the

tumor progression.
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Brain microenvironment

The brain TME is a complex and heterogeneous system
composed of various components, including cancer cells, different
types of brain cells such as neurons, astrocytes, endothelial cells,
and oligodendrocytes. It also contains resident immune cells like
microglia, tumor-associated macrophages (TAMs), and tumor-
infiltrating lymphocytes (TILs). BBB thoroughly regulates the
brain microenvironment and keeps it selectively segregated from
the systemic blood supply. Therefore, this unique brain feature
makes the treatment of the tumors very challenging (Sharma
et al, 2023; Martinez-Lage et al, 2019; Plaks et al, 2015).
Brain microenvironment also has a role in determining treatment
response, thereby influencing tumor progression. Such response is
related to a series of interconnected disparities in the spatial cellular
organization, the composition of the extracellular matrix, and
the cellular landscape (Watson et al., 2024). However, evaluating
such a change from a spatial perspective is challenging due to
the limitations of current high-dimensional imaging techniques
and the level of intratumoral heterogeneity across large lesion
areas (Watson et al., 2024). The high-dimensional techniques that
have the ability to acquire complex multiparametric biological
data that include single-cell RNA-sequencing, time-of-flight mass
cytometry, Multiplexed Imaging, Omics Profiling, etc., (Sankowski
et al., 2019). The CNS signifies a complex niche that is distinct
from the tumor-associated microenvironment (Boire et al., 2020
Alvaro-Espinosa et al., 2021). Additionally, the microenvironment
also features some non-cellular components such as exosomes,
extracellular matrix (ECM) components, secreted ECM remodeling
enzymes, and both autocrine and paracrine signaling molecules.
With its diverse composition and disruptive nature, the TME plays
a crucial role in the survival and response to therapy of cancer cells
(Figure 2; Sharma et al., 2023; Martinez-Lage et al., 2019; Plaks et al.,
2015). Therefore, we will be discussing individual components in
detail.

Blood-brain barrier (BBB) and brain
tumor microenvironment

The BBB is one of the most densely vascularized structures,
made up of tightly connected endothelial cells and surrounded by a
basal lamina associated with pericytes and astrocytic foot processes
(Lorger, 2012; Pasqualini et al., 2020). This barrier network is
poorly connected to the neuron endings and microglia, which can
significantly impact the maintenance and regulation of integrity
during injury (Pasqualini et al., 2020; Abbott et al., 2006). These
vascularized structures act as a selective barrier between the brain’s
parenchyma and the circulatory system, playing a crucial role in
maintaining brain homeostasis by preventing infections and toxic
substances from entering the brain. On the other hand, this positive
attribute negatively impacts treatment strategies as it makes the
delivery of therapeutics very challenging (Pasqualini et al., 2020;
Muldoon et al., 2013).

Malignant brain tumors are among the most vascularized
tumors found in humans. In one in vivo mouse model experiment,
tumor cells growing within the brain exhibited a 50% higher
blood vessel density compared to those growing subcutaneously
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(Lorger, 2012; Blouw et al., 2003; Lorger et al., 2009). This enhanced
angiogenesis can be attributed to the increased vascular endothelial
growth factor (VEGF) secretion in the brain model as compared
to the subcutaneous model (Lorger, 2012; Guo et al., 2001; Deli
et al, 2005; Lee et al., 2006; Nag, 2003). Such brain blood vessels
are exclusively distinct from those of the other body organs, due to
their unique structure and tight junctions. Moreover, the pericyte
and astrocyte end feet processes surround the blood vessel, and
smooth-muscle cells support blood vessels and contribute to the
tightness of the BBB (Deli et al,, 2005; Guo et al,, 2001; Lee
et al, 2006; Nag, 2003). The BBB is altered during the brain
cancer progression, either primary or as a metastatic site, resulting
in what is termed the brain-tumor-barrier (BTB) (Steeg, 2021).
BTB modification alters the barrier permeability and regulatory
pathways involving tumor cells (Steeg, 2021). The barrier properties
of the BBB are maintained by signals such as Wnt, retinoic
acid, and sonic hedgehog, secreted by pericytes and astrocytes
and other CNS-resident cells (Liebner et al., 2018; Phatale et al,,
2025). The basement membrane, a specialized extracellular matrix
secreted by pericytes and brain microvascular endothelial cells
(BMECs) is primarily composed of laminins, type IV collagen,
nidogens, and heparan sulfate proteoglycans (Phatale et al.,, 2025).
These proteins form an additional barrier, provide mechanical
stability, and serve as a signaling platform that mediates vascular
homeostasis and communication with surrounding cells (Phatale
et al., 2025). Microglia, astrocytes, and pericytes express multidrug
resistance protein 1 (MDRI1), a key efflux transporter localized on
the luminal surface of capillary endothelial cells. MDRI regulates
the passage of molecules from the bloodstream into the brain
by actively pumping substrates out, thereby restricting entry of
potentially harmful compounds (Phatale et al., 2025; Chai et al,
2022). In addition, MDR1 contributes to the clearance of metabolic
waste products from brain cells. Proper expression and function of
MDRI are therefore critical for maintaining brain homeostasis and
protecting the central nervous system from toxic insults. However,
during the tumor formation, it initiates the leakage of the brain
capillaries by increasing the gap in the tight junctions of the BBB,
leading to the development of a novel barrier known as the BTB
(van Tellingen et al., 2015). The grade of the tumors is directly
proportional to the BBB disruption, like in a high-grade carcinoma,
BBB disrupts to form a leaky BTB. This transformation could
be attributed to the development of the hypoxic environment as
a result of the high metabolic activity of the glioma cells. This
results in the VEGF overexpression, upregulated angiogenesis, and
abnormal blood vessels, culminating in the compromised BTB
(Phatale et al., 2025; Yadav et al., 2021). The remodeled architecture
of the BTB makes it extremely difficult for small molecules
or antibodies to penetrate the tumor site, thereby challenging
treatment strategies (Watkins et al., 2014; Arvanitis et al., 2020).
Furthermore, similar to BBB, BTB endothelial cells also express
drug efflux transporters, which can also impede drug delivery. To
make matters worse, ABC transporters in the cancer cells further
contribute to drug resistance (Phatale et al., 2025). Notably, the
BTB a heterogeneous structure, can impede the entry of therapeutic
agents into brain tumors, and addressing this challenge is crucial
for enhancing treatment effectiveness and improving the quality
of life for patients. Overcoming this challenge is key to improving
treatment effectiveness and patient quality of life (Steeg, 2021).
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or biology.

Astrocyte and brain tumor
microenvironment

In the brain TME, astrocytes serve as the primary cells
responsible for regulating many essential physiological functions
(Zhang H. et al, 2020). In a healthy brain, astrocytes are
the most abundant type of cells. These cells provide essential
nutrients, support to the neurons, and act as unique stem
cells. They possess the remarkable ability to proliferate, adapt
to new environments, and form connections with various
cellular components. Additionally, astrocytes are responsible for
maintaining ionic and neurotransmitter balance, modulating
synaptic activity and plasticity, and responding to damage in
the CNS (Charles and Holland, 2010; Doetsch, 2003; Massagué
and Obenauf, 2016; Quail and Joyce, 2013; Brandao et al,
2019; Zhang H. et al, 2020; Hu et al, 2023). During brain
injury, astrocytes become activated and are known as reactive
astrocytes (astrogliosis). This activation has both advantageous
and detrimental effects on the CNS (Lorger, 2012; Sofroniew,
2005; Sofroniew and Vinters, 2010). The activated astrocyte
exhibits increased levels of the protein GFAP (Glial Fibrillary
Acidic Protein), which has been significantly elevated near the
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primary and brain metastatic tumors in animal models and human
patients (Lorger, 2012; Nicolson et al., 1996; Lorger and Felding-
Habermann, 2010; Fitzgerald et al, 2008; Zhang and Olsson,
1995, 1997). Several in vitro experiments indicated that astrocytes
released various growth factors that play a crucial role in the
growth regulation of both primary and metastatic brain tumor cells.
These factors include TGF-a, CXCL12, S1P, and GDNF (Lorger,
2012; Hoelzinger et al., 2007). Notably, the release of IL-6, TGF-p,
and IGF-I by astrocytes promotes the proliferation of brain-tropic
cancer cells in vitro (Lorger, 2012; Sierra et al., 1997). During the
lung cancer brain metastasis, lung cancer cells secrete IL-8, MIF,
and PAI-1, which activate astrocytes and induce the expression
of TNF-a, IL-1B, and IL-6, thereby promoting the proliferation
of cancer cells (Lorger, 2012; Seike et al., 2011). In one in vitro
study, co-culture of lung adenocarcinoma cells with astrocyte
cell lines shows activation of ERK1/2 and Akt phosphorylation
in cancer cells, enhancing the proliferation by activating these
specific signaling pathways (Lorger, 2012; Langley et al., 2009).
During the invasion of cancer cells in the brain, astrocyte cells
facilitate this process by releasing heparanase, an enzyme that
breaks down heparan sulfate proteoglycans in the extracellular
matrix (Marchetti et al., 2000; Lorger, 2012). This heparanase
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expression is upregulated in astrocytes by nerve growth factor
(NGF) in response to factors secreted by cancer cells, including
TGF-B1, IL-18, and bFGF (Yoshida and Gage, 1991; Lorger, 2012).
Perivascular astrocytes are intricately linked with endothelial cells
and play a crucial role in maintaining the integrity of the BBB (Kim
et al.,, 2006; Charles and Holland, 2010). They also enhance the
activity of neural stem cells by establishing contact and releasing
various diffusible signals (Charles and Holland, 2010; Lim and
Alvarez-Buylla, 1999; Song et al., 2002; Kornyei et al., 2005). In
case of glioma, reactive astrocytes exhibit the localized expression
of sonic hedge-hog (SHH) and Gli signaling within the perivascular
niche, which correlates with the increasing grade of glioma. This
SHH/GIi signaling pathway is significant for the self-renewal of
brain tumor stem cells (BTSC) and is essential for sustained tumor
growth and survival of gliomas (Charles and Holland, 2010; Becher
et al., 2008; Clement et al., 2007; Stecca and Ruiz i Altaba, 2005).

During brain metastases, the expression of PTEN, a kind of
tumor suppressor gene, is significantly downregulated compared
to primary tumors as well as metastases from other common
secondary organs (e.g., bone and lung), both in mouse and
patient samples (Zhang et al., 2015). A co-culture study reveals
that the microRNA released from astrocytes has the potential to
suppress PTEN expression within brain metastatic cells, leading
to increased activation of PI3K signaling and enhanced cellular
outgrowth (Zhang et al, 2015). Inversely, tumor cells secrete
RANKL that triggers the astrocytes via NF-kB signaling, thereby
increasing tumor-associated astrocytes (TAAs). These activated
TAAs release TGF-B and other secretory factors, which promote
glioma cell invasion (Kim et al., 2014; Hu et al., 2023). Similarly,
glioma cells markedly activate astrocytes by enhancing Wnt/p-
catenin signaling, which results in increased degradation of ECM
to facilitate tumor invasiveness (Lu et al., 2016; Hu et al., 2023).
Factors secreted by TAAs include IL-6, IGF-1, GDF-15, VEGE FGF,
EGE TNF-a, TGF-, and HGE, all of which potentially contribute
toward increased proliferation (Brandao et al., 2019; Zhang H. et al.,
2020; Hu et al, 2023). Additionally, TAA also protects the GBs
cells from the hypoxic microenvironment by altering CCL20/CCR6
signaling axis, to promote angiogenesis and enhance tumor cell
invasion (Brandao et al., 2019; Hu et al., 2023). Furthermore, they
also play a critical role in imparting cancer cells, resistance against
radiotherapy and chemotherapy (Doetsch, 2003). On the other
hand, TAA-mediated secretion of IL-6, STAT-3, GDF-15, IFN-vy, IL-
10, tenascin-C, and PD-L1 protects the GBs cells against immune
therapy (Zhang H. et al., 2020; Hu et al., 2023). Overall, alterations
in the fundamental TAA-associated signaling could represent a
novel approach for GBs treatment.

Neuron and brain tumor
microenvironment

In the brain, neurons serve as the primary cell type and are
integral to the underlying tumor progression. It initiates mitogenic
signaling in the CNS, thereby promoting the growth of neural
stem cells and oligodendroglial precursor cells (Tomaszewski et al.,
2019; Liu et al, 2011). A recent study suggests that optogenetic
stimulation of neurons enhances the expression of neuroligin-
3 (NLGNB3), which, in turn, promotes tumor cell proliferation
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through the PI3K-mTOR tumor-intrinsic pathway in patient-
derived xenograft glioma models. Additionally, same study also
inversely correlates survival rates and NLGN3 expression in human
GBs (Venkatesh et al., 2015). In cases of breast cancer with brain
metastasis, heightened expression of neurotransmitters, such as
GABA receptors and transporters released by neurons, functions
as an oncometabolite (Neman et al., 2014). Moreover, it has now
been observed that neuronal activity promotes glioma progression
by forming synaptic communications with the cancer cells. This
remodeling of synapses results in altered brain circuit activity
and tumor growth. Axon guidance cues, especially Semaphorin-
4F, facilitate the tumor infiltration and progression to an aggressive
phenotype (Huang-Hobbs et al., 2023). This infiltration usually
occurs along the white matter fibers where myelinated axons serve
as an infiltration cue (Salvalaggio et al., 2023, 2024; Huang-Hobbs
et al., 2023). Interestingly, these white matter axonal tract density
has now been correlated with the disease prognosis. In a prognostic
study performed on 112 patients, it was revealed that a higher
axonal tract density is associated with poor prognosis and vice
versa. Additionally, this correlation proves to be a strong prognostic
marker as compared to the other known markers (Salvalaggio et al.,
2023, 2024). Therefore, in the coming times, this prognostic marker
will be highly beneficial in understanding disease outcome and
planning treatment strategies.

In the brain microenvironment, the interaction between cancer
cells, neurons, and glial cells extends beyond the release of various
secretory factors. Some studies have indicated that genetic material
can also be transferred between these cells through extracellular
vesicles (EVs) and cell fusion (Pasqualini et al., 2020). Glioma
cells that secrete EVs play a crucial role in regulating key
processes involved in tumor progression. They have been shown
to facilitate the transportation of signaling molecules, oncogenic
genes, receptors, and microRNAs (miRNAs), and directly modulate
the TME (Pasqualini et al., 2020; Godlewski et al., 2015; van der Vos
et al., 2016). The ability to modulate gene expression in both glial
and neuronal cells has been demonstrated through the use of triple
transgenic nude mice models, where fluorescently labeled glioma
and non-glioma cell types facilitated dynamic glioma development
imaging (Pasqualini et al., 2020; Gao et al,, 2020). It was observed
that glioma cells induce network hyperexcitability to increase
neuronal activity and ultimately promote tumor growth (Pasqualini
et al., 2020). Additionally, neurons and glioma stem cells (GSC)
co-culture study identified the formation of glutamatergic neuron-
glioma synapses as one of the mechanisms promoting tumor
growth. These synapses enhance glioma growth and invasion by
regulating calcium communication within the tumor microtube-
connected cell networks (Venkataramani et al., 2019; Pasqualini
et al, 2020). Intriguingly, metastatic cancer cells functionally
replace astrocytes in some cases of breast-to-brain metastasis, by
forming a pseudo-tripartite synaptic framework, to promote tumor
cell growth by glutamate release. This glutamatergic signaling
activates N-methyl-D-aspartate receptors (NMDARs) on tumor
cells, facilitating their colonization and proliferation within the
brain microenvironment (Pasqualini et al., 2020; Zeng et al., 2019).
Furthermore, non-synaptic, activity-dependent potassium currents
are amplified via gap-junction-mediated intercellular connections,
establishing an electrically coupled network between neurons and
tumor cells. In vivo studies have demonstrated that depolarization
of glioma cell membranes promotes tumor proliferation, whereas
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disrupting this electrochemical signaling inhibits tumor growth
and significantly improves survival in mouse models (Pasqualini
et al., 2020; Venkataramani et al., 2019) thereby providing a novel
approach for targeting brain tumors.

Cancer stem cells and brain tumor
microenvironment

Cancer stem cells (CSCs) are a type of self-renewing cell pool
that sustains the tumor by regenerating differentiated tumor cells
(Kong, 2012). This hypothesis for tumor growth and maintenance
has recently received significant attention (Azzarelli et al., 2018;
Batlle and Clevers, 2017). In one model, the tumor cells are
nourished by a subpopulation of slow-cycling stem cell-like cells
that promote the tumor-initiating potential. CSCs are commonly
believed to be resistant to therapies and retain the ability to
regenerate the diverse cell types within the tumor mass even
after treatment concludes. Cancer stem cell-like cells were first
identified and isolated from brain tumors in laboratory settings.
However, the relationship between this behavior and its function
in living organisms is still not entirely understood (Azzarelli
et al., 2018; Galli et al., 2004; Singh et al., 2003, 2004). In one
study, a CD133+ cell subpopulation isolated from human pediatric
brain tumors revealed stem cell-like properties in culture and,
during implantation in animals, recapitulated the original tumor’s
characteristics, including its heterogeneous cell composition (Singh
et al,, 2004). The same type of cells with stem-like properties
were isolated from the different pediatric tumors, such as
glioma, medulloblastoma, primitive neuroectodermal tumors and
ependymoma (Galli et al., 2004; Hemmati et al., 2003). Similar to
non-malignant neural precursor cells, tumor stem cell-like cells
can grow in vitro. This allows a comparison between normal
stem cells and tumor stem cells, paving the way to identify drugs
that specifically target cancer cells without affecting their normal
counterparts (Bressan et al., 2017; Pollard et al., 2009).

The interaction between CSCs and various immunosuppressive
cells plays a crucial role in the development of the TME
and cancer progression (Li et al, 2023; Luo and Yu, 2019
Vahidian et al, 2019). CSCs possess a unique ability to recruit
immune cells, including regulatory T cells (Tregs), myeloid-
derived suppressor cells (MDSCs), and TAMs to promote immune
suppressive environment (Vahidian et al., 2019; Chikamatsu et al.,
2011). During tumor progression, CSCs release TGF-p, which
promotes further differentiation and enhances the functional
characteristics of Tregs (Li et al., 2023). Recruited Tregs secrete
vascular endothelial growth factor A (VEGFA), which enhances the
stemness and progression of cancer stem cells, while also promoting
angiogenesis (Vahidian et al., 2019). Additionally, VEGFA initiates
the epithelial-mesenchymal transition (EMT) process in cancer
stem cells, thereby increasing their metastatic potential. Within
the TME, CSCs stimulate the expansion of MDSCs, creating an
immunosuppressive environment. They achieve this by regulating
arginase and transforming growth factor-beta (TGF-B), which
inhibits T cell infiltration, proliferation, and function (Vahidian
et al, 2019; Li et al, 2023). Furthermore, Tissue-associated
macrophages (TAMs) play a crucial role in regulating the growth
and metastasis of CSCs by secreting various factors such as PDGF,
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TGF-B, IL-8, and CXCLI12, all of which increase the stemness
of CSCs (Li et al, 2023). TAMs also secrete milk-fat globule-
epidermal growth factor-VIII (MFG-E8), which allows CSCs to
boost tumorigenicity and resist anticancer drugs (Li et al., 2023;
Jinushi et al., 2011). In different case of cancer, including liver,
gastric, colon, and glioma, an increase in the expression of CD90
has been observed in cancer stem cells. This increased expression
of CD90 in CSCs has been shown to interact directly with TAMs,
further enhancing their stem cell properties (Li et al., 2023).

The brain tumor can originate either from stem, progenitor
or more mature cells and the origin of the tumor significantly
influences the behavior of the cells involved. Understanding the
specific cell types from which each tumor arises can reveal lineage-
specific therapeutic vulnerabilities. This knowledge may also help
us to identify early malignant or even pre-malignant abnormal cell
states, some of which may be more susceptible to oncogenic attacks
than others. Although various studies indicate that certain brain
tumor subpopulations exhibit stem cell-like behavior, identifying
specific cell surface markers for these cells has proven challenging
(Azzarelli et al., 2018). Like, cells that are positive for CD133 have
been shown to possess tumor-initiating potential. Similarly, cells
that are negative for CD133 also exhibit this potential (Beier et al.,
2007; Ogden et al, 2008; Read et al, 2009). Additionally, cell
surface marker CD15 (stage-specific embryonic antigen, SSEA1)
has been suggested as a common marker for brain tumor stem cells
for gliomas and medulloblastomas (Son et al., 2009; Ward et al,,
2009). In many studies, researchers have identified and isolated
glioma stem cells (GSCs) from GBs tumor tissues. These isolated
stem cells have the potential to promote tumor angiogenesis by
increasing the expression of VEGF (Bao et al, 2006; Hu et al,
2023). Additionally, these cells are closely associated with vascular
niches and form networks with endothelial cells, enhancing their
self-renewal and tumorigenicity (Thirant et al., 2012). One study
by Bao et al. (2006) demonstrated that stem cells isolated from GBs
differentiate into pericytes, which support vessel growth and tumor
progression in xenograft models (Cheng et al., 2013). These stem
cells interact with endothelial cells through the SDF-1/CXCR4 axis
and promote vascular pericyte differentiation via TGF- signaling
(Cheng et al., 2013). Furthermore, the selective inhibition of GSCs
differentiating into pericytes through HsvTK-induced ganciclovir
toxicity disrupts the vascular structure and function of the tumor,
ultimately inhibiting GBs growth (Cheng et al., 2013; Hu et al,
2023). Additionally, targeting G-pericytes, the blood-tumor barrier
(BTB) hampers and increases BTB permeability by impairing
tight junctions, which increases drug delivery to enhance GBs
chemotherapy efficacy (Zhou et al., 2017).

TAMs and microglial cells

Historically, the CNS was thought to have a very limited
immune response (Pasqualini et al., 2020; Medawar, 1948; Widner
and Brundin, 1988). However, this view has recently been
challenged by discoveries such as the presence of functional
lymphatic vessels in the meninges, different types of APCs, and
the entry of T cells through the BBB. Additionally, it has been
shown that immunologically related populations of immune cells,
including macrophages, can reside in the meninges (Pasqualini
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et al., 2020; Absinta et al., 2017; Da Mesquita et al., 2018; Louveau
et al., 2015). Alternative routes of cerebral infiltration for immune
cells include the meninges and the choroid plexus (Benakis et al.,
2018). Based on these observations, it was proposed to refer to the
brain as an immunologically distinct rather than “privileged” site.

In the brain’s microenvironment, various subsets of myeloid
cells exist. Ontogenetically, there are two main macrophage
populations present in the brain TME, namely tissue-resident
microglia and bone marrow-derived macrophages (Quail and
Joyce, 2017; Lorger, 2012; Davis et al., 1994; Guillemin and Brew,
2004). The perivascular macrophages are the main immune cell
population, making up about 30% of the tumor mass. They play
a crucial role in immune regulation by presenting antigens at the
BBB, with a high turnover rate and regular replacement by blood
monocytes (Hickey and Kimura, 1988). In the brain TME, the non-
parenchymal macrophages originate from embryonic development
and form a largely population of stable cells in adult life (Goldmann
et al, 2016). In case of pathological conditions and tissue
homeostasis, circulating monocytes are recruited to the brain and
differentiate into bone marrow-derived macrophages (BMDMs).
In contrast, microglial cells are specialized tissue macrophages
that reside in the brain (Streit et al., 2005). Several studies have
highlighted the challenges faced by monocytes that infiltrate the
adult brain as they undergo differentiation into parenchymal
microglia. However, it is important to note that the turnover rate of
monocytes in a healthy brain is very low (Lorger, 2012; Davis et al.,
1994; Guillemin and Brew, 2004; Cartier et al., 2009; Hess et al.,
2004; Lesniak et al., 2005; Priller et al., 2001; Soulas et al., 2009).
Microglia generally evolve from embryonic yolk sac progenitor
cells (Ginhoux et al., 2010; Gomez Perdiguero et al., 2015) and are
not removed by peripheral mononuclear hematopoiesis. Therefore,
the microglial cell population in the adult brain is maintained by
prolonged cellular longevity and local proliferation.

In the CNS, microglial cells serve as the primary immune
effector cells and have the potential to trigger a significant
immune response. In a healthy brain, these microglial cells
exist in a resting state and are distributed uniformly throughout
the brain. Upon the signal induction, these brain-resident
resting microglial cells can quickly transform into two distinct
morphological states: activated microglia and reactive or amoeboid
microglia (Davis et al, 1994; Yang et al, 2010). The active
form of microglia have hyperdilated stellate morphology with
Class I Major histocompatibility complex (MHCI) expression
on their surface. However, the reactive microglia represent
amoebal morphology and express both MHCI and MHCI]I, exhibit
increased antigen-presenting capability, along with high phagocytic
activity (Kettenmann et al, 2011; Lorger, 2012). The above
activation/reactive macrophages and microglial cells that have high
expression of F4/80 (mouse) or CD68 (human) are more frequently
infiltrating primary and metastatic brain tumors in both mouse
models and human patients (Lorger and Felding-Habermann,
2010; Daginakatte and Gutmann, 2007; Fitzgerald et al., 2008; He
et al,, 2006; Hoelzinger et al., 2007; Roggendorf et al., 1996; Zhang
and Olsson, 1995; Lorger, 2012). Both cells represent about 8%-—
78% of all cells in human gliomas and 4%-70% of cells in human
brain metastases (Morantz et al., 1979ab; Lorger, 2012). These
cells can more actively proliferate in the brain TME and rapidly
increase their numbers in the surrounding area (Lorger, 2012;
Badie et al,, 2001; Klein and Roggendorf, 2001). A tracker study
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with GFP-labeled bone marrow-derived cells revealed an increase
in F4/80+ microglia/macrophages, representing newly infiltrating
bone marrow-derived monocytes (Lorger, 2012; De Palma et al.,
2005; Machein et al., 2003).

In one study, it was reported that microglial neuropilin 1 (NRP-
1), a receptor for placental growth factor semaphorin 3A, VEGFA,
and tuftsin, could serve as a promising pharmacological target for
patients with GBs (Miyauchi et al., 2018; Glinka and Prud’homme,
2008; Gelfand et al., 2014; Nissen et al., 2013; Majed et al,
2006; Andersen et al., 2021). NRP-1-mediated transforming growth
factor-p (TGF-B) signaling promotes amplification of the anti-
inflammatory genes, thereby restricting glioma-specific immunity
(Nissen et al., 2013; Friese et al., 2004; Uhl et al., 2004; Andersen
et al.,, 2021). The administration of EG00229, a selective NRP1
inhibitor, altered gene expression in microglia, enhancing glioma-
specific CD8+ T cell immunity and increasing survival in a mouse
model of GBs (Miyauchi et al., 2016). Additionally, the increased
expression of NRP1 is linked to lower survival rates in patients
with GBs). This suggests that inhibiting NRP1, particularly through
the use of inhibitors in combination with antibodies targeting the
immune checkpoint protein PD-1, may effectively activate T cells
that are specific to GBs (Leclerc et al., 2019). A study throws light
on the role of glioma-derived factors (GDF), expressing tumor-
associated microglia exhibit pro-tumorigenic functions (Vinnakota
et al,, 2013). These factors (GDF) can induce one of the receptor,
toll-like receptor 2 (TLR2) expression in microglia associated with
gliomas, supporting tumor progression and invasion (Vinnakota
et al, 2013). The glial cell expresses versican, an endogenous
TLR2 ligand, which significantly increases the expression of matrix
metalloproteinase 14 (MMP14) in microglia that promotes the
tumor invasiveness and growth (Hu et al, 2015). Furthermore,
TLRY activation increases the microglial phagocytic machinery as
a result of contact between microglia and tumor cells, leading
to tumor cell death (Benbenishty et al., 2019). Additionally, in
organotypic cultures of glioma, phagocytosis is exhibited following
co-activation of TLR3 and TLR9 in microglia (Huang et al., 2020).

During the growth of the tumor in the brain, tumor-generated
extracellular membrane particles also play an effective role in
modulating the behavior of microglial cells. Recently, research
explained that fluorescently labeled extracellular membrane
particles produced from mouse glial cells are engulfed by microglia
and enhance the functional changes, including the expression
of multiple MMP-encoding genes, upregulation of the immune-
checkpoint protein PDL1, and the downregulation of pathways
involved in tumor sensing such as SIGLEC-H and the G protein-
coupled receptor GPR34 (Maas et al., 2020; Kopatz et al., 2013).
Additionally, it is found that in human glioma, there is a two-thirds
downregulation of the microglial sensome, a receptor that have
a role in sensing the local microenvironment (Maas et al., 2020;
Hickman et al., 2013). Interestingly, sensome encoding genes are
highly express near the tumor core and as well as in the microglia
containing the extracellular membrane particles of GBs (Maas
et al., 2020; Darmanis et al., 2017). Furthermore, a study on the
extracellular membrane particles produced by tumors is essential
for identifying additional molecules such as various released
protein molecules, microRNAs, and different metabolites. These
components may influence microglial responses both within the
TME and potentially at distant sites. A study on human BrMs and
glioma sequencing data revealed that type I interferon signaling and
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nuclear factor-kB (NF-kB) signaling are upregulated in BrMs, and
contrastingly not in the microglial cells of gliomas. Additionally,
microglia associated with BrMs have higher expression levels of
CXC-chemokine ligand 8 (CXCLS8, also known as IL-8), which is
a chemokine known to attract neutrophils (Klemm et al., 2020;
Friebel et al., 2020). This sheds light on why BrMs have a more
significant infiltration of neutrophils in comparison to that in
gliomas. Overall, these results unravel an intricate and differential
functional interaction between microglia and tumor cells specific to
tumor type.

A variety of secretory products, like cytokines, enzymes,
growth factors, and ROS (reactive oxygen species), released
(VEGEF),
cellular proliferation (e.g., EGF), and invasive properties (e.g.,

by microglia/macrophages, regulate angiogenesis
metalloproteases) in primary and metastatic cancer cells within
the brain (Davis et al., 1994; Guillemin and Brew, 2004; Fitzgerald
et al,, 2008; Hoelzinger et al., 2007; Markovic et al., 2005, 2009).
Many studies suggest that both microglia and macrophages play a
role in tumor progression, such as the inhibition of microglial and
macrophage cell activation by using minocycline, which results in
decreased proliferation of glioma cells in the Nfl-deficient mouse
model (Daginakatte and Gutmann, 2007). In one experimental
model, intra-tumoral administration of ganciclovir resulted in
70% decrease in microglia/macrophages in the tumor and an 80%
reduction in tumor volume, indicating that microglia/macrophages
promote glioma growth (Markovic et al., 2009). Consequently, it
suggests that these cells play a significant role in regulating tumor
growth, making them a potential target for novel therapeutic
strategies.

Extracellular matrix

The brain ECM constitutes approximately 20%-30% of the
total volume and displays unique properties compared with ECMs
in other tissues (Lau et al., 2013). The ECM also provides a
structural framework for tumor tissues and plays a pivotal role
in modulating cellular behavior and signaling pathways within
the TME (Wei et al., 2025; Pasupuleti et al., 2024). Continuous
remodeling of the ECM influences key processes such as cell
migration, proliferation, and differentiation, while also shaping
the immune landscape. These dynamic alterations render the
ECM a central regulator of tumor invasion and metastasis (Wei
et al,, 2025; Collado et al.,, 2024). Interactions between the ECM
and tumor cells mediated by integrins, glycoproteins (such as
laminin), and proteases (including MMPs) directly influence tumor
biology and contribute to the progression of tumors toward
malignancy (Wei et al., 2025; Yuan et al.,, 2023). Moreover, the
heterogeneity of the ECM is closely linked to therapeutic resistance,
immune suppression, and the EMT (Wei et al., 2025). Unlike the
peripheral Brain ECM is enriched in proteoglycans, glycoproteins,
and glycosaminoglycans, especially heparan sulfate proteoglycans
(HSPGs) and hyaluronic acid (HA), while deficient in fibrous
proteins such as collagens and fibronectins (Day et al, 2025).
Within the brain parenchyma, chondroitin sulfate proteoglycans
(CSPGs) and heparan sulfate proteoglycans (HSPGs) predominate,
serving critical functions in neuronal development, cell signaling,
and tumor progression (Day et al., 2025).

Frontiers in Aging Neuroscience

10.3389/fnagi.2025.1666837

Due to its unique composition and properties, the ECM
plays a crucial role in regulating tumor cell niches, invasion, and
angiogenesis processes that differ from those in other tissues and
organs (Quail and Joyce, 2017). Multiple signaling molecules,
including chemokines (chemoattractant protein families),
interleukins, EGE, TGE and tenascin, are upregulated and play
crucial roles in stimulating signal transduction pathways that drive
malignant tumor growth through their respective receptors (Zhao
et al., 2017). However, comprehensive analyses of the ECM in
various brain tumors are still scarce, impeding our understanding
of ECM regulated tumorigenicity. In glioma, interleukins, EGE,
fibronectin, and HSPG are frequently overexpressed (Zhao et al,
2017) and positively regulate the cell adhesion, proliferation,
growth, metastasis, and wound healing processes, thereby
contributing to glioma progression and TME remodeling (Zhao
et al., 2017; Quail and Joyce, 2017). These macromolecules act as
reservoirs for heparin-binding angiogenic growth factors, such
as fibroblast growth factors (FGFs) and VEGFs, which are locally
released through the activity of heparanase (Kundu et al., 2016).
Moreover, vessel-associated macromolecules such as tenascin C
(TNC) and periostin are also upregulated (Brosicke and Faissner,
2015; Mustafa et al, 2012) and promote cancer cell survival
(Oskarsson et al., 2014). Additionally, periostin can be secreted by
glioma stem cells, facilitating the recruitment of tumor-promoting
M2-like macrophage progenitors from the peripheral circulation
(Zhou et al., 2015), leading to suppressed immune response. On
the other hand, stroma- and ECM-regulated mechanisms can
physically block T cells across different tumor types, posing a major
challenge to the delivery and effectiveness of immunotherapies
(Joyce and Fearon, 2015). This barrier presumably contributes to
the immune suppression. For instance, elevated concentrations of
TNC in glioma-associated blood vessels seem to “trap” T cells and
prevent their migration into the brain tissue (Huang et al., 2010;
Quail and Joyce, 2017). Physical properties of the ECM also play
a critical role in glioma biology, where a study states that brain
ECM stiffness positively correlates with tumor grade (Quail and
Joyce, 2017). This increased stiffness was linked to higher levels of
TNC and HA, regulated in a HIFla-dependent way. Importantly,
the mutational status of glioma cells affected ECM stiffness;
for example, mutations in the metabolic regulator isocitrate
dehydrogenase 1 (IDHI1) correlate with lower TNC expression,
ECM stiffness, and mechanosignaling, thereby improving patient
prognosis (Quail and Joyce, 2017). Therefore, a deeper analysis of
genetic mutations and their effects on other components of the
TME in gliomas and other brain cancers is an urgent need to pave
the way for novel therapeutic targets and personalized medicine.

Dendritic cells

Dendritic cells (DCs) are a type of myeloid cell that function as
highly potent APCs, inducing T cell responses through both innate
and adaptive immune mechanisms (Hu et al., 2023; Brandao et al.,
2019; Louveau et al., 2015). DCs in the brain can be categorized
into two subpopulations: myeloid dendritic cells (mDCs) and
plasmacytoid dendritic cells (pDCs). In glioma, pDCs contribute
to tumor progression in mouse models. In contrast, the elimination
of pDCs increases the survival time of the mice by reducing the
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Tregs number and their suppressive function (Tregs) (Dey et al.,
2015). Glioma cells impair the normal functioning of DCs by
increasing the secretion of TGF-f and IL-10. Additionally, FGL2
secreted by the glioma cells which hinders with the development
of DCs by blocking GM-CSF. This process occurs due to the
repression of NF-kB, STAT1/5, and p38 activation. As a result,
there is no activation of CD8+ T cells, contributing to the
progression of GBs (Yan et al., 2019). Initially, it was exemplified
that microglia are one of the primary APCs in the brain, while
DCs play a less significant role (Hart and Fabre, 1981; Hickey
and Kimura, 1988; Lowe et al., 1989; Ulvestad et al., 1994; Quail
and Joyce, 2017). To advance cancer therapy research toward
identifying potential therapeutics, one of the best strategies is to
utilize the potential immune checkpoint inhibitors. Additionally,
the significant clinical benefits of DC vaccines have emerged as
another option for stimulating T cell responses (Anguille et al,
2014; Palucka and Banchereau, 2012). As revealed by the clinical
trial data from the DC vaccine DCVax-L, better patient survival
has been observed as compared to radiation and temozolomide
chemotherapy (Stupp et al., 2005). On this basis, a Phase III trial has
now been initiated (ClinicalTrials.gov identifier: NCT00045968),
highlighting its importance for therapeutic purposes.

Neutrophils

Neutrophils are among the most potent blood cells, comprising
approximately 50%-70% of all circulating leukocytes, and play a
significant role in tumor growth and progression. In primary brain
tumors, including gliomas, a high level of neutrophil infiltration is
commonly observed.

Fossati et al. (1999) and Hu et al. (2023) a higher infiltration
correlates with the glioma progression and patient outcomes
has been identified as an important prognostic factor. A report
from Wang et al. (2020) revealed that glioma patients with
poor prognosis displayed elevated levels of neutrophils and
also an increased neutrophil-to-lymphocyte ratio (NLR) (Hu
et al., 2023). These tumor-infiltrating neutrophils (TINs) release
substantial amounts of neutrophil extracellular traps (NETs),
which promote aggressive tumor cell proliferation and invasion.
This suggests that NETs may serve as an oncogenic marker
of high-grade gliomas (HGGs) (Zha et al, 2020). Additionally,
the increased number of neutrophils works as a prognostic
indicator in IDH wild-type GBs patients treated with the
chemotherapeutic drug temozolomide (Wang et al., 2020). During
anti-VEGF therapy, an increase in tumor-infiltrating neutrophils
was observed, which contributed to resistance to treatment and
facilitated tumor progression. Concurrently, the expression of
S100A4 was upregulated, promoting glioma cell proliferation
and migration (Liang et al, 2014). Therefore, the drug that
targets the S100A4 and neutrophils, together with anti-angiogenic
therapies, could be a good strategy to slow glioma growth and
reduce treatment resistance. Growing evidence highlights the
mechanisms underlying neutrophil recruitment in the glioma
microenvironment. Notably, in GBs, tumor cells that ectopically
express high levels of CD133 enhance neutrophil recruitment
via the interleukin-1 (IL-1) signaling pathway, both in vitro and
in vivo. This suggests that CD133-positive tumor-initiating cells
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may shape a distinct TME through co-evolution with infiltrating
neutrophils (Lee et al., 2017). IL8, another potent cytokine acting
as a chemoattractant, promotes neutrophil infiltration in the
tumor and enhances tumor cell proliferation (Zha et al., 2020).
As mentioned earlier, TINs are associated with the formation of
NETs, and they also contribute to the production of high-mobility
group box 1 (HMGBI) by utilizing PI3K/AKT/ROS signaling
axis. HMGBI, a key component of NETs, binds to the receptor
for advanced glycation end products (RAGE) on tumor cells,
thereby activating the NF-kB signaling pathway. This activation
stimulates interleukin-8 (IL-8) secretion, which further facilitates
glioma progression (Zha et al., 2020). Importantly, neutrophils
possess an intrinsic ability to cross the BBB and the blood-
brain tumor barrier (BBTB), enabling their infiltration into glioma
tissue. Surgical resection of gliomas further contributes to an
inflammatory microenvironment by releasing cytokines such as IL-
8, which enhances neutrophil activation and recruitment to the
tumor site. The natural tendency of neutrophils to target tumor
cells and their high responsiveness to inflammatory signals make
them a good candidate for drug delivery systems, where they could
prove to be a promising therapeutic strategy for glioma treatment
with enhanced specificity and efficacy (Miiller et al., 2015).

Lymphocytes

The lymphoid lineage encompasses key immune cells,
including cytotoxic (CD8T), helper (CD4%), and regulatory
(FoxP31) T cells, as well as B cells and natural killer (NK) cells
(Hermelo et al., 2025). Among these, CD8™ T cells are particularly
vital for tumor cell clearance, and their infiltration alongside CD3™*
T cells into the TME is associated with improved patient survival
in glioma (Hermelo et al., 2025; Kmiecik et al., 2013). However, as
tumor progress, tumor cells adopt various mechanisms to evade
T cell-mediated antitumor responses. For example, glioma cells
secrete immunosuppressive cytokines such as TGF-p and IL-10,
which inhibit immune activation and suppress the expression of
MHC class II molecules on monocytes (Perng and Lim, 2015).
Furthermore, IL-10 promotes the upregulation of PD-L1 on
monocytes and TAMs, leading to the suppression of lymphocyte
activity. Elevated PD-L1 expression is strongly correlated with
poor prognosis in glioma patients (Nduom et al., 2016; Bloch
et al., 2013). Generally, the naive CD4+ T cells get transformed
into different subclasses of T cell types, including Thl, Th2, Th9,
Th17, and Tregs, each with distinct immunological roles (Noor
et al., 2024; Yang et al., 2020). These CD4" T lymphocytes are
pivotal in orchestrating anti-tumor immune responses in humans.
They not only enhance tumor suppression by activating cytotoxic
CD8™ T cells but can also directly contribute to tumor eradication
through certain effector subsets (Yang et al., 2020; Noor et al., 2024;
Sacher et al., 2020). Although cytotoxic CD8" T lymphocytes are
essential for tumor cell elimination, they may suppress CD41 T
cell functions and often lack robust effector-memory capabilities.
Moreover, they are prone to exhaustion within the TME. CD8T T
cell function is sustained by CD41 T cells, which promote their
activation, maturation, and differentiation into effector-memory
cells (Noor et al., 2024; Joyce and Fearon, 2015). CTLA-4 is an
immune checkpoint receptor that negatively regulates T cell
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activation and function. Its expression is upregulated in aggressive
cancers and is modulated by low levels of the co-stimulatory
ligands CD80/CD86 (Liu et al, 2020). In glioma, the number
of circulating T cells is reduced to approximately one-third
of that in healthy individuals, largely due to impaired egress
from the bone marrow. This phenomenon is associated with
internalization of the sphingosine-1-phosphate receptor 1 (S1P1);
inhibition of S1P1 internalization has been shown to restore
T cell release from the bone marrow (Chongsathidkiet et al,
2018). This reduction in peripheral T cell numbers contributes
to the classification of gliomas as “cold tumors,” characterized
by low immune cell infiltration. Among the immunosuppressive
cell types, CD4TCD25"FoxP3" Tregs are particularly pro-
tumorigenic due to their potent immunosuppressive functions
across various cancers. Tumor-derived antigens from dying and
proliferating tumor cells promote the recruitment of Tregs to the
TME. Additionally, tumor or DC derived TGF-B enhances Treg
enrichment. Chemokines such as CCL22 and CCL2 secreted by
GBs cells further facilitate Treg trafficking to tumor sites (Chang
etal., 2016; Crane et al., 2012).

Therapeutic approaches to target
the brain tumor microenvironment

Numerous preclinical and clinical strategies have been
developed to explore targeted treatments related to the brain
TME, including surgical resection, chemotherapy, and radiation
therapy (Quail and Joyce, 2017). Usually, benign or easily accessible
tumors are surgically removed and have shown improved survival
outcomes. Chemotherapy has shown favorable responses in some
cases; however, its efficacy is significantly limited by the presence
of the BBB (Quail and Joyce, 2017). Therefore, the primary target
of the therapeutic strategy is to target BBB permeability, followed
by finding and delivering suitable therapeutic drugs. The treatment
strategies discussed below are categorized as BBB targeted, cellular-
component targeted, cellular-pathways targeted (angiogenesis and
chemodkines), followed by immunotherapies.

The BBB restricts the entry of many chemotherapeutic agents,
which must traverse the vascular endothelium to reach tumor
cells a process highly dependent on the lipophilicity of the
drug. As a result, the therapeutic potential and effectiveness of
many chemotherapeutic agents are substantially diminished due
to limited permeability across the BBB (Zhao et al., 2017). Several
preclinical and clinical studies are currently underway targeting the
brain TME. A lot of research is now targeted toward enhancing the
BTB permeability for efficient drug delivery. Recent strategies are
utilizing focused ultrasound-guided (FUS) technique to open up
the barrier and deliver drugs. Here, microbubbles are intravenously
injected and then, in response to the ultrasounds, they oscillate,
creating shear stress in the endothelial cells. This mechanical stress
ultimately ruptures the tight junctions, thereby enhancing drug
delivery efficiency (Zhang et al., 2023; Mungur et al.,, 2022). On
the other hand, efforts are being made to employ nanoparticle-
mediated drug delivery to improve drug uptake. The drug-loaded
nanoparticles are transported across the barrier by receptor-
mediated transcytosis or shutter peptide-mediated mechanisms.
These strategies are proving to be promising; however, they are
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still in an early stage. Therefore, extensive research and clinical trial
studies are needed (Zhang et al., 2023; Liu et al., 2022).

Cancer stem cells are one of the major drivers of tumor
progression and recurrence. Therefore, targeting CSCs is a critical
strategy for eliminating brain tumors (Charles and Holland, 2010).
Brain tumor stem cells (BTSCs), which typically reside in the
perivascular niche (PVN) of the brain, rely on several intracellular
pathways to maintain their self-renewal, proliferation, and
migration. Among these, the Sonic Hedgehog (SHH), PI3K/AKT,
Notch, and nitric oxide (NO)/cGMP signaling pathways are
particularly important (Charles and Holland, 2010). Inhibitors
targeting these pathways have shown promise in suppressing
glioma progression and enhancing the responsiveness of brain
tumors to therapy (Charles and Holland, 2010; Hambardzumyan
et al., 2008; Bar et al., 2007; Fan et al., 2006; Momota et al., 2005;
Wachsberger et al., 2005). Additionally, other signaling cascades,
including the DNA damage checkpoint kinases Chkl and Chk2,
the Wnt pathway, and the BMP/Smad axis, are also involved in
regulating brain tumor development. Targeting these pathways
with specific inhibitors has demonstrated efficacy in halting tumor
growth in both experimental and preclinical models (Piccirillo
et al.,, 2006; Wurdak et al., 2010; Bao et al., 2006). While targeted
therapies used alone or in combination have shown substantial
success in improving outcomes for patients with primary tumors,
there remain limited options for treating brain metastases (Gautam
et al, 2020; Maurya et al, 2025). Notably, in animal studies,
the use of targeted agents alone, such as PLB1001, and/or in
combination, such as neratinib and cabozantinib, has significantly
inhibited both primary tumor growth and brain metastatic lesions
(Gautam et al., 2020; Maurya et al., 2025). A variety of therapeutic
approaches targeting epigenetic alterations are currently under
investigation, offering promising avenues for treating BrM, which
are significantly influenced by such modifications. These therapies
aim to reverse aberrant patterns of DNA methylation, histone
acetylation, and other chromatin modifications that drive tumor
initiation and progression. Currently some of these modulators are
already in clinical trials, while some already got FDA approved
(Maurya et al., 2024). Neutrophils are also emerging as potential
prognostic markers in both primary brain tumors (Bertaut et al,,
2016; Fossati et al., 1999) and metastatic brain disease (Koh et al.,
2016; Mitsuya et al., 2017; Serdarevic et al., 2016). Astrocytes are
another therapeutic target under investigation.

The anti-angiogenic monoclonal antibody targeting VEGFR-
2, DCI101, significantly suppressed malignant glioma growth
in experimental models (Kunkel et al., 2001). Treated tumor-
bearing mice exhibited reduced tumor volumes and microvessel
density compared to controls, which correlated with decreased
tumor cell proliferation and increased apoptosis. However, DC101
monotherapy was associated with enhanced tumor invasiveness
a phenomenon that was mitigated when combined with EGFR
inhibition (Lamszus et al., 2005). Similarly, PTK787, a tyrosine
kinase inhibitor targeting both VEGFR and PDGFR, also led to
marked reductions in tumor volume and vascular density (Charles
and Holland, 2010). The expression of VEGF is high in both
Primary and metastatic brain tumors and is responsible for the
high vascularization (Jain et al., 2007). This high expression of
VEGF gives us a thought to target the brain tumor growth with
anti-angiogenic therapies. In one of the phase II clinical trials,
administration of cediranib, a pan-VEGF receptor tyrosine kinase
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inhibitor, promotes a rapid and prolonged vascular normalization
in GBs patients. This promotes the increase in vasogenic edema
that normally results from an increase in intracranial pressure,
a reason for morbidity in brain tumors patients (Batchelor
et al,, 2007). A similar kind of observation comes out like
normalization of tumor blood vessels, and a decreased tumor
blood volume results in the prolongation of the survival in an
animal model of brain metastasis and glioma patients treated with
cediranib or bevacizumab, an anti-VEGF antibody (Lorger, 2012).
However, anti-angiogenic therapies have frequently been shown
to elevate the continuous progression of primary and metastatic
brain tumors in experimental models. This occurs through the
integration of precursory blood vessels in the nearby healthy
brain parenchyma, ultimately leading to increased cancer cell
invasion (Lorger, 2012; Kienast et al., 2010; Du et al., 2008; Paez-
Ribes et al., 2009). Also, bevacizumab does not affect melanoma
cells that usually grow in experimental brain metastasis models
(Kienast et al., 2010). Further, Clinical trials are evaluating the
endothelin receptor antagonist macitentan (NCT01499251) and
the cyclooxygenase inhibitor meclofenamate, which modulates gap
junctions (NCT02429570). These agents have shown encouraging
preclinical outcomes in both primary brain tumors (Kim et al,
2015)(Kim et al,, 2015) and brain metastases (Chen et al., 2016;
Lee et al, 2016). Chemokine expression modulation is a key
contributor to tumor growth and the organotropic spread of
metastatic cells. Altered chemokine profiles can modulate cancer
cell activation, proliferation, and migration under pathological
conditions. As such, targeting dysregulated chemokines and their
receptors has become an attractive therapeutic strategy for both
primary brain tumors and BrM. A number of immunotherapeutic,
chemotherapeutic, and combinatorial approaches focusing on
chemokine signaling are currently being evaluated in preclinical
and clinical studies (Maurya et al., 2022).

Immune checkpoint inhibitors are also gaining increasing
attention for the treatment of both primary and metastatic brain
tumors. For instance, in primary brain tumors, nivolumab is being
tested with radiotherapy in newly diagnosed GBs (NCT02617589,
Phase III), and nivolumab and/or ipilimumab are being compared
with bevacizumab in recurrent GBs (NCT02017717, Phase III)
(Preusser et al., 2015). Ipilimumab in combination with either
nivolumab or fotemustine (NCT02460068, Phase III) (Berghoff
et al, 2016) is currently being studied for brain metastatic
patients. In parallel, adaptive T cell therapies such as IL13Ra2-
targeted chimeric antigen receptor (CAR) T cells are also gaining
attention owing to their effectiveness against tumor growth in
glioma and other tumor models. Notably, a positive correlation
has been observed between higher IL13Ra2 expression tumor
grade and it serves as a prognostic marker associated with poor
patient survival (Chantrain et al., 2006). Personalized cancer
immunotherapies have recently emerged as compelling alternatives
to conventional treatments. Among these, cytokine-induced killer
(CIK) cells represent a potent therapeutic strategy. CIK cells are
MHC-unrestricted cytotoxic lymphocytes generated in vitro from
peripheral blood mononuclear cells (PBMCs) via stimulation with
interferon-gamma (IFN-vy), interleukin-2 (IL-2), and anti-CD3
monoclonal antibodies (Brown et al., 2013).

Macrophages can also be targeted, and one such approach
involves targeting TAMSs using CSF-1R inhibitors in GBs patients,
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either in the recurrent setting or in combination with standard-
of-care treatments. For example, PRD001 (the anti-PD-1 agent)
and BLZ945 combined in solid tumors, and recurrent GBs
(NCT02829723, Phase I/II), and for newly diagnosed GBs patients,
PLX3397 is being tested with temozolomide and radiotherapy
(NCT01790503, Phase Ib/IT) (Quail and Joyce, 2017; Butowski et al.,
2016). DCVax-L, a DC vaccine, has shown promising results and
has advanced into Phase III clinical trials for newly diagnosed
GBs (NCT00045968) (Prins et al., 2011). Recently, researchers have
utilized the idea of deploying cells of the TME as cellular vehicles
for the targeted delivery of therapeutic agents (Lorger, 2012).
A research group utilized genetically modified TAMs that were
engineered to express interferon-alpha (IFN-a) to target cancer
cells. These TEMs were transplanted into the brain tumor, enabling
the localized delivery of IFN-a. Natural homing ability of TEMs
to the tumor site leads to the significant upregulation of IFN-
inducible genes, which in turn, is responsible for the reduced
angiogenesis and vascular normalization. Thereby, leading to the
tumor suppression with no systemic toxicity (Lorger, 2012; De
Palma et al., 2008).

Conclusion

Several studies over the past few decades have demonstrated
that the TME is a key regulator of cancer growth, progression, and
therapeutic response in both primary and metastatic brain tumors.
The brain TME is composed of a heterogeneous population of
cells, including cancer cells, astrocytes, neurons, various immune
cells, and TAMs /microglia. All the components of the brain
TME collectively influence tumor dynamics, sometimes promoting
tumor growth and therapy resistance, while in other cases,
suppressing tumor initiation and progression. Several ongoing
clinical trials targeting the key signaling molecules involved in these
processes are proving to be promising. Moreover, some findings on
CSF-1R inhibition and anti-PD-1 agents such as PRD001 have been
demonstrated to be effective in brain tumor patients. However,
despite these advancements, significant challenges persist. A deeper
understanding of the complexity of the brain TME, including
the diverse secretory molecules released by various cell types
is essential for developing more effective therapeutic strategies
aimed at targeting or reprogramming the TME. It is increasingly
necessary to move beyond isolated analyses and adopt a more
integrative approach that encompasses all cellular and non-cellular
components of the TME. Such comprehensive insights are likely to
emerge from detailed comparative studies examining how different
molecular subtypes of brain tumors shape their surrounding
microenvironment during cancer progression. Although it is well-
established that molecular subtypes of brain tumors exhibit distinct
evolutionary patterns and therapeutic responses, a systematic
dissection of TME determinants remains in its infancy and is
largely underexplored in clinical settings. Furthermore, it will
be crucial to thoroughly investigate how both standard-of-care
treatments and emerging investigational therapies affect all aspects
of the TME across various brain tumor types and their molecular
subtypes. Therefore, a deep and thorough understanding will
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eventually unlock the doors to more sophisticated and effective
treatment designs.
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