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Introduction: RNA expression is modulated by tau. We used two mouse models, 
THY-Tau22 mice, which express pro-aggregation tau, and TauKO mice, which 
are null for tau, to improve our understanding of tau-altered mRNA expression 
in brain.
Methods: Spatial transcriptomics on Tau22 and TauKO mice were used 
to interrogate regional mRNA expression changes. We focused on mRNA 
expression changes in the hippocampus and ventricles; two regions altered 
early in Alzheimer’s disease.
Results: We identified the transthyretin mRNA, Ttr, as being dysregulated in 
a tau-dependent manner. Immunofluorescence (IF) revealed increased TTR 
protein expression in THY-Tau22 mice and lowered expression in TauKO mice in 
the choroid plexus epithelial cells.
Conclusion: As TTR is involved in the clearance of Aβ and the prevention of Aβ 
aggregation, we evaluated endogenous mouse Aβ in TauKO mice and observed 
increased Aβ deposits. Our study reveals a hitherto unknown regulatory role of 
tau on Ttr mRNA and protein expression, which may participate in a feedback 
loop contributing to Aβ disease progression.
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1 Introduction

One hallmark of many neurodegenerative diseases known as tauopathies, including 
Alzheimer’s disease (AD), is neurofibrillary tangles composed of hyperphosphorylated tau, 
which correlate with dementia and synaptic and neuronal loss (DeTure and Dickson, 2019). 
Although tau was first described as a microtubule stabilizer, it is a highly multifunctional 
protein (Sotiropoulos et  al., 2017; Tracy et  al., 2022). Deciphering the complete set of 
physiological roles of tau and its dysregulation is critical to refining our understanding of the 
etiology of these pathologies.

RNA expression changes contribute to Tau-related neurodegenerative diseases (Chung 
et al., 2021). Among the growing number of features attributed to tau, is that it can modulate 
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chromatin structure, nuclear tension, and the expression of various 
RNAs, and that tau pathology can trigger RNA expression alterations 
(Ali et al., 2024; Benhelli-Mokrani et al., 2018; Maina et al., 2018; 
Mansuroglu et al., 2016; Sohn et al., 2023; Wes et al., 2014; Woo et al., 
2010). However, until now only global transcriptomics approaches 
have been used to investigate the ability of tau or tau pathology to act 
on RNA expression, but these techniques lack information concerning 
spatial tissue-level regulation. Spatial transcriptomics (ST) is well-
suited to analyze RNA expression changes in a spatially resolved 
unbiased manner. ST has been successfully used in the context of 
AD-like mouse models and human brains (Chen et al., 2022; Chen 
et al., 2020; Choi et al., 2023; Das et al., 2024; Mathys et al., 2019; 
Navarro et al., 2020; Yu et al., 2024; Zou et al., 2024) but so far it has 
not been applied to analyze the influence of tau, and its pathological 
forms, on RNA expression in a spatial context.

Neurodegeneration is complex and mostly brain-region specific. 
Fortunately, ST analyses have the capacity to resolve spatially 
differentially expressed RNAs in distinct brain regions. In AD, there is 
an ordered progression of AD biomarkers specific to the brain and 
cerebral spinal fluid (CSF) (Jack et al., 2024). Two close brain regions 
impaired early in AD are the hippocampus and adjacent brain ventricles 
(Coupe et al., 2019). The hippocampus plays a central role in cognition, 
while the ventricles, where CSF is produced, lie at the interface between 
the peripheral circulation and the central nervous system. Ventricles 
enclose the choroid plexus (CP), which is composed of a monolayer of 
epithelial cells surrounding a highly vascularized connective tissue layer 
with permeable capillaries. CP epithelial cells form the blood–
cerebrospinal fluid barrier, which strictly regulates the exchange of 
factors between the blood and CSF. Tau protein is physiologically 
expressed in the hippocampus but has not been detected in the CP 
(Uhlen et al., 2015). However, in AD brains, tau pathology affects both 
the hippocampus and the CP (Chung et al., 2021; Raha-Chowdhury 
et al., 2019). Further, defects in the CP have recently been defined as a 
new subgroup of AD based on mass spectrometry of CSF proteins 
comparing AD patients and controls (Tijms et al., 2024).

One of the proteins that is a marker for the CP is transthyretin 
(TTR). The multifunctional TTR protein is primarily synthesized in 
CP epithelial cells lining the lumen of the lateral ventricles (Dickson 
et al., 1986; Stauder et al., 1986). TTR is also expressed in the liver and 
retinal epithelium. It is a secreted protein and is secreted from the liver 
into the serum and from CP cells into the CSF. TTR is a major thyroid 
hormone carrier and in association with retinol-binding protein 
transports retinols [for recent review see Gertz et al. (2025)]. TTR has 
neuroprotective functions under some conditions, as it is important 
for neurite outgrowth and neurogenesis (Gomes et al., 2016). TTR 
plays a role in memory as evidenced from TTR-null mice (Brouillette 
and Quirion, 2008). Additionally, mutations in TTR contribute to the 
genetic disorder transthyretin amyloidosis in humans (Gertz et al., 
2025). TTR is also an extracellular chaperone with neuroprotective 
roles in stress conditions (Buxbaum and Johansson, 2017; Gomes et al., 
2016; Liz et al., 2020; Santos et al., 2010). Notably, TTR has been linked 
to AD, as it binds to amyloid beta peptide (Abeta, Aβ), sequesters it, 
and prevents its aggregation (Buxbaum, 2023; Buxbaum et al., 2008; 

Cascella et al., 2013; Ciccone et al., 2020; Costa et al., 2008; Gonzalez-
Marrero et al., 2015; Iqbal, 2018; Li et al., 2013; Liz et al., 2020; Nilsson 
et al., 2018; Schwarzman et al., 1994; Ueda, 2022; West et al., 2021).

The goal of this study was to use ST to identify RNAs that were 
differentially expressed (DE) between regions in brain sections from 
transgenic mouse models of tau pathology THY-Tau22 (Tau22) and 
tau deletion (TauKO). Here, we have used 12 months-old Tau22, at the 
peak of tau pathology, TauKO, and their respective WT littermate 
mice, and applied ST to identify tau-dependent RNA expression 
changes in the aged brain.

ST analysis revealed the dysregulated expression of Ttr RNA 
in Tau22 mice. Using IF, we observed TTR downregulation in CP 
epithelial cells from TauKO mouse brains indicating that tau may 
positively regulate TTR expression. This finding was correlated 
with increased Aβ deposits in the hippocampus, suggesting that 
tau- regulated TTR participates to prevent Aβ accumulation in 
the brain. The absence of Aβ accumulation in aged Tau22 mouse 
brains correlates with increased TTR in CP epithelial cells. 
Altogether this study highlights i- a modulatory effect of tau and 
tau pathology on RNA expression, including the RNA encoding 
TTR, and ii- an unexpected inhibitory role of tau on endogenous 
Aβ peptide accumulation in mouse brains. Combined ST and IF 
reveal a hitherto unknown regulatory role of tau on Ttr RNA and 
protein expression, which may contribute to a feedback loop on 
Aβ disease progression.

2 Materials and methods

2.1 Mice

This study employed all female mice. The THY-Tau22 transgenic 
mouse model was generated to model AD-like tau pathology that is 
associated with learning and memory deficits (Schindowski et al., 
2006). Tau22 mice overexpress the 4R tau RNA mutated at G272V and 
P301S and develop, mainly in the hippocampus, aggregation of 
hyperphosphorylated tau in addition to progressive tau-related 
neuropathology. In Tau22 mice, hyperphosphorylated and aggregated 
forms of tau first appear in the CA1 subfield and are present 
throughout the hippocampus at the peak of pathology at 12 months 
(Schindowski et al., 2006). Tau22 mice display learning and memory 
deficits and, although long-term potentiation (LTP) is intact, they 
show changes in NMDA-dependent long-term depression (LTD), and 
hippocampal synaptic plasticity (Schindowski et al., 2006; Van der 
Jeugd et al., 2011).

TauKO mice are meant to mimic the loss of tau protein from its 
normal physiological compartments (Tucker et  al., 2001). The 
behavioral findings in the TauKO model include loss of contextual and 
cued fear conditioning, but normal motor, exploratory, and anxiety 
behaviors (Ahmed et al., 2014). Our TauKO mice display better spatial 
learning than controls in the water maze test. Additionally, in 
electrophysiological tests TauKO mice showed no change in basal 
synaptic transmission and paired-pulse facilitation from the CA1 
hippocampal region. However, LTP, but not LTD, showed 
severe deficits.

All animals were kept in standard animal cages (12 h/12 h light/
dark cycle, at 22 °C), with ad libitum access to food and water. The 
animals were maintained in compliance with institutional protocols 

Abbreviations: TTR, transthyretin; AD, Alzheimer’s disease; CP, choroid plexus; 

Tau22, THY-Tau22; TauKO, tau deletion; Abeta, Aβ: amyloid beta; CSF, cerebrospinal 

fluid; ptau, phosphorylated tau; IF, immunofluorescence.
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(Comité d’éthique en expérimentation animale du Nord Pas-de-
Calais, no. 0508003). All the animal experiments were performed in 
compliance with and following the approval of the local Animal 
Ethical Committee (agreement #12787–2, 015,101,320,441,671 v9 
from CEEA75, Lille, France), standards for the care and use of 
laboratory animals, and the French and European Community rules.

2.2 Ethics approval

Animals were maintained in compliance with institutional 
protocols (Comité d’éthique en expérimentation animale du Nord 
Pas-de-Calais, no. 0508003). All the animal experiments were 
performed in compliance with and following the approval of the 
local Animal Ethical Committee (agreement #12787–2, 015, 101, 
320, 441, 671 v9nfrom CEEA75, Lille, France), standards for the care 
and use of laboratory animals, and the French and European 
Community rules.

2.3 Tissue collection and sectioning

Adult mice were sacrificed, and the brains were removed from the 
cranial cavity, embedded in OCT, and snap-frozen in isopentane 
pre-cooled with dry ice and liquid nitrogen. The left hemispheres were 
sectioned on the cryostat at 10 μm thickness. Sections were placed on 
the spatially barcoded arrays with one section per well.

2.4 Fixation, staining, and imaging

Sections were fixed in 3.6–3.8% formaldehyde (Sigma) in PBS, 
washed in PBS, then treated for 1 min with isopropanol and air-dried. 
To stain the tissue, sections were incubated in Mayer’s Hematoxylin 
(Dako) for 7 min, then Bluing buffer for 2 min and Eosin (Sigma) for 
20 s. After drying, the slides were mounted with 85% glycerol and 
images of sections were taken using Metafer Slide Scanning Platform 
(Metasystems). Raw images were stitched together using VSlide 
software (Metasystems).

2.5 Tissue pre- and permeabilization

To pre-permeabilize the tissue, sections were incubated for 20 min 
at 37 °C with 0.5 U/ul collagenase (Thermofisher) in HBSS buffer 
mixed with 0.2 ug/ul BSA (NEB). Following washing in 0.1x SSC 
buffer (Sigma), sections were permeabilized with 0.1% pepsin/HCl 
(Sigma) at 37 °C for 10 and 6 min, respectively. Then, the sections 
were washed with 0.1x SSC buffer.

2.6 Reverse transcription and library 
preparation

After permeabilization, reverse transcription mix containing 
Superscript III reverse transcriptase (Thermofisher) was added 
to each section and incubated overnight at 42 °C as described 
previously (Stahl et al., 2016). Next, to remove tissue from the 

slide, sections were incubated for 1 h at 56 °C with Proteinase K 
in PKD buffer (both from Qiagen). Surface probes with bound 
mRNA/cDNA were then cleaved from the slide by USER enzyme 
(NEB) (Stahl et al., 2016). Released probes were collected from 
each well and transferred to separate tubes. Next, 2nd strand 
synthesis, cDNA purification, in  vitro transcription, aRNA 
purification, adapter ligation, post-ligation purification, a second 
2nd strand synthesis, and purification were carried out using an 
automated MBS 8000 system, as described previously (Jemt et al., 
2016). cDNA was amplified by PCR using Illumina Indexing 
primers (Stahl et al., 2016) and purified using carboxylic acid 
beads on an automated MBS robot system (Lundin et al., 2010). 
An Agilent Bioanalyzer High Sensitivity DNA Kit (Agilent) was 
used to analyze the size distribution of the final libraries. The 
concentration of the libraries was measured with Qubit dsDNA 
HS (Thermofisher). The libraries were sequenced on the Illumina 
Nextseq platform using paired-end sequencing. Thirty bases were 
sequenced on read one to determine the spatial barcode and 
UMI, and 55 bases were sequenced on read two to cover the 
genetic region. Probes were collected from each well and 
transferred to separate tubes. Next, 2nd strand synthesis, cDNA 
purification, in vitro transcription, aRNA purification, adapter 
ligation, post-ligation purification, a second 2nd strand synthesis 
and purification were carried out using an automated MBS 8000 
system as described previously (Jemt et  al., 2016). cDNA was 
amplified by PCR using Illumina Indexing primers (Stahl et al., 
2016) and purified using carboxylic acid beads on an automated 
MBS robot system (Lundin et al., 2010). An Agilent Bioanalyzer 
High Sensitivity DNA Kit (Agilent) was used to analyze the size 
distribution of the final libraries. The concentration of the 
libraries was measured with Qubit dsDNA HS (Thermofisher).

2.7 Staining of the slide features

After the probes were released from the slide surface, the features 
with remaining non-cleaved DNA probes were detected by incubation 
with hybridization mixture containing Cyanine-3 labeled 
oligonucleotides, as described previously (Stahl et  al., 2016). 
Fluorescent images were acquired using the same microscope as for 
the bright field images.

2.8 Sequencing

The libraries were sequenced on the Illumina Nextseq platform 
using paired-end sequencing. Thirty bases were sequenced on read 
one to determine the spatial barcode and UMI, and 55 bases were 
sequenced on read two to cover the genetic region.

2.9 Image alignment and spot detection

Bright field-stained images (H&E) and fluorescent images (Cy3) 
were aligned using the ST Spot Detector (Wong et al., 2018) software. 
The pixel and respective array coordinates of the detected spot 
centroids (inside tissue) were exported to a file that was used for 
down-stream analysis and visualization.
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2.10 Data processing

Sequenced raw data was processed using the open-source ST 
Pipeline v1.45 (Navarro et  al., 2017) with the genome reference 
Ensembl GRCm38 v86 and reference Mouse GenCode vM11 
(Comprehensive gene annotation). The ST Pipeline was executed with 
the following settings: Enable homopolymers filter (A, G, T, C, N) with 
a length of 10, enable two-pass mode for the alignment step, remove 
non-coding RNA (using the v86 non coding RNA database from 
Ensembl), discard reads whose UMI has more than 6 low quality 
bases, and discard trimmed reads shorter than 20.

The matrices of counts (spots by genes) generated by the ST 
Pipeline were filtered to replace Ensembl IDs by gene names and to 
keep only protein-coding, long-non-coding-intergenic, and antisense 
RNAs. The matrices of counts underwent another filtering step where 
only spots inside the tissue were kept using the file generated in the 
previous step (image alignment).

2.11 Datasets

The Tau22 dataset is composed of 2 sections per animal (mice) 
and 3 animals per genotype (Tau22 and littermate WT). Likewise, the 
TauKO dataset is composed of 2 sections per animal (mice) and 3 
animals per genotype (TauKO and littermate WT). The two WT 
strains are not the same since they were continuously bred to their 
respective genetically modified tau strains. We did not do a direct 
Tau22 to TauKO analysis.

2.12 Data analysis (Tau22)

The filtered and aligned matrices of counts were analyzed 
jointly with the Scanpy (Wolf et al., 2018) package v1.8.2. Briefly, 
the spots with a total count (UMIs) less than 2,000 or bigger than 
40,000 were discarded. The spots with less than 1,000 RNAs 
detected (count > 0) or with a percentage of mitochondrial RNAs 
above 15 were also discarded, mitochondrial RNAs were 
consequently removed from the filtered data and the remaining 
RNAs that were detected in less than 10 spots were also discarded. 
This resulted in 7,403 spots and 12,748 RNAs after filtering. The 
filtered data was normalized using the normalize_total function in 
Scanpy, the normalized data was log-transformed using a pseudo 
count of 1. The normalized and log-transformed data was adjusted 
to remove the unwanted batch effect of the animal (mice) using the 
regress_out function in Scanpy. Using the batch-corrected data, 
we selected the top 2000 variable RNAs using the “Seurat” flavor 
implemented in Scanpy. We  used the 7,403 spots and the 2000 
RNAs to perform unsupervised clustering which consisted in: (1) 
scale data to unit variance, (2) dimensionality reduction with PCA 
(Pearson, 1901), (3) compute the k-nearest neighbors (k = 15), (4) 
build a 2D manifold with UMAP (McInnes et al., 2018), and (5) 
compute clusters with the leiden algorithm (Traag et al., 2019) using 
a resolution of 0.75. The Allen Brain Atlas (Lein et al., 2007) and the 
tissue sections (H&E) were used to annotate the clusters. The 
clustering was validated by looking for technical effects by tissue 
morphology, count, animal, and genotype.

2.13 Data analysis (TauKO)

The filtered and aligned TauKO matrices of counts were analyzed 
in the same way as the Tau22 dataset with the exception that 6,437 
spots and 11,073 RNAs were obtained after filtering, the unsupervised 
clustering produced 16 well-defined clusters, and no batch effect could 
be observed. Similarly, to the Tau22 dataset, the Allen Brain Atlas 
(Lein et  al., 2007) and tissue section images (H&E) were used to 
annotate the clusters.

2.14 Spatial differential expression analysis 
(S-DE)

We used sepal (Andersson and Lundeberg, 2021) to infer 
RNAs with spatially distinct patterns. Sepal can only be run on 
individual sections, and it ranks the RNAs by a score. We averaged 
the scores for all the Tau22 and TauKO sections separately and 
then selected the top  25 RNAs, respectively. We  validated the 
results by plotting the normalized expression of the RNAs onto 
the tissue sections.

2.15 Region and genotype based 
differential expression analysis (DE)

We used the diffpy (Fischer and Hölzlwimmer, 2021) package to 
leverage on the power of its GLM zero inflated negative binomial 
models to infer RNAs that were differentially expressed for each 
region of interest. Each strain was compared to its respective littermate 
WT controls, thus Tau22 vs. WT and TauKO vs. WT were compared 
for the regions of interest (hippocampus and ventricle). An RNA was 
considered differentially expressed if the adj p-value ≤ 0.05 and a fold 
change of |0.5| for hippocampus and ventricle regions.

2.16 Enrichment analysis

The sets of differentially expressed RNAs were queried for GO 
biological processes (Ashburner et al., 2000) enriched pathways using 
the gprofiler (Kolberg et al., 2023) package. Only the terms labelled as 
“significant” (p-value below 0.05) were reported with the 
corresponding significantly changed RNAs.

2.17 Immunofluorescence

Immunofluorescence (IF) on mouse brain sections was 
performed as described previously (Zheng et al., 2020). Briefly, 
sagittal (5 μM) brain slices were deparaffinized and unmasked 
using citrate buffer (12 mM citric acid, 38 mM sodium phosphate 
dibasic, pH 6) for 8 min in a pressure tank. The slices were 
submerged for 1 h in 1% goat serum (Vector Laboratories 
#S-1000), and the primary antibodies were incubated overnight 
at 4 °C in the presence of PBS-0.2% Triton. Primary antibodies 
were revealed via secondary antibodies coupled to Alexa 488 or 
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568 (Life Technologies; 1/1000). The sections were counterstained 
with 4′,6-Diamidino-2-phenylindole (DAPI) and mounted with 
fluorescence mounting medium (Agilent Dako #S3023). The 
following primary antibodies were used: TTR (ThermoFisher 
Scientific PA5-88094; 1/100), AT8 (PSer202/Thr205tau; 
ThermoFisher Scientific MN1020; 1/400), Aβ (MOAB2; reactive 
to Aβ aa 1–4, Novus Biologicals NBP2-13075; 1/500) (4G8; 
reactive to Aβ aa 17–24; BioLegend SIG-39200; 1/5000). 
Fluorescence was quantified using the FIDJI macro application 
of ImageJ (confocal microscopy platform, PBSL, UAR2014/US41, 
Lille). Quantification corresponds to the z stack of serial confocal 
sections covering the entire thickness of the brain section. For CP 
epithelial cells, in each section the cell set was manually delimited 
and fluorescence was quantified in all cells. For Aβ deposits, in 
each section, labeled clusters were manually delimited and 
fluorescence was quantified. The quantification shows the mean 
of fluorescence values per individual.

Fluorescence from mouse brain sections was acquired using an 
LSM 710 confocal laser-scanning microscope (clsm) (Carl Zeiss). 
The confocal microscope was equipped with a 488-nm Argon laser, 
561-nm diode-pumped solid-state laser, and a 405-nm ultraviolet 
laser. The images were acquired using an oil 63X Plan-
APOCHROMAT objective (1.4 NA). All recordings were performed 
using the appropriate sampling frequency (16 bits, 1,024–1,024 
images, and a line average of 4).

2.18 Statistics for immunofluorescence 
analysis

The Shapiro–Wilk test of normality (GraphPad Prism 7) was used 
to test if the data were normally distributed. Two-tailed, unpaired 
t-test (GraphPad Prism 7) was used for statistical analysis of 
immunofluorescence in murine brains. Each biological replicate 
corresponds to one mouse. The number of biological replicates is 
indicated in the legends. The experimenters were not blinded. Data 
are presented as mean ± SEM, *p < 0.05; **p < 0.01.

3 Results

3.1 ST identifies DE RNAs and molecular 
clusters corresponding to anatomical 
layers of the mouse hippocampus and 
ventricles

A graphic overview of our experimental approach is shown in 
Figure 1. Briefly, snap frozen tissue samples from three animals of each 
genotype (Tau22, TauKO, and their respective littermate WT controls), 
were cryo-sectioned and processed as described in the Methods. Only 
female mice were used in this study. The Tau22 dataset is composed of 2 
sections per animal (mice) and 3 animals per genotype (Tau22 and WT), 
the total number of spots under the tissue is 7,483 with 22,174 RNAs. Box 
plots showing total read counts and number of detected RNAs per spot 
are shown in Supplementary Figure S1. The average number of reads 
(UMIs) per spot is 13,784 with an average of 4,797 detected RNAs per 
spot (Supplementary Figures S1A,B). Similarly, we obtained 6,857 spots 
and 21,974 unique RNAs for the TauKO dataset with an average number 

of UMI reads per spot of 6,714 and 3,116 detected RNAs per spot 
(Supplementary Figures S1C,D).

Clustering analysis was performed for each dataset (see Methods). 
Characterization of Tau22 mice data is shown in 
Supplementary Figure S2 and TauKO data is shown in 
Supplementary Figure S3. UMAP manifolds derived from the cluster 
analysis were colored by genotype, animal, and total expression to test 
for the presence of batch effects and to assess the robustness of the 
clustering (Supplementary Figures S2A, S3A). In all cases, the RNA 
expression clusters corresponded well to the anatomical layers in the 
brain hemisphere (Supplementary Figures S2B,C, S3B,C). The 
H&E-stained tissue sections are shown in panel 
Supplementary Figure S2B for Tau22 and Supplementary Figure S3B 
for TauKO, while the clusters for each mouse overlayed on the sections 
are shown in Supplementary Figure S2C for Tau22 and 
Supplementary Figure S3C for TauKO. The annotation of the clusters 
was performed using the H&E images and the Allen Brain Atlas (Lein 
et  al., 2007). We  selected, as mentioned previously, the clusters 
corresponding to the hippocampus and ventricle regions for further 
analysis. We validated the clustering results by plotting the normalized 
expression of the RNAs onto the tissue sections (Tau22, 
Supplementary Figure S2C; TauKO, Supplementary Figure S3C).

We elected to focus our attention on the hippocampus and ventricles 
because tau mice have hippocampus-dependent defects (Schindowski 
et al., 2006) and the CP dysfunction was recently reported as a newly 
defined subgroup of AD (Tijms et al., 2024). The clustering analysis was 
followed by a differential expression (DE) analysis to identify DE RNAs 
between Tau22-WT (Figures 2A–C) and TauKO-WT (Figures 2D–F) in 
the regions of interest (hippocampus and ventricles). As noted in the 
methods, each strain has their own WT mouse littermates. After applying 
a significance cut off adj. p-value of ≤ 0.05 and a fold change of |0.5| on 
the Tau22 datasets, we obtained 5 DE in the hippocampus (Thy1, Sez6, 
Ttr, Gm42418, Lars2) and 4 RNAs that were DE in the ventricles (Thy1, 
Sez6, Sgk1, Supt7l). Two RNAs were shared between the two regions, Thy1 
and Sez6. Thy1 is a cell surface glycoprotein that functions in cell-to-cell 
communication (Hu et al., 2022) and Sez6 encodes a protein altered in 
Alzheimer’s disease patient’s cerebral spinal fluid and important in 
neuronal signaling (Munro et al., 2016). For TauKO, there were 10 RNAs 
that were DE in the hippocampus and 11 RNAs that were DE in the 
ventricles, and 1 RNA was found in both regions, Mapt (Figures 2C,F). 
The following genes were significantly changed in the hippocampus: 
Mapt, Meg3, Serinc1, Nme7, Rtn4, Malat1, Mt3, Crym, Lars2, Gm42418. 
In the ventricles of TauKO mice, Mapt, Nrgn, Mpc1, Gria2, Ppp3cb, 
Pla2g16, St8sia3, Gm10076, Dbi, Cadm2, and Ppp3ca were found to 
be significantly changes. A full list of DE genes per region is listed in 
Supplementary Table 1.

RNA enrichment analysis using Gene Ontology biological process 
revealed a single term changed in Tau22 mice, in the hippocampus the 
term negative regulation of neuron projection development was 
identified, and the DE RNAs found in the term were Sez6 and Thy1. In 
contrast, several terms associated with axon extension and projection, and 
gliogenesis were identified in the TauKO hippocampus 
(Supplementary Figure S4A). Across the hippocampus terms, three 
significantly changed RNAs were identified: tau (Mapt), metallothionein 
3 (Mt3), and reticulon-4 (Rtn4) (Supplementary Figure S4B). 
Metallothionein 3 binds heavy metals like zinc and copper, has antioxidant 
properties, and is downregulated in AD brains (Vasak and Meloni, 2017). 
Reticulon-4 is a potent neurite outgrowth inhibitor and is thought to 
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promote neuroinflammation and neurodegeneration in AD (Kulczynska-
Przybik et al., 2021). The term learning or memory and several terms 
related to synaptic signaling terms were enriched in the TauKO ventricles 
dataset (Supplementary Figure S4C). There were five RNAs from TauKO 
ventricle in the terms, Gria2, Ppp3ca, Ppp3cb, Nrgn, and Mapt and most 
of the terms involved synaptic signaling.

In a separate analysis which included all regions 
(Supplementary Figure S5), we aimed to detect RNAs that had region-
wise distinct spatial patterns, in other words RNAs that were spatially and 
differentially expressed with regards to the other regions (S-DE). To begin, 
we  identified the top DE RNAs from each genotype comparison 
(Supplementary Figures S5A,C). Next, we identified the top DE RNAs 
that also displayed a spatial pattern. The top DE and S-DE RNAs are 
shown in the heatmaps per genotype and region 
(Supplementary Figures S5A,B, Tau22 versus its WT, 

Supplementary Figures S5C,D, TauKO versus its WT). Notably, Ttr was 
both a top DE RNA and top S-DE RNA in the Tau22 dataset. It was not 
in the TauKO significantly changed RNA list. Additionally, we found 
minimal overlap, two RNAs Lars2 and Gm42418, among the RNAs in the 
hippocampus datasets in the Tau22 and TauKO comparisons by region 
and no shared genes across the ventricle’s datasets.

3.2 Tau and pathological forms of tau may 
regulate TTR protein levels in CP epithelial 
cells

The ST results revealed a number of RNAs whose transcript 
expression were dysregulated in the presence of tau pathology and/or 
tau (Mapt) deletion in the hippocampus and the lateral ventricles 

FIGURE 1

Graphic representation of data. (A) UMAP plot of Tau22 dataset. (B) UMAP plot highlighting the regions used in the analysis of the Tau22 mouse 
regions. (C) Venn diagram depicting DE RNAs from the hippocampus and ventricles of Tau22 mice. (D) UMAP plot of TauKO dataset. (E) UMAP plot 
highlighting the spots used in the analysis of the TauKO mouse regions. (F) Venn diagram depicting DE RNAs from the hippocampus and ventricles of 
TauKO mice. Genes depicted above/below numbers in C and F denote upregulated or downregulated genes Tau22 or TauKO vs. WT, respectively.
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(Figure 3). Among the RNA lists, we noted the RNA Ttr. We elected 
to focus on Ttr because of its known neuroprotective properties, it is 
important for memory, and plays a role in Aβ sequestration and 
clearance (Brouillette and Quirion, 2008; Buxbaum, 2023; Buxbaum 
and Johansson, 2017; Buxbaum et  al., 2008; Cascella et  al., 2013; 
Ciccone et al., 2020; Costa et al., 2008; Gomes et al., 2016; Gonzalez-
Marrero et al., 2015; Iqbal, 2018; Li et al., 2013; Liz et al., 2020; Nilsson 
et al., 2018; Santos et al., 2010; Schwarzman et al., 1994; Ueda, 2022; 
West et al., 2021). Further, Ttr was a top RNA in both the S-DE and 
DE analysis in the Tau22 data set (Supplementary Figures S5A,B). 
Figures 3A–C displays the expression pattern and transcript levels of 
Ttr from Tau22 mice from the hippocampus and ventricles, whereas 
Figures 3D–F show similar results from the TauKO mice. The plots 
show the mean and median values to facilitate easier comparison. The 
RNA plots of Ttr expression are overlaid on the tissue slices in 
Figure 3G for Tau22 mice and Figure 3H for TauKO mice. Ttr is an 
RNA coding for an extracellular chaperone deregulated in AD but 
there is little known about a regulatory relationship between tau and 
TTR protein.

TTR protein localization and levels were analyzed by IF in sagittal 
sections from 12 months-old THY-Tau22 and WT littermate mouse 
brains using TTR antibody. In both genotypes, TTR protein was only 
strongly detected in CP epithelial cells, where it is secreted (Stauder 
et al., 1986), with an increasing intensity towards the basal surface 
(Figures  4A,B). IF analysis revealed a significant increase of TTR 
protein level in CP epithelial cells from Tau22 mice versus WT 

littermates (mean intensity WT: 106.6%; Tau22: 130.6%) (Figures 4B,C). 
We  did not observe accumulation of phosphorylated tau in CP 
epithelial cells (Figure 4D), indicating the absence of tau pathology there.

We also evaluated the phosphorylated form of tau (ptau) and TTR 
expression in the hippocampus of WT and Tau22 mice, 
Supplementary Figures S6A–E, respectively. Although increased levels 
of TTR protein have been previously reported in hippocampal cells 
from AD-like transgenic mouse models (Li et al., 2011; Stein and 
Johnson, 2002), no difference in the level of TTR was observed in CA1 
hippocampal cells between 12 months-old WT and Tau22 mouse 
brains (Supplementary Figures S6D,E). Additionally, no TTR 
expression was detected in neurons displaying hyperphosphorylated 
tau (Supplementary Figure S6C).

To better understand whether the elevation of TTR observed in 
Tau22 mice associates with a gain or a loss of tau function, we further 
explored the influence of tau deletion on TTR expression by IF in 
sagittal sections from 12 months old TauKO and WT littermate mouse 
brains using TTR antibody. Again, in WT mice, high TTR expression 
was restricted to CP epithelial cells from ventricles (Figure  4E). 
Quantification of TTR IF revealed a statistically significant decrease 
of TTR in TauKO compared to WT CP epithelial cells (mean intensity 
WT: 106.4%; TauKO: 64.44%) (Figure 4F). We also evaluated TTR 
levels in the hippocampus of TauKO mice, and similar levels of TTR 
were observed in TauKO and WT littermates 
(Supplementary Figures S6F,G). Our results indicate that tau may 
positively modulate the level of TTR protein in the CP epithelial cells.

FIGURE 2

Schematic summary of ST and IF results focusing on TTR expressions. Graphic representation of the study. Two mouse models representative of tau 
pathology (THY-Tau22) and a tau null (TauKO) were used in a spatial transcriptomics analysis of brain tissue. TTR was identified as a DE RNA, its 
expression was validated by immunofluorescence, and decreased TTR was associated with increased Aβ deposition in TauKO mice.
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FIGURE 3

Investigation of Ttr RNA expression. (A) UMAP plot showing the expression pattern of Ttr RNA in Tau22 mice. Violin plots of data Ttr expression data 
from the hippocampus (B) and ventricles (C) of Tau22 mice. (D) UMAP plot showing the expression pattern of Ttr RNA in TauKO mice. Violin plots of 
data Ttr expression data from the hippocampus (E) and ventricles (F) of TauKO mice. (G) Ttr RNA expression plotted onto the tissue sections of Tau22 
mice. (H) Ttr RNA expression plotted onto the tissue sections of TauKO mice.
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FIGURE 4

TTR is increased in choroid plexus epithelial cells from Tau22 mouse brains. (A) Representative image of ventricles in sagittal sections from 12 months 
old WT mouse brain. Choroïd plexus (CP) epithelial cells present inside the ventricles are labeled with an anti-TTR antibody. (B) Representative images 

(Continued)
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3.3 Tau deletion favors Aβ deposits in aged 
mouse brains

TTR synthesized in CP epithelial cells is secreted into the CSF that 
bathes the whole brain. In transgenic Tg2576 mice, an AD-like mouse 
model that expresses mutant APP(sw), Aβ peptide is overexpressed 
and TTR expression increases in hippocampal neurons likely as a 
compensatory mechanism to prevent Aβ aggregation in the brain  
(Li and Buxbaum, 2011; Stein and Johnson, 2002). Since TTR may 
prevent Aβ peptide aggregation, we hypothesized that tau deletion in 
aged mice might induce the formation of Aβ amyloid deposits. To test 
this proposition, we compared the effect of tau deletion-induced TTR 
downregulation on the presence of Aβ deposits in sagittal sections 
from 12 and 24 months-old TauKO and WT littermate mouse brains 
using the Aβ antibody MOAB2. Although only few Aβ deposits were 
detected both in 12 months-old TauKO and WT littermate mouse 
brains (Supplementary Figure S7), a strong increase of the area and IF 
intensity of Aβ aggregates was observed in the hippocampus and/or 
near the lateral ventricles of 24 months-old TauKO compared to WT 
mouse brains (mean intensity WT: 100%; TauKO: 596.3%) 
(Figures 5A,B). Similar results were obtained using a second anti-Aβ 
antibody (4G8, mean intensity WT: 100%; TauKO: 387.9%) 
(Figures 5C,D). It is noticed that the aspect of the plaques detected by 
MOAB2 and 4G8 is different and potentially linked to the distinct 
epitopes recognized by the two antibodies. Nevertheless, it should 
be stressed that the use of 4G8 to detect murine Aβ is controversial. No 
Aβ accumulation was observed in CP epithelial cells of 24 months-old 
TauKO compared to WT mouse brains (data not shown).

For comparison, we also evaluated TTR protein level, and it was 
downregulated in CP epithelial cells from 24 months-old TauKO mouse 
brains (mean intensity WT: 102.7%; TauKO: 69.42%) (Figures 5E,F) in 
a similar range as previously observed in 12 months-old TauKO mice 
(Figures 4E,F), showing that the regulatory role of tau on TTR protein 
expression is conserved during aging. Altogether these results show that 
tau deletion potentiates Aβ deposit formation of endogenous Aβ peptide 
in aged mice, and that this correlates with a decrease in TTR expression.

3.4 Regulation of TTR by tau

To explore the interconnectedness between tau (Mapt), APP 
(presumably Aβ), and TTR, we submitted those genes plus our DE 
gene lists, by genotype, to GeneMANIA (Warde-Farley et al., 2010). 
The output graphics are shown in Figure 6. There were no known 
direct linkages between tau and TTR, neither physical nor predicted. 
No transcription factors were revealed by this analysis either. However, 

there was an indirect link between tau, APP (Aβ), and TTR. Stringdb 
analysis produced similar results (data not shown). It appears that the 
shortest connection between Ttr and tau is through Aβ.

4 Discussion

Collectively, ST and IF reveal a new regulatory role of tau on the 
expression of TTR. In connection with these findings, this study 
highlights the key protective role of murine tau on endogenous Aβ 
deposition in mouse brain. Our data provides novel insight into the 
physiological role of tau in regulating TTR protein level in CP epithelial 
cells and the gain of this function associated with tau pathology.

We should note that while this paper was in preparation, Ali et al. 
(2024) reported single-cell analysis results performed on the cortex of 
7-month-old Tau22 and wild type littermate mice, an early time point of 
pathological development in the cortex of THY-Tau22 mice. Ttr RNA 
expression was increased in Tau22  in neurons in multiple cell types, 
astrocytes, microglial cells, and oligodendrocytes. This goes in the same 
direction as our IF results in 12-month-old Tau22 mice. Together, this 
reinforces the correlation between the development of pathological forms 
of tau and altered expression of TTR in the mouse brain.

Proteins synthetized in CP epithelial cells are directly secreted into 
the CSF, which bathes the entire brain. Therefore, any variation in the 
expression of secreted proteins from CP epithelial cells can have important 
consequences throughout the brain. Changes in the TTR level in CP 
epithelial cells of tau transgenic mice likely leads to alteration of TTR in 
the CSF. Notably, clinical studies in humans have shown that TTR levels 
in CSF may vary with the stage of pathology (Buxbaum, 2023). In a recent 
paper by Tijms et al. (2024), using mass spectrometry proteomics in 
human cerebrospinal fluid from 187 controls and 419 AD patients, the 
authors defined five AD molecular subtypes including a new one related 
to CP dysfunction. Importantly, our results suggest that the contribution 
of CP dysfunction, in a subgroup of AD patients, may be linked to tau 
pathology. We should note that while it is tempting to speculate that our 
results may pertain to human disease, further analysis is warranted to 
validate whether this is so. Nonetheless, the relationship between CP 
dysfunction, TTR expression, and tau pathology in AD warrants 
further investigation.

It has been previously shown that tau deletion increases Aβ 
plaques when human Aβ is overexpressed in mouse brain 
(Lonskaya et  al., 2014), but ours is the first description that 
reports tau deletion potentiates endogenous mouse Aβ 
deposition. Interestingly we show decreased TTR levels in CP 
epithelial cells from tau-deleted mice, and this correlates with an 
accumulation of Aβ deposits in the hippocampus of aged mice. 

of sagittal sections from 12 months old WT (n = 9) and Tau22 (n = 17) mouse brains. The sections were labeled with the anti-TTR antibody. IF signals 
were analyzed by clsm (z projection). Nuclei were detected with DAPI staining. The scale bars represent 20 μm. (C) The intensity of the TTR IF signals 
were quantified within CP epithelial cells from 12 months old WT and Tau22 mouse brains. Graph shows the mean of TTR fluorescence per mouse. 
Each biological replicate represents one mouse. Data are presented as mean ± SEM (**p < 0.01; Mann Whitney U test). (D) Representative images of 
sagittal sections from 12 months old Tau22 (n = 17) mouse brains. The sections were labeled with the phospho-dependent anti-tau AT8 and the anti-
TTR antibody. IF signals were analyzed by clsm (z projection). Nuclei were detected with DAPI staining. The scale bars represent 20 μm. 
(E) Representative images of sagittal sections from 12 months old WT (n = 15) and TauKO (n = 13) mouse brains. The sections were labeled with the 
anti-TTR antibody. IF signals were analyzed by clsm (z projection). Nuclei were detected with DAPI staining. The scale bars represent 20 μm. (F) The 
intensity of the TTR IF signals were quantified within CP epithelial cells from 12 months old WT (n = 15) and TauKO (n = 13) mouse brains. Graph shows 
the mean of TTR fluorescence per mouse. Each biological replicate represents one mouse. Data are presented as mean ± SEM (**p < 0.01; Mann 
Whitney U test).
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FIGURE 5

Tau deletion enhances Aβ deposits in aged mouse brains. (A) Representative images of sagittal sections from 24 months old WT (n = 5) and TauKO 
(n = 5) mouse brains. The sections were labeled with the anti-Aβ antibody MOAB2. IF signals were analyzed by clsm (z projection). Nuclei were 

(Continued)
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Our results suggest that a reduction of TTR, induced by the loss 
of tau, may participate to promote accumulation of Aβ peptide in 
the brain. However, the involvement of murine TTR in murine 
Aβ aggregation requires further investigation. Furthermore, 
different approaches such as Western blot or ELISA would 
be needed to clarify which Aβ form (monomeric, oligomeric or 
fibrillar) was identified by IF.

Here, we propose that late tau pathology of the transgenic mouse 
model THY-Tau22 promotes increased TTR protein expression, 
indicating a gain of tau function. Besides Aβ, TTR can prevent the 
amyloidogenesis of various unstructured proteins (Magalhaes et al., 2021; 
West et al., 2021). Notably, tau is also an intrinsically unstructured protein 
which can form intraneuronal amyloid fibrils and is present with high 
molecular weight species in the brain interstitial fluid (ISF) in pathological 

conditions (Takeda et al., 2015), and the ability of TTR to inhibit tau 
aggregation has not been mentioned in the literature. Here we observe 
that in response to late tau pathology, TTR protein level is increased in CP 
epithelial cells from Tau22 mouse brains. Surprisingly, tau aggregation 
peaks at 12 months old in Tau22 mouse brains and no longer progresses 
as mice age suggesting that mechanisms are induced to block the 
progression of the pathology (Schindowski et al., 2006). Therefore, it is 
tempting to speculate that increasing the amount of TTR in the CP 
epithelial cells of Tau22 mouse brain is a backup mechanism to slow down 
amyloid protein aggregation processes including tau. It would be worth 
testing this hypothesis and establish if TTR can directly bind to tau and 
inhibit its aggregation process, but that is beyond the scope of this work.

Although CP epithelium cell failure is described as an early sign in 
the etiology of AD (Giao et al., 2022), potential alteration of TTR levels in 

detected with DAPI staining. The scale bars represent 20 μm. (B) Quantification of IF intensity and the area of Aβ deposits from 24 months old WT 
(n = 5) and TauKO (n = 5) mouse brains. Graph shows the mean of Aβ IF.area per mouse. Each biological replicate represents one mouse. Data are 
presented as mean ± SEM (*p < 0.05; Mann Whitney U test). (C) Representative images of sagittal sections from 24 months old WT (n = 5) and TauKO 
(n = 5) mouse brains. The sections were labeled with the anti-Aβ antibody 4G8. IF signals were analyzed by clsm (z projection). Nuclei were detected 
with DAPI staining. The scale bars represent 20 μm. (D) Quantification of IF intensity and the area of Aβ plaques from 24 months old WT (n = 5) and 
TauKO (n = 5) mouse brains. Graph shows the mean of Aβ IF.area per category. Each biological replicate represents one mouse. Data are presented as 
mean ± SEM (*p < 0.05; Mann Whitney U test). (E) Representative images of sagittal sections from 24 months old WT (n = 5) and TauKO (n = 5) mouse 
brains. The sections were labeled with the anti-TTR antibody. IF signals were analyzed by clsm (z projection). Nuclei were detected with DAPI staining. 
The scale bars represent 20 μm. (F) The intensity of the TTR IF signals were quantified within CP epithelial cells from 24 months old WT (n = 5) and 
TauKO (n = 5) mouse brains. Graph shows the mean of TTR fluorescence per mouse. Each biological replicate represents one mouse. Data are 
presented as mean ± SEM (*p < 0.05; Mann Whitney U test).

FIGURE 5 (Continued)

FIGURE 6

GeneMANIA networks. (A) Graphic representation of Mapt, APP (Aβ), TTR, and both DE gene lists from Tau22 mice. (B) Graphic representation of Mapt, 
APP (Ab), TTR, and both DE gene lists from TauKO mice.
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the CSF of AD patients is still controversial (Bergen et al., 2015; Riisoen, 
1988; Serot et al., 1997; Tijms et al., 2024). Raha-Chowdhury et al. (2019) 
suggested that the presence of insoluble phosphorylated tau in CP 
epithelial cells from AD brains may favor Aβ aggregation. Conversely, in 
our transgenic mouse model Tau22 where pathological forms of tau are 
not detected in the CP, results show no effect of tau pathology on Aβ 
agglomeration in the brain. Of course, we cannot exclude that in late 
phases of AD, when they invade the CP, insoluble forms of tau disrupt the 
functionality of CP epithelial cells, and particularly the synthesis of TTR, 
thus promoting Aβ peptide aggregation. In view of our results, it is 
important to unambiguously evaluate the level of TTR in CP epithelial 
cells and in the CSF of AD and other tauopathies patients.

Previously, genome wide analysis demonstrated that nuclear tau 
could bind to a fraction of genic protein-coding DNA sequences in 
neurons (Benhelli-Mokrani et al., 2018). Tau was not found to bind to 
the DNA of Ttr RNA based on the ChIP-on-chip results in neurons 
(Benhelli-Mokrani et al., 2018). However, regulation of Ttr transcription 
may vary according to cell type (hepatocytes, CP epithelial cells, or 
neurons) (Costa et al., 1988; Dickson et al., 1986; Wang et al., 2014). 
Nevertheless, the absence of detection of phosphorylated tau in the CP 
epithelial cells of Tau22 mice suggests that the effect is likely not direct. 
To further investigate the relationship between tau, Aβ, and TTR, 
we constructed GeneMANIA interaction networks with those genes plus 
the DE genes (Figure 6). No transcription factors or obvious candidate 
proteins were seen in these graphics to explain how changes in tau 
modulates the transcription or protein levels of TTR in the brain. 
However, we note that we have long non-coding RNA (lncRNA) in our 
DE gene lists and lncRNAs can modulate transcription and act at a 
distance via transport in extracellular vesicles. Using human iPSC-
neurons with Mapt variants, Bhagat et al. (2023) found that the Mapt 
variants also showed altered expression of Malat1 and Meg3. Further, 
Malat1 is altered in AD patient plasma and CSF (Zhuang et al., 2020) and 
has been found in glioma stem cell-derived extracellular vesicles (Yang 
et al., 2019). We have no knowledge whether Gm42418, Malat1, or Meg3 
can alter TTR protein expression. This warrants further investigation.

In addition, a surprising point in this study is that, although the 
level of the TTR protein is markedly reduced in CP epithelial cells of 
tau-deleted mice, the dysregulation of the expression of the Ttr RNA 
in the ventricles is not apparent from the ST analysis. Either there was 
a technical limitation in the sensitivity of detection of mRNAs at the 
level of CP epithelial cells or something masked the effect of tau on the 
transcription of the Ttr RNA, or the regulatory role of tau is not at the 
transcriptional level. Tau could modulate the translation, transport, or 
the degradation of TTR. Indeed, the molecular mechanisms 
underlying the changes in tau-dependent TTR protein expression in 
CP epithelial cells remain uncovered.

Our results open new perspectives on the regulation of TTR by 
tau expression in the brain and for the first time link TTR and tau in 
neuronal functioning and TTR dysregulation in the context of 
tauopathies, see Figure 1 for a graphic summation of the study. The 
ramifications of the associations between tau, TTR, and Aβ warrant 
further investigation regarding Aβ clearance and cognition.

5 Limitations of the study

ST is a formidable technique for obtaining information that is 
inaccessible by global transcriptional analysis approaches, the fact 

remains that it still has limitations. This study was initiated when the 
size of the array spots was 100 μm, which is much larger than current 
ST methodologies (10-50x). We believe, however, that the 1 K arrays 
still provide valuable and powerful data.

We recognize that the experiments were conducted using only 
12 m and 24 m old mice. Since disease progression is not static, and 
insights may be  missed by snapshot analyses, in future studies 
we suggest including multiple time points (e.g., 3, 6, 18, or 24 months) 
which could provide a more comprehensive understanding of the 
temporal dynamics of the tau-TTR-Aβ relationships, but this is 
beyond the scope of this paper.” Further, this option was not available 
to us because of limited resources.

Another limitation of this study is the use of females 
exclusively. We  recognize that we  may have missed sex-based 
differences since we did not use male mice and further that our 
findings may not entirely translation to males. Further, since our 
findings are in mice, and while it is tempting to speculate that our 
results may pertain to human disease, further analysis is 
warranted to validate whether this is so.”

We also acknowledge that the use of 4G8 to detect murine Αβ is 
controversial. However, it has been used previously in APOE 
transgenic mice to detect mouse Aβ (Ding et al., 2008). Further, the 
most abundant pattern identified by 4G8 is F-x-A (Baghallab et al., 
2018) which is highly conserved across species including in the mouse 
Aβ (Flemmig et al., 2018).
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SUPPLEMENTARY FIGURE S1

Quality control for of the ST analysis. (A) Average number of counts per spot 
in each Tau22 mouse. (B) Average number of RNAs detected per spot in each 
Tau22 mouse. (C) Average number of counts per spot in each TauKO mouse. 
(D) Average number of RNAs detected per spot in each TauKO mouse.

SUPPLEMENTARY FIGURE S2

Graphic representation of Tau22 mouse data. (A) UMAP plots colored by total 
number of counts per total RNAs detected, per mouse, and genotype. 
(B) H&E-stained brain sections for Tau22 mice. (C) Spatial representation of 
spots colored by cluster in Tau22 mouse brains.

SUPPLEMENTARY FIGURE S3

(A) UMAP plots colored by total number of counts per total RNAs detected, 
per mouse and genotype. (B) H&E-stained brain sections for TauKO mice. 
(C) Spatial representation of spots colored by cluster in TauKO mouse brains.

SUPPLEMENTARY FIGURE S4

RNA ontology analysis. (A) RNA set enrichment analysis (GSEA) of the top GO 
biological process terms from TauKO hippocampus dataset. (B) Heatmap of 
the significantly changed DE RNAs found in various terms. (C) GSEA of the 
top GO biological process terms from TauKO ventricles dataset.

SUPPLEMENTARY FIGURE S5

Heatmaps of top Spatial DE and DE RNAs. (A) Top DE RNAs from Tau22 mice. 
(B) Intersection of top spatial DE and DE RNAs from Tau22 mice. (C) Top DE 
RNAs from TauKO. (D) Intersection of top spatial DE and DE RNAs from 
TauKO mice.
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SUPPLEMENTARY FIGURE S6

Tau alterations do not affect TTR expression in hippocampal cells from 
Tau22 mouse brains. (A) Schematic representation of the hippocampus 
from mouse brain. (B) Representative image of sagittal sections from 
12 months-old Tau22 mouse hippocampus. The section was labeled 
with the phospho-dependent anti-tau AT8 antibody. IF signals were 
analyzed by clsm (z projection). Nuclei were detected with DAPI 
staining. The scale bar represents 200 μm. (C) Representative images of 
sagittal sections from Tau22 (n = 12) mouse brains. The sections were 
labeled with the phospho-dependent anti-tau AT8 and the anti-TTR 
antibody. IF signals were analyzed by clsm (z projection). Nuclei were 
detected with DAPI staining. The scale bars represent 50 μm. 
(D) Representative images of sagittal sections from WT (n = 13) and 
Tau22 (n = 12) mouse brains. The sections were labeled with the anti-
TTR antibody. IF signals were analyzed by clsm (z projection). Nuclei 
were detected with DAPI staining. The scale bars represent 50 μm. 
(E) The intensity of the TTR IF signals were quantified within 
hippocampal CA1 cells from WT (n = 13) and Tau22 (n = 12) mouse 
brains. Graph shows the mean of TTR fluorescence per genotype. Each 
biological replicate represents one mouse. Data are presented as mean 
± SEM (ns: p > 0.05; Mann Whitney U test). (F) Representative images of 

sagittal sections from 12 months-old WT (n = 15) and TauKO (n = 13) 
mouse brains. The sections were labeled with the anti-TTR antibody. IF 
signals were analyzed by clsm (z projection). Nuclei were detected with 
DAPI staining. The scale bars represent 50 μm. (G) The intensity of the 
TTR IF signals were quantified within hippocampal CA1 cells from WT 
(n = 15) and TauKO (n = 13) mouse brains. Graph shows the mean of 
TTR fluorescence per category. Each biological replicate represents 
one mouse. Data are presented as mean ± SEM (ns: p > 0.05; Mann 
Whitney U test).

SUPPLEMENTARY FIGURE S7

Aβ deposits are only weakly detected in 12 months old Tau22 and WT 
littermate mouse brains. Representative images of sagittal sections from 
12 months old WT (n = 15) and TauKO (n = 13) mouse brains. The sections 
were labeled with the anti-Aβ antibody MOAB2. IF signals were analyzed by 
clsm (z projection). Nuclei were detected with DAPI staining. The scale bars 
represent 50 μm.

SUPPLEMENTARY TABLE 1

List of DE genes per region.
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