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Autism Spectrum Disorder (ASD) manifests as a group of neurodevelopmental
disorders with high clinical and genetic heterogeneity, characterized by core
features including social communication deficits, repetitive behaviors, and restricted
interests. Current research primarily focuses on genetic variations, immune
dysregulation, synaptic dysfunction, and gene—environment interactions. Nowadays,
accumulating evidence indicates that maternal gut microbiota dysbiosis, induced
by high-fat diets, antibiotic overuse, and urbanization, significantly correlates
with abnormal fetal neurodevelopment and increased ASD risk. This review
systematically delineates three transplacental mechanisms whereby maternal
dysbiosis regulates fetal neurodevelopment: Metabolite-mediated pathways,
Immune pathway activation, and Epigenetic reprogramming. Meanwhile, the key
translational challenges are highlighted. At last, metagenomics-metabolomics-fetal
neuroimaging, Development of microbiota metabolite-treated brain organoids,
and Artificial Intelligence-driven (Al-driven) probiotic screening were proposed
as research directions in future.
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1 Introduction

Autism Spectrum Disorder (ASD) is a highly heterogeneous,
complex neurodevelopmental disorder. Its core clinical manifestations
consist of persistent deficits in social communication/interaction and
restricted, repetitive behavioral patterns with narrow interests
(Urbonaite et al., 2022). Notably, the global prevalence of ASD has
increased significantly, exceeding 1% in some regions (Elvers et al.,
2020). This underscores that etiological research impacts not only
individual health but also public health.

For a long time, researches of ASD have focused on interactions
between genetic susceptibility and environmental factors. There
have been excellent reviews for the roles of genetic factors and the
interaction of genetic and environmental factors in the
pathogenesis in ASD (Grayson and Guidotti, 2016; Cheroni et al.,
2020; Masini et al., 2020; Sandin et al., 2014), which are not the
major topics of this review. Recently, the gut microbiota—a
dynamic community of bacteria (predominant), archaea, viruses,
fungi, and protists inhabiting the gastrointestinal tract—and its
collective gene pool (the gut microbiome) have transformed ASD
research paradigms. With a gene catalog surpassing the host
genome, the microbiome is termed the “second genome” (Zhang
et al., 2021). It maintains gastrointestinal homeostasis, regulates
immune development/function, and reinforces intestinal barrier
integrity (Winglee et al, 2017). Its composition is highly
individualized, shaped by genetics, age, diet, medications
(especially antibiotics), and environment.

Clinical observations frequently report comorbid gastrointestinal
dysfunction, such as chronic constipation, diarrhea, and abdominal
pain in ASD children. The severity of such symptoms often correlates
with core behavioral deficits (Hassib et al., 2023). This association
implicates the gut-brain axis—a bidirectional communication network
linking the gut microbiome, intestinal mucosa, and nervous system
via neural, endocrine, immune, and metabolic pathways [e.g.,
neurotransmitters, short-chain fatty acids (SCFAs, a type of fatty acid
with less than six carbon atoms including acetic acid (acetate),
propionic acid (propionate) and butyric acid (butyrate)) (Mann et al.,
2024)], tryptophan metabolites, cytokines (Tian et al., 2023). This axis
profoundly influences neurodevelopment and behavior.

Microbial colonization begins during critical windows of early-life
through maternal-offspring microbial transmission (Amat et al,
2022). This process spans three phases: (1) Prenatal: Emerging
evidence—though still debated—challenges the “sterile womb”
hypothesis, suggesting potential low-biomass microbial transfer
occurring through blood or placenta (Herndndez-Martinez et al.,
2022). (2) Intrapartum: Vaginal delivery exposes neonates to maternal
vaginal/perianal microbes, such as Lactobacillus, Prevotella and
Sneathia, whereas cesarean section results in colonization by skin and
environmental taxa, including Staphylococcus, Streptococcus and
Corynebacterium (Wu et al., 2017). (3) Postnatal: Breastfeeding
[conveying microbes/HMOs (human milk oligosaccharides,
consisting of multifunctional, unconjugated, and non-digestible
glycans) (Dinleyici et al,, 2023)], skin contact, and caregiving
behaviors further shape the infant microbiome, influenced by
maternal diet/health/antibiotics (Choi et al., 2016). These processes
train immune development, metabolic programming, and
neurodevelopment. The disruptions of these processes are implicated
in ASD pathogenesis (Luoto et al., 2010).
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In ASD research, the gut-brain-microbiota axis represents a
critical frontier. Compelling evidence reveals widespread gut
microbial dysbiosis in ASD, characterized by reduced diversity,
decreased beneficial symbionts (the microbial organisms
mutualistically interacting with the host and the interactions are
beneficial to both the host and the microbial organisms, e.g.,
Bifidobacterium), and increased potential pathobionts (members of
the microbiota associated with the development of clinical diseases,
e.g., some Clostridium spp.) (Zhang et al., 2021). Such dysbiosis may
drive ASD pathophysiology through: (i) Disruption of intestinal
barrier integrity (intestinal hyperpermeability [“leaky gut’]),
permitting systemic influx of pro-inflammatory mediators; (ii)
Alterations in microbial metabolites (SCFAs, secondary bile acids,
neuroactive compounds); (iii) Induction of local/systemic immune
inflammation (e.g., elevated pro-inflammatory cytokines like IL-6);
(iv) Epigenetic modulation of host gene expression (Tartaglione
etal., 2022).

Although causality remains debated (e.g., dietary habits may
influence microbiota), recent animal models and microbiota
transplantation studies support pathogenic roles for gut microbes in
ASD (Kang et al., 2013). This supports probiotic [live microorganisms
conferring health benefits at adequate doses; e.g., Lactobacillus,
Bifidobacterium, Saccharomyces boulardii (Sun et al., 2024)] and fecal
microbiota transplantation (FMT) as translational interventions.

This review summarizes key advances linking gut microbiota to
ASD. The conceptual frameworks (gut microbiome, gut-brain axis,
microbial transmission) were outlined, the mechanistic hypotheses
(barrier dysfunction, microbial metabolites, neuroimmune signaling,
epigenetics) were analyzed, the clinical/experimental evidence was
evaluated, and the challenges for microbial interventions were
discussed. Genetic/epigenetic factors were discussed only where they
interact with microbiota as they are not the major topics in this review.
Future breakthroughs require multi-omics integration to elucidate
microbiota-mediated neurodevelopmental mechanisms and enable
personalized therapies.

2 The gut microbiome in autism
spectrum disorder: the association
hypothesis

2.1 Landmark historical events

During the clinical observation phase from the 1960s to the 1990s,
healthcare workers noted that children with autism spectrum disorder
(ASD) frequently exhibited feeding difficulties, constipation, diarrhea,
and other gastrointestinal (GI) symptoms. These observations
suggested potential dysfunctions within the digestive system in ASD
patients (McElhanon et al, 2014). Although the 1998 study by
Wakefield and colleagues—subsequently retracted due to scientific
misconduct—erroneously linked the measles, mumps, and rubella
(MMR) vaccine and intestinal inflammation to ASD onset, its invalid
conclusions inadvertently heightened scientific and public awareness
of gut-related factors in ASD (Sikora, 2015). This attention indirectly
stimulated subsequent researches (Zheng et al., 2020).

The advent of high-throughput sequencing technologies,
including 16S rRNA gene sequencing and metagenomics along with
metabolomics in the 21st century provided the core technical
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foundation for large-scale, detailed characterization of gut microbiota
composition and functional activity in ASD individuals (Xu et al.,
20225 Chang et al., 2024). This facilitated the transition of this field
into a period of rapid advancement (Wang X. Q. et al., 2018).

Driven by these technologies, some population studies revealed
potential dysbiosis patterns in the gut microbiota of ASD patients. For
instance, work by Finegold et al. in 2002 and 2010 reported early
observations of increased Clostridium species abundance in fecal
samples from ASD children (Lu and Claud, 2019; Finegold et al., 2002;
Finegold et al., 2010). Subsequently, studies by Kang and colleagues in
2013 and 2017, utilizing large cohorts of ASD children, systematically
identified several core features of the ASD gut microbiome: reduced
alpha diversity, decreased relative abundance of Prevotella, and
significant alterations in the Bacteroidota/Bacillota ratio (Kang et al.,
2013; Grochowska et al., 2018). Associations between the abundance
of specific bacterial genera and the severity of core ASD symptoms
were also observed, providing early evidence for microbiota-behavior
links. Critically, their research using the maternal immune activation
(MIA) animal model offered experimental support for the biological
mechanism whereby maternal infection or inflammatory states might
alter offspring gut microbiota and thereby impact neurodevelopment
(Liu et al., 2022).

To investigate the potential causal role of gut microbiota in ASD
pathophysiology, functional validation approaches were employed. A
landmark work by Kang et al. (2019) in 2019 demonstrated that
transplantation of fecal microbiota from ASD donors into germ-free
(GF) mice recapitulated certain ASD-like behavioral phenotypes, such
as social deficits and increased repetitive behaviors. This was
of ASD-associated
neurodevelopmental genes. This study provided the first direct

accompanied by altered expression
evidence in a living organism that the ASD gut microbiota possesses
functional activity sufficient to influence host neurobehavior, crucially
establishing causal evidence for gut microbial regulation of central
nervous system function.

As the microbiota compositional features have been increasingly
delineated, the researches focus in this field have progressively shifted
from descriptive analyses towards mechanistic dissection. Current
investigations are deeply exploring several core subjects: the potential
neuromodulatory effects of microbial metabolites (e.g., SCFAs,
bacterial lipopolysaccharide [LPS], tryptophan derivatives) (Silva
et al., 2020; Mar¢ et al., 2022; Cox and Weiner, 2018); the role of
compromised intestinal barrier integrity (often termed the “leaky gut”
hypothesis) in facilitating systemic access for microbial products or
inflammatory mediators, potentially impacting the central nervous
system (Kelly et al, 2015); and the contribution of microbiota-
dysbiosis-induced ~ aberrant neuroimmune activation to
neurodevelopmental disorders (Wang et al., 2023). Collectively, the
results of these researches suggest a potential contributory role of
complex microbiota-gut-brain axis (MGBA) mechanisms in ASD

pathogenesis (Ho et al., 2020).

2.2 Key theories

2.2.1 Leaky gut syndrome

The increased intestinal permeability, often termed “leaky gut
syndrome,” refers to a pathological state characterized by impaired
integrity of the intestinal epithelial barrier (Fiorentino et al., 2016).
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This dysfunction permits the abnormal translocation of undigested
food macromolecules, endotoxins (e.g., LPS), microbial metabolites,
and other luminal contents into the systemic circulation (Ruiz-
Rodriguez et al., 2022). Investigations within ASD researches have
delineated biological features associated with this condition in subsets
of affected children (Liu, 2022). Clinical evidence links autism
spectrum disorder to gut microbiota dysbiosis and barrier
dysfunction, with interventions targeting this axis showing therapeutic
potential (Al-Ayadhi et al., 2021); concurrently, broader clinical and
preclinical studies implicate this ‘leaky gut phenotype in the
pathogenesis of diverse neurological disorders through neuroimmune
mechanisms (Parodi and Kerlero de Rosbo, 2021). Multiple clinical
studies reported aberrant serological markers in specific ASD
subgroups (Al-Ayadhi et al., 2021). These frequently included elevated
levels of zonulin, a protein regulating intestinal tight junctions
(although contradictory findings exist in a minority of studies), and
elevated levels of lipopolysaccharide-binding protein (LBP) or
endotoxin antibodies (Nalbant et al., 2022). Urine metabolomic
analyses further revealed significant alterations in concentrations of
gut microbiota-associated metabolites, such as p-cresol sulfate and
3-(3-hydroxyphenyl)-3-hydroxypropionic acid (HPHPA) (Sanctuary
et al., 2018). Collectively, this evidence suggests that the increased
intestinal permeability and systemic translocation of gut microbial
products occur in a subset of ASD individuals. Crucially, these
alterations are not universally present across the ASD population,
highlighting significant heterogeneity.

The potential biological mechanisms linking increased intestinal
permeability to altered neurodevelopment in ASD patients remain to
be incompletely elucidated and are subject to ongoing scientific
discourse. The researches, primarily based on animal models, in vitro
studies, and clinical observations, proposed two interconnected (yet
unproven causal) pathways. The first is the immune-inflammation
pathway hypothesis: translocation of microbial-associated molecular
patterns such as LPS may activate circulating immune cells like
monocytes and macrophages, eliciting a state of low-grade systemic
2018).
pro-inflammatory cytokines such as IL-6, IL-1p and TNF-a released

inflammation  (Tucureanu et  al, Subsequently,
in this response could impact the central nervous system (CNS) via
mechanisms including transport across the blood-brain barrier (BBB)
and vagal nerve signaling (Morris and Maes, 2014). In animal models,
such peripheral inflammation and the ensuing neuroinflammation,
for example microglial activation, disrupt synaptic pruning,
neurotransmitter balance, and neurogenesis. Within the ASD context,
this mechanism represents a biologically plausible hypothesis;
however, it is essential to emphasize that the precise multifactorial
etiology of ASD remains undefined. The second is the neuroactive
substance hypothesis: under conditions of intestinal hyperpermeability,
gut microbiota-derived metabolites—certain organic acids—that
potentially influence GABAergic signaling or tryptophan-serotonin
metabolic pathways may gain aberrant access to the systemic
circulation (Boccuto et al., 2013). This hypothesis, however, contains
several points of contention. For instance, whether microbially
produced GABA can efficiently cross the BBB and attain
concentrations sufficient to directly modulate CNS function is
questionable; indirect effects, such as modulation of host metabolic
pathways, might be more relevant. Conversely, dysregulation of
tryptophan metabolism is a hot research focus strongly implicated in
neuropsychiatric disorders, including ASD.
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Key limitations impede a deeper understanding of the role of
intestinal hyperpermeability in ASD. The primary challenge is
establishing causality: Existing evidence linking this condition to ASD
largely derives from cross-sectional studies (Liu, 2022). Thus, it
remains difficult to discern whether increased intestinal permeability
and associated dysbiosis are primary drivers of ASD pathogenesis, or
if they represent secondary consequences of other ASD-related factors
such as restricted dietary patterns, inherent genetic variations, or
downstream neurobehavioral alterations affecting gut function. A
large-scale metagenomic study by Yap et al. (2021) (n = 247) revealed
only a very weak direct association between ASD and gut microbial
structure, with Romboutsia timonensis being the only species showing
statistical significance, albeit with a small effect size. The study further
indicated that the observed differences in the gut microbiome of
children with ASD are more likely a consequence of their behavioral
characteristics (such as restricted dietary preferences and low intake
diversity) rather than a causal factor in the development of
ASD. However, there are still other factors such as the mode of
maternal delivery, breastfeeding, genetics, and drugs attributed to the
changes of the gut microbiota in children (Takyi et al., 2025).
Furthermore, a meta-analysis (Gao et al, 2025) suggested that
microbiome-targeted interventions could have a mild positive effect
on improving behavioral symptoms in individuals with ASD, but the
overall improvement in gastrointestinal symptoms did not reach
statistical significance. This conclusion is limited by the heterogeneity
and methodological quality of existing studies, underscoring the need
for more rigorously designed clinical trials for validation. Overall,
alterations in the gut microbiota of children with ASD result from the
interplay of multiple factors, including genetics, perinatal influences,
dietary patterns, medication wuse, and immune-metabolic
abnormalities. The current debate highlights the complexity of the
etiological mechanisms underlying ASD and suggests that future
research should place greater emphasis on the role of intrauterine
environment and early developmental factors. Well-designed
longitudinal studies, particularly cohorts initiated in early
development, are critically needed to delineate the temporal sequence
and potential causal relationships. Secondly, there is an issue of
biomarker specificity: elevated serum levels of zonulin, LBP, and other
markers are not unique to ASD (Heidt et al., 2023; Kim et al., 2023;
Ohlsson et al,, 2017). Similar elevations are observed in other
gastrointestinal disorders (e.g., celiac disease, irritable bowel
syndrome) and various systemic inflammatory states, limiting their
utility as specific diagnostic or subtyping tools for ASD. Lastly, there
is limited therapeutic evidence: interventions targeting gut microbiota
modulation, such as specific probiotic formulations or FMT, have
reported improvements on behavioral scales (e.g., Autism Behavior
ChecKklist, ABC score) in some underpowered, non-blinded, or open-
label studies (Prosperi et al., 2022). Nevertheless, these preliminary
findings currently lack validation through high-quality, large-scale,
randomized, double-blind, placebo-controlled trials (RCTs). The
clinical efficacy, identification of responsive subgroups, and long-term
safety of such interventions require rigorous evaluation (Zhang
etal., 2022).

Given this complex evidentiary landscape, the prevailing scientific
consensus posits that, within the current knowledge framework,
increased intestinal permeability is not considered a direct etiological
factor for ASD. A more precise conceptualization positions it as a
potential “environmental trigger/perpetuating factor” or “disease
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modifier;” acting primarily within specific ASD subgroups harboring
particular genetic susceptibilities (Zheng et al., 2020). It may
contribute to neurodevelopmental deviation or exacerbate behavioral
symptoms through the aforementioned immune-inflammatory and
neuroactive substance pathways, acting upon an existing genetic
predisposition (Fiorentino et al., 2016; Rylaarsdam and Guemez-
Gamboa, 2019; Zhu et al., 2020). To overcome current limitations and
precisely evaluate its pathological significance and potential
therapeutic relevance, future research could integrate multi-omics
approaches along the gut-brain axis with rigorously designed,
prospective, large-scale clinical cohort studies (Takyi et al., 2025). This
integrated strategy is essential to definitively elucidate the causal
mechanisms of increased intestinal permeability within specific ASD
evidence base for

endophenotypes and provide an

personalized interventions.

2.2.2 Metabolite-neuronal pathway validation

The gut microbiota ecosystem produces diverse metabolites
through fermentation of substrates like dietary fiber, some of which
exhibit confirmed or suspected neuroactive potential (Miri et al.,
2023). These metabolites can mediate gut-brain axis communication
through multiple routes, such as the circulatory system, direct vagus
nerve transmission, or the enteroendocrine cell-vagus nerve pathway,
indirectly influencing central nervous system (CNS) function and
development (Kasarello et al., 2023). Key microbial metabolic
pathways and their potential roles in ASD are now widely investigated.

SCFAs, the core end-products of dietary fiber fermentation, are
primarily generated by specific strains within the Bacteroidetes and
Firmicutes phyla (e.g., Faecalibacterium prausnitzii, Roseburia spp.
luojiarufa junshu—Luojiaru Bacteria Genus), predominantly including
acetate, propionate, and butyrate (Chang et al., 2019; Al-Qadami et al.,
2022). Butyrate plays multiple beneficial roles in gut health: serving as
the preferred energy source for colonic epithelial cells, which is crucial
for maintaining intestinal barrier integrity (Al-Qadami et al., 2022;
Lee etal, 2021). Furthermore, butyrate’s anti-inflammatory properties
and inhibition of histone deacetylases (HDACs) suggest potential
regulation of neural plasticity via epigenetic mechanisms (McClung
and Nestler, 2008; Dash et al., 2009). Notably, several studies reported
decreased abundance of butyrate-producing microbiota with key
functional roles (e.g., E prausnitzii pulasuojun—Pulasou Bacteria) in
fecal samples from individuals with ASD, implying impaired butyrate
production might contribute to ASD pathogenesis (Retuerto et al.,
2024). Conversely, the neurobiological effects of propionic acid (PPA)
exhibit significant complexity and dose-dependence (Nankova et al.,
2014; Le Poul et al., 2003). While PPA acts as an important energy
substrate and signaling molecule at physiological concentrations,
neurotoxic evidence from animal models—primarily involving
high-dose
intraperitoneal injections—clearly demonstrates its ability to induce

non-physiological intracerebroventricular ~ or
core ASD-like behavioral phenotypes in rodents, including social
deficits, increased stereotypy/stereotypic movements, and sensory
processing abnormalities (Choi et al., 2018). Potential mechanisms
identified in these models involve mitochondrial dysfunction,
aberrant neurotransmitter release—dopamine and glutamate—
exacerbated oxidative stress, microglial activation, enhanced
neuroinflammation, and aberrant epigenetic regulation (Choi et al.,
2018; Nankova et al., 2014; Csoka et al., 2024). Critical controversy
remains, however, regarding whether endogenous physiological
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concentrations or the mild PPA elevation observed in some ASD
cohorts suffice to reach significant neurotoxic thresholds within the
human CNS (Le Poul et al., 2003). Crucially, the highly inconsistent
findings on SCFA profiles in stool or plasma from ASD populations,
reflected substantial sample heterogeneity and potential influences of
sample type and analytical methodologies (Liu et al., 2019). Moreover,
certain behavioral effects of injected PPA were not fully replicated in
female rodent models, highlighting the need for caution regarding sex
differences when extrapolating model data to humans, especially given
ASD’s marked male bias (Kamalmaz et al., 2023).

Beyond SCFAs, the tryptophan metabolic pathway constitutes
another critical node linking the gut microbiota to host neural
function. As an essential amino acid, tryptophan serves as the
precursor for the key CNS neurotransmitter serotonin, which
regulates mood and cognition, and melatonin, which regulates for
sleep-wake cycles. Gut microbiota (e.g., Clostridium spp.) profoundly
influence tryptophan metabolism: they directly utilize it for bacterial
protein synthesis and convert it to indole derivatives (Wang G. et al.,
2024). Importantly, a substantial proportion of dietary tryptophan is
metabolized via the host kynurenine pathway (KP) (Munn and Mellor,
2016). Under pro-inflammatory conditions, which are triggered by
diverse etiologies, indoleamine 2,3-dioxygenase (IDO) activity is
significantly upregulated in host cells—immune cells, enterocytes and
hepatocytes—and shunts tryptophan towards kynurenine (KYN)
synthesis (Munn and Mellor, 2016). This appears congruent with
observations of reduced plasma tryptophan and elevated KYN/
tryptophan ratios in some ASD cohorts, indicating potentially
widespread IDO activation mediated by inflammatory status. CNS
exposure to KP metabolites is critical, as distinct pathway metabolites
exert mutually antagonistic neural effects: further KYN metabolism
generates the excitotoxic quinolinic acid (QUIN), an N-methyl-D-
aspartate (NMDA) receptor agonist inducing excitotoxicity and
oxidative stress (Guillemin et al., 2007); concurrently, neuroprotective
kynurenic acid (KYNA) is produced, acting as an antagonist at NMDA
and o7-nicotinic acetylcholine receptors (Guillemin et al., 2007).
Some ASD studies suggested the evidence for upregulated IDO
pathway activity and metabolic imbalance, which potentially favors
neurotoxicity or excitotoxicity, in affected individuals, and these
alterations showed some correlation with clinical symptom severity.
However, the core causal mechanisms by which tryptophan-KP
alterations drive ASD neuropathology and their precise CNS targets
require further elucidation (Savino et al., 2020).

Finally, other microbially-derived metabolites with potential
neuroactivity are of growing research interest. For instance, p-cresol,
produced by certain Clostridia, transforms into its sulfate derivative
(p-Cresyl sulfate, PCS) upon host sulfation (Harrison et al., 2021);
PCS has been reported enriched in urine from some ASD children
(Osredkar et al,, 2023). Although its toxicity mechanisms remain
incompletely defined, PCS is hypothesized to potentially exert
neuroactive effects via interference with critical sulfation pathways or
mitochondrial impairment (Mueller et al., 2018); however, current
evidence favors its influence on neurodevelopment primarily through
complex immune modulation, with direct significant neurotoxicity
currently lacking definitive support. Furthermore, secondary bile
acids (SBA), generated from host primary bile acids by gut bacterial
modification, act as the key signaling molecules (Tie et al., 2023). By
activating receptors such as the farnesoid X receptor (FXR) and G
protein-coupled bile acid receptor 1 (TGR5/GPBARI), SBAs regulate
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host metabolism and inflammation (Tie et al., 2023; Wang Y. et al.,
2024). Theoretically capable of mediating brain function via vagal
afferent signaling or neuro-immune crosstalk, SBAs represent an
emerging research area in gut-brain communication (Kim et al,
2016). Preliminary animal behavioral studies and limited human data
suggest associations between altered SBA profiles and certain
neurobehavioral traits; however, their specific roles and causal
in ASD
robust evidence.

involvement await systematic investigation and

3 External factors inf_luencinc? _
maternal gut microbiota and offspring
neurodevelopment

Previous studies have suggested that several external factors could
attend in offspring neurodevelopment by affecting maternal gut
microbiota (Figure 1).

3.1 Environmental factors

Epidemiological studies confirmed that prenatal exposure to
environmental pollutants such as PM,s and bisphenol A and
alterations in delivery modes significantly impacted maternal gut
microbiota dynamics (Wang W. et al., 2018). This manifested as
increased relative abundance of specific bacterial genera such as
Ruminococcus and Staphylococcus and perturbations in key metabolic
pathways such as arachidonic acid metabolism (Filardo et al., 2022).
Observational data further revealed statistical associations between
such dysbiosis and offspring outcomes including cognitive
developmental delay and ASD risk, with pollutant effects exhibiting
2022).
existing evidence cannot establish direct causal relationships

dose-dependency  (Agathokleous et al, However,
between individual microbial taxa/metabolic pathways and
neurodevelopmental outcomes (Matsuyama et al., 2022).

Biologically, maternal dysbiosis affects fetal neurodevelopment
through three principal mechanisms: (i) Microbial metabolites (e.g.,
SCFAs) regulate brain-derived neurotrophic factor expression via
vagus nerve activation or central nervous system GPR41/43 receptors
(Kasarello et al., 2023); (ii) Immune-gut-brain axis-mediated Th1/
Th2 imbalance induces maternal-fetal interface inflammation,
disrupting fetal blood-brain barrier development and triggering
neuroinflammatory pathways (Zha et al., 2022; El Ahdab et al., 2021);
(iii) Gut microbial biosynthesis of neurotransmitter precursors—5-
hydroxytryptamine and y-aminobutyric acid—exerts developmental
programming effects (Park and Im, 2022).

Animal models provide critical validation: Probiotic
interventions enhanced offspring hippocampal neuroplasticity and
improve cognitive performance (Romo-Araiza et al, 2023).
Experimental simulations of PM,; or bisphenol A exposure
successfully replicated human phenotypes including reduced
maternal microbial diversity and offspring neurodevelopmental
abnormalities (Liu, 2018; Senaldi and Smith-Raska, 2020). Current
research faces methodological challenges: interindividual
heterogeneity in baseline microbiota impedes intervention
assessment (Louis et al., 2016); observational studies struggle to
confounders, with path indicates that

exclude analysis
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FIGURE 1
Integrative impact of external factors on maternal gut microbiome and offspring neurodevelopment. Environmental, maternal, genetic, and nutritional
factors converge to shape the maternal gut microbiome, which in turn modulates fetal neurodevelopment through metabolic, immune, and
epigenetic mechanisms, influencing ASD susceptibility (created in BioRender; Xie, 2025, https://BioRender.com/Oxsjbrb).

approximately 32% of PM, 5 effects may be microbiota-mediated,
though weighting depends on model assumptions (Senaldi and
Smith-Raska, 2020); additionally, traditional dose-response models
inadequately resolve nonlinear exposure patterns, such as short-
term pollutant peaks, thereby limiting the generalizability (Hoel
and Portier, 1994).

Translational strategies prioritize optimizing environmental
thresholds
interventions.

exposure and developing microbiota-targeted
Cross-generational transplantation experiments
demonstrated that maternal microbiota modulation partially rescued
pollutant-induced teratogenic effects (Hassib et al., 2023). Given
substantial interindividual variation in circulating SCFAs during
pregnancy (coeflicient of variation [CV] = 62%) and host genetic
regulation, future researches could integrate exposomics with multi-
omics technologies (Hsu et al., 2021). This integration will enable
construction of interactive network models spanning environmental
exposure dynamics, microbiota succession, and neurodevelopmental
trajectories to advance precision prevention (Deck et al., 2024).

3.2 Maternal health and behavioral
determinants

Epidemiological studies indicated that maternal metabolic status
(Krakowiak et al., 2012), nutritional intake patterns, and stress
exposure during gestation were associated with offspring risk of
ASD. Specifically, maternal metabolic disturbances (e.g., obesity or
diabetes) were found to increase ASD risk [reported odds ratios
[ORs] = 1.6-2.3 (Krakowiak et al., 2012; Li et al., 2016)], with evidence
suggesting a dose-dependent trend. These conditions may impact
neurodevelopment through elevated circulating proinflammatory
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cytokines, such as IL-6 and TNF-a, and impaired fetal microglial
differentiation (Li et al., 2016).

Animal models demonstrated that high-fat diet (HFD) exposure
during pregnancy activated placental inflammatory pathways, leading
to aberrant amygdala-prefrontal circuit development (Hill et al,
2015). In specific models, this correlated with an 89% increase in
ASD-like behaviors. Maternal deficiencies in key nutrients, such as
iron and folate, were linked to compromised hippocampal synaptic
plasticity and dopaminergic dysfunction (Bastian et al., 2016).
Additionally,
dysregulate offspring hypothalamic-pituitary—adrenal (HPA) axis

prenatal stress-induced glucocorticoids might
reactivity via epigenetic modifications, potentially elevating comorbid
anxiety risk in ASD (Hill et al., 2015).

The intricate gut microbiota-host metabolic-immune crosstalk is
considered to be the biological basis. Microbiota-derived metabolites
such as butyrate and kynurenine may indirectly influence fetal
neurodevelopment through histone-modifying enzymes like HDACs
by affecting glial differentiation (Yan et al., 2012). Animal evidence
supports these mechanisms: antibiotic-induced maternal microbiota
depletion caused cerebellar axonal deficits and motor dysfunction in
offspring; HFD-exposed dams produced offspring with reduced
hippocampal neurogenesis and social deficits; and maternal immune
activation via polyinosinic-polycytidylic acid (poly(I: C)) reduced
cortical synaptic density, with IL-17A identified as a key mediator.

Notably, targeted interventions (e.g., Bacteroides fragilis or
B. thetaiotaomicron transplantation; multispecies probiotics) partially
attenuated these abnormalities in models, supporting microbiota-
mediated effects. A phase II trial reported potential language
improvement after vaginal microbiota transplantation (VMT)
(Wronding et al., 2023), but long-term neurological safety requires
systematic follow-up. Future research must establish ethnically diverse
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maternal-child cohorts with lifelong tracking to bridge mechanistic
insights and clinical prevention.

Current evidence faces significant constraints. Human studies
predominantly involve European-ancestry populations (representing
approximately 78% of participants in major cohorts) (Pérez-Morales
et al,, 2024), leading to limitations in generalizability. Furthermore,
critical confounders, such as environmental toxin exposure, remain
inadequately controlled for in analyses (Keller, 2014; Hernandez et al.,
2019). While emerging, robust dose-response data for specific
probiotic or prebiotic strains are still scarce (Rees et al.,, 2002).
Translation of research findings into clinical practice requires
optimized strategies. Promising avenues include combinatorial
approaches; for example, combining high-fiber diets with select
prebiotics that modulate Roseburia abundance and glutamate
transporters might enhance therapeutic efficacy. Additionally, the
development and validation of novel biomarkers could significantly
improve patient risk stratification, as evidenced by certain composite
models achieving promising receiver operating characteristic (ROC)-
area under the curve (AUC) values of 0.87 (Li et al., 2019).

3.3 Genetic and immunological factors

Epidemiological studies indicated that the maternal genetic
background might interact with the gut microbiota, collectively
influencing offspring risk for ASD (Rees et al., 2002; Li et al., 2019).
Cohort studies revealed that maternal polymorphisms in IL10 can
affect IL-10-mediated immunosuppressive function (Rees et al., 2002).
Population-based research further identified that such polymorphisms
were accompanied by altered abundance of specific maternal gut
microbiota members, such as the family Alcaligenaceae and the genus
Acinetobacter (Li et al., 2019). This gene-microbiota interaction
pattern is hypothesized to potentially affect the fetal immune
microenvironment via microbial metabolites.

A research on mother-infant microbiota vertical transmission
demonstrated that the children later diagnosed with ASD frequently
exhibited reduced abundance of gut bacterial genera involved in
SCFAs production, such as Prevotella (Li et al., 2019). This reduction
correlated with dysregulated Th17/Treg immune balance and was
associated with neuroinflammation (Li et al., 2019; Blagonravova
etal., 2021; Bik et al., 2018).

As to biological mechanisms, animal model studies suggested that
maternal factors—including genetic variants like PTEN mutations or
environmental exposures such as high-fat diet, or HFD might
influence the bioavailability of aryl hydrocarbon receptor (AhR)
ligands, for example, certain microbial metabolites derived from
tryptophan metabolism through epigenetic reprogramming (Kirstein
et al., 2021). This, in turn, could potentially impair fetal microglial
functions, such as synaptic pruning. Preliminary research proposed
the hypothesis that gut microbe-derived serotonin (5-HT) precursors
might influence amygdala development via vagal nerve signaling
pathways (Dinan and Cryan, 2017a; Spencer et al., 2024; Raskov et al.,
2016). These cumulative findings underscore the important role of a
“microbiota-immunity-neural” axis in neurodevelopment.

Animal models provided supportive evidence for exploring these
potential mechanisms: the offsprings of GF dams exhibited deficits in
axonal outgrowth, which could be ameliorated by butyrate
supplementation in this model (Onyszkiewicz et al., 2019); in the
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maternal immune activation (MIA) model, blocking IL-17a signaling
mitigated synaptic-associated gene expression abnormalities in
offspring brains (Choi et al., 2016). However, these models and their
derived conclusions face methodological limitations. Serum IL-8, a
commonly studied systemic inflammation marker, showed weak
correlations (R? < 0.2) with local intestinal immune status, such as
lamina propria lymphocyte composition (Bulkys et al., 2024; Lammers-
Lietz et al., 2022), challenging the direct extrapolation of peripheral
markers to gut immunity. Furthermore, acute MIA models induced
by high-dose LPS inadequately recapitulated the complexity of
chronic, low-grade inflammation experienced during human
pregnancy. Notably, in human studies, analyses primarily based on
European populations may not capture potential heterogeneity in
HLA (human leukocyte antigen)-microbiota interactions across
different ethnic/racial groups (Van Dorp et al., 2014). Moreover, the
influence of paternally derived epigenetic reprogramming on offspring
immune system development remains insufficiently evidenced and is
typically not systematically addressed in existing models (Soubry
et al,, 2014; Eggert et al., 2014). These methodological challenges
complicate causal inference regarding specific metabolic pathways.

Explorations into gene-microbiota interactions are driving
translational research on intervention strategies. Some studies
suggested that combined assessment of maternal IL-10 levels and
Alcaligenaceae abundance held potential for auxiliary ASD risk
assessment models (Li et al., 2019), while maternal supplementation
with AhR agonists such as indole-3-carbinol or specific probiotics
aimed at promoting defined gut colonization has shown preliminary
promise in early-phase clinical studies (Puccetti et al., 2022; Zhao
et al,, 2021). However, some bottlenecks must be overcome for
effective personalized interventions: the development of higher
spatiotemporal resolution immune cell profiling is needed to precisely
distinguish functional IL-10 subtypes and their sites of action
(Mangiola et al., 2024), and large-scale, multi-ethnic population
cohorts are imperative to systematically validate the role of microbial
metabolites within complex genetic contexts, such as HLA-restricted
antigen presentation. Future intervention designs should rigorously
incorporate multilayered interactions between individual genetic
susceptibility backgrounds and environmental exposures to more
effectively support fetal neuroimmune homeostasis (Dahoun et al.,
2017; Suh et al., 2019).

3.4 Nutritional and metabolic factors

Epidemiological studies suggested a potential intergenerational
link between maternal nutritional imbalance during pregnancy and
altered offspring microbiota-gut-brain axis function. Maternal
high-fat diet (MHFD) induces compositional shifts in gut microbiota,
characterized by reduced abundance of Bacteroidetes phylum
members associated with metabolic regulation, alongside over-
representation of specific Clostridium species—C. bolteae and
C. histolyticum—Tlinked to metabolic dysfunction. This dysbiotic state
correlates positively with increased risk of aASD in offspring.
Diminished synthesis of SCFAs and concomitant increased LPS
leakage potentially contribute, via induction of maternal-fetal interface
inflammation, to the downregulation of key neurodevelopmental
genes (e.g., BDNFE, SHANK3). Evidence suggested this reduced
expression might be attributed to epigenetic mechanisms (Esposito
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etal, 2023; Cermak et al.,, 2010). Notably, selective dietary preferences
common in ASD children, such as low-fiber and high-sugar diets, may
theoretically compound the effects of antenatal maternal dysbiosis,
creating a cyclical interaction of metabolic and microbial imbalance
that could exacerbate potential neurodevelopmental sequelae
(Esposito et al., 2023; Cermak et al., 2010).

At the biological mechanism level, interactions between gut
microbial metabolites and the maternal immune-fetal neural axis
constitute a significant regulatory network. Butyrate deficiency, for
instance, may impair blood-brain barrier integrity, indirectly
activating microglia and disrupting synaptic pruning. MIA-induced
inhibit differentiation of fetal
dopaminergic neurons via Toll-like receptor 4 (TLR4)-dependent

inflammatory signals could
pathways (Islam et al., 2009). Concurrently, impairment of specific
microbial functions, such as diminished folate biosynthesis capabilities
of Bacteroides species and disruption of serotonin precursor
metabolism primarily driven by Bifidobacterium (Engevik et al., 2021;
Zheng et al.,, 2024), has been linked to impaired neocortical neuronal
migration. Crucially, animal model studies indicated that the
neurodevelopmental impact of dysbiosis was developmental-stage
dependent: microbiota interventions administered prenatally, but not
post-weaning, effectively reversed offspring autism-like behavioral
phenotypes (Tartaglione et al., 2022), underscoring the importance of
targeting critical developmental windows. However, mechanistic
insights derived from models like germ-free mice warrant cautious
extrapolation to the complex human physiological milieu.

Translational research indicated that antenatal supplementation
with n-3 polyunsaturated fatty acids (PUFAs) or selected probiotics,
in some studies, improved maternal microbiota diversity/composition
alongside better offspring social behavior outcomes (Chen et al,
2019). Nevertheless, the significant methodological heterogeneity
across existing clinical trials—concerning probiotic strains,
intervention protocols, inclusion criteria, and outcome measures—
substantially limits the generalizability of findings and their clinical
translatability. For example, while germ-free murine models are vital
for elucidating mechanisms such as microbiota-regulated synaptic
protein expression, a critical limitation lies in their inability to fully
recapitulate the multidimensional diet-microbiota-host genetics
interactions inherent to humans. Furthermore, the absence of robust
longitudinal data complicates efforts to disentangle the independent
or synergistic effects of prenatal nutritional interventions from the
influences of offspring postnatal microbial colonization dynamics.
Future research necessitates integrating multi-omics approaches to
precisely define key metabolic-epigenetic regulatory nodes. Utilizing
more sophisticated animal models accommodating human
microbiota, namely human microbiota-associated gnotobiotic models,
is essential to overcome translational bottlenecks and move beyond
broad-spectrum probiotics towards the development of strain-specific
and function-targeted interventions.

4 Molecular mechanisms underlying
the influence of maternal gut
microbiota on offspring
neurodevelopment

To understand the roles of maternal gut microbiota in the
offspring neurodevelopment, an abundance of researches has been
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performed and several molecular mechanisms have been elucidated
(Figure 2).

4.1 Impairment of blood—brain barrier
integrity as an underlying mechanism

Experimental models, particularly GF animal models, have
demonstrated that the maternal gut microbiota fundamentally
programs the development of the offspring’s BBB. Compared to
offspring of normally raised dams, offspring exposed to a GF
environment in utero exhibited significantly increased BBB
permeability and a corresponding significant decrease of
approximately 30-40% in the transcription of key tight junction (T7])
core proteins, such as occludin and claudin-5 (Gong et al., 2008).
Studies found that gut microbiota status influenced BBB plasticity, as
FMT into adult GF mice partially reversed BBB hyperpermeability,
with leakage decreasing by approximately 25% (Gong et al., 2008).
This microbial programming occurs, in part, via microbiota-host
metabolic-immune crosstalk. Microbiota-derived SCFAs impacted
downstream molecules of the NF-kB pathway by activating free fatty
acid receptors (e.g., FFAR3), suppressing endothelial inflammation
and potentially enhancing TJ stability. Conversely, pro-inflammatory
microbial products, such as LPS, likely impaired TJ integrity via TLR4
signaling (Gong et al., 2008). The placenta acts as a critical barrier with
selective transfer mechanisms. Direct evidence indicated that the
human placenta efficiently transported SCFAs, such as acetate
(Krajmalnik-Brown et al,, 2015), while partially clearing larger
molecules like LPS from the maternal circulation via CD14-mediated
mechanisms (Faulk et al., 1987). This sculpts a relatively favorable
intrauterine microenvironment for robust fetal BBB development.

Immune dysregulation and sustained inflammation driven by gut
dysbiosis in the mother are key factors in disrupting BBB integrity.
Animal models of maternal dysbiosis showed that dysbiosis
potentiated T helper 17 (Th17) cell responses and differentiation,
leading to significantly elevated circulating levels of pro-inflammatory
cytokines. This subsequently induced phosphorylation and activation
of signal transducer and activator of transcription 3 (STAT3), which
suppresses expression of critical T] proteins such as ZO-land
claudin-5 (Honda and Littman, 2012). Concurrent neutrophil
activation enhanced matrix metalloproteinase-9 (MMP-9) activity
and reactive oxygen species (ROS) production, with reported increases
of around 70%, which contributed to vascular basement membrane
degradation and endothelial injury (De Bondt et al., 2020). BBB
dysfunction may link to neuropsychiatric disorders. While human
studies reported inconsistent results, animal models supported the
notion that BBB structural abnormalities could precipitate behavioral
deficits. Specifically, developmental BBB defects caused by deficient
Sonic hedgehog (Shh)/Wnt signaling pathway regulation in the
endothelium induced ASD-like stereotyped behaviors in endothelial
cell-specific Shh knockout models. This suggests a possible causal
BBB
neurobehavioral phenotypes, although its significance in humans

relationship ~ between structural abnormalities and
requires further elucidation.

A multidimensional challenge for understanding microbiota-BBB
interactions persists. First, SCFA effects are complex and
concentration-dependent; for instance, propionate enhanced TJ

protein expression at low concentrations via FFAR2 but may promote
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FIGURE 2

Multifaceted mechanisms of SCFAs in maternal gut microbiota-mediated programming of offspring neurodevelopment. Maternal gut microbiota-
derived short-chain fatty acids (SCFAs) regulate offspring neurodevelopment through five core mechanisms: (A) Barrier enhancement: SCFAs (e.g.,
butyrate) strengthen blood—brain barrier (BBB) integrity by upregulating tight junction proteins (Claudin-5, Occludin) and inhibiting nuclear factor

kappa-B (NF-kB) inflammatory signaling; (B) Immune modulation: They induce anti-inflammatory cytokines and regulatory T cell (Treg) differentiation,
fostering a neuroprotective immune microenvironment; (C) Epigenetic regulation: As histone deacetylase inhibitors (HDACI) and one-carbon
metabolic modulators, SCFAs control histone acetylation and DNA methylation of neurodevelopmental genes (e.g., brain-derived neurotrophic factor,
BDNF); (D) Signaling activation: SCFAs trigger neuronal G protein-coupled receptor 41/43 (GPR41/43)-cyclic adenosine monophosphate (CAMP) and
tropomyosin receptor kinase B (TrkB)-mechanistic target of rapamycin (mTOR) pathways, directing axonal outgrowth and synaptic pruning;

(E) Placental transport: The illustration depicts transplacental SCFA transfer via specific monocarboxylate transporters (MCTs) from maternal circulation
to the fetus. These interconnected mechanisms highlight the complexity of prenatal microbial programming (Created in BioRender; Xie, 2025, https://

BioRender.com/2kszQdi).

inflammation at high concentrations via FFAR3 (Han K. et al., 2024).
Second, probiotic interventions often exhibit strain-specific effects,
demanding systematic dissection of precise molecular networks.
Clinical translation faces obstacles, including: significant species
differences—despite high sequence homology for key T] molecules
like claudin-5—in regulatory networks and expression profiles; and
limitations of in vitro BBB models whose transendothelial electrical
resistance (TEER) values typically fall well below physiological levels
(many achieve only ~50% or less). Furthermore, insufficient research
addresses individual heterogeneity, such as sex differences—where
BBB integrity decline in specific aging or disease models like
Alzheimer’s models may occur earlier or faster in males compared to
females—and critical window sensitivity, whereby the impact of
perinatal interventions on neurodevelopmental risk often exceeds that
of adult interventions. Future research necessitates integration of
spatiotemporal dynamics and individualized variables, such as genetic
background, sex and age, to build refined pathogenic mechanisms and
interventional frameworks.
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4.2 Neurodevelopmental regulation by
microbial metabolites

The maternal gut microbiota can directly or indirectly regulate
fetal brain development through the production of diverse metabolites
(Tian et al., 2023). Core mechanisms primarily include three aspects:
microbial synthesis or modulation of neurotransmitters and their
precursors; mediation of epigenetic modifications; and regulation of
maternal-fetal barrier function and its interactions (Brown et al., 2003;
Bromer et al., 2013; Greene et al., 2019).

Taking SCFAs, as an example, these metabolites can cross the
placenta via monocarboxylate transporters (MCTs) and enter the fetal
circulation. Within the fetal brain, SCFAs activate G protein-coupled
receptors (e.g., GPR41/43) on neurons, thereby modulating synaptic
plasticity through the cAMP-PKA-CREB signaling pathway. Butyrate,
as a HDAC inhibitor, upregulates the expression of key
neurodevelopmental genes (e.g., BDNF) by elevating histone
acetylation levels in their promoter regions. Animal model studies
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substantiated this: exhibited
downregulated expression of axonogenesis-related genes (e.g., Ntnl,

offspring of germ-free dams

Dcc) and impaired function of BBB tight junction proteins (e.g.,
occludin). Exogenous SCFA supplementation partially rescued these
phenotypes (Bromer et al., 2013; Greene et al., 2019), underscoring
the potential significance of SCFAs in neurodevelopment.

Beyond SCFAs, other gut microbial metabolites participate in
neurodevelopmental regulation. For instance, the tryptophan-derived
metabolite indole-3-propionic acid (IPA) acted as a ligand for the AhR
to modulate synaptic pruning by microglia. Certain microbiota-
derived metabolites may also confer indirect neuroprotection by
inhibiting f-amyloid aggregation (Dong and Perdew, 2020). The
vertical transmission and functional impact of such metabolites
depend on complex transport and signal integration mechanisms.
While SCFAs can partially diffuse passively across the placenta (Ilyés
et al., 2023), secondary bile acids regulated neuroinflammation by
activating TGR5 receptors on placental and fetal tissues, synergizing
with immune mediators at the maternal-placental interface to
influence fetal neuroimmune homeostasis (Wang et al., 2011).

Epigenetically, butyrate-mediated histone acetylation alterations
in the placenta promote neuronal differentiation in specific brain
regions such as hippocampus (Jaju Bhattad et al., 2020; Levenson
et al., 2004). Propionate may protect the developing BBB against
oxidative stress by activating the Nrf2 antioxidant pathway (Gonzalez-
Bosch et al., 2021). Notably, rodent models indicated concentration-
dependent effects of SCFAs on BBB permeability (Braniste et al.,
2014). However, human analyses reveal that physiological SCFA
concentrations in fetal brain tissue were significantly lower than
exogenous doses required for interventions in animal models
(Generoso et al., 2021). This pronounced species difference
necessitates careful evaluation of metabolic kinetics in
translational research.

Human cohort studies provide epidemiological support for
associations between specific microbial metabolites and offspring
neurodevelopmental outcomes (Moreau et al., 2019; Padilha et al.,
2025). For example, prospective observational studies reported a
positive correlation between maternal fecal butyrate levels during
pregnancy and specific language scores in offspring (Herndndez-
Martinez et al., 2022; Barbian et al., 2022; Han W. et al., 2024); other
studies describe abnormalities in levels of neuroactive metabolites and
abundance of butyrate-producing bacteria in the gut microbiota of
women at high risk of bearing children with ASD (Ahmed et al., 2022;
Chen et al., 2020; Descamps et al., 2019). Nevertheless, establishing
definitive causality remains challenging. Limitations arise from
inherent constraints in metabolome-transcriptome correlation
analyses, such as difficulties in distinguishing causal relationships
from correlative changes or identifying dominant drivers (Sen et al.,
2023; Paternain and Campion, 2013), as well as from confounding
factors, and physiological or dosage differences between humans and
animal models. Existing evidence also contains inconsistencies; for
instance, the relationship between maternal plasma trimethylamine
N-oxide (TMAO) levels and offspring ASD risk was debated across
studies (Quan et al., 2020), reflecting the critical influence of
confounders like ethnicity and diet on TMAO metabolic pathways
and biological effects.

Future investigations necessitate integrative approaches to dissect
causal mechanisms and guide interventions. Conditional gene
knockout techniques in animal models, coupled with interventions
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during specific gestational time windows (Zhang et al., 2012;
Nishimura et al, 2020), could precisely delineate the dynamic
sensitivity of critical fetal brain developmental periods to distinct
microbiota-derived metabolites (Faulk et al., 1987; Schirmbeck et al.,
2022). Concurrently, quantifying the effects of sex dimorphism—such
as the observed potential advantage in male fetal responsiveness to the
microbial metabolite queuine (Queuine) (Faulk et al., 1987; Kokko,
2008)—on heterogeneity in neuroprotection or susceptibility
mechanisms is required.

4.3 Dysregulated immune activation and
neuroinflammation

Maternal gut probiotics such as Lactobacillus and Bifidobacterium
may enhance gut barrier integrity and induce an anti-inflammatory
milieu by activating pattern recognition receptors including TLRs in
intestinal epithelial cells and through microbial metabolites such as
SCFAs. SCFAs epigenetically modulate immune responses by
inhibiting HDACs, thereby promoting anti-inflammatory cytokines
and suppressing Th17 cell differentiation. Studies in germ-free mouse
models indicated that supplementation with specific strains (e.g.,
Lactobacillus reuteri) elevated TGF-f and IgA levels in breast milk,
subsequently inducing Treg differentiation in offspring (Alsharairi,
2023; Leser and Baker, 2024). However, this effect demonstrated
strain-specific and population-dependent variations: some human
studies report fluctuations in breast milk IgA levels, though strain-
specific impacts require further clinical validation (Leser and
Baker, 2024).

During MIA, hyperactivation of the Th17/IL-17A axis may
increase placental permeability, facilitating fetal translocation of
maternal proinflammatory cytokines such as IL-6. Current evidence
suggested (though not directly confirms) that IL-6 suppressed fetal
insulin-like growth factor 1 (IGF1) signaling via the placental JAK/
STAT3 pathway while upregulating local proinflammatory proteins
(Hsiao and Patterson, 2011). Animal experiments demonstrated that
the blockade of placental IL-6 signaling mitigated MIA-associated
offspring neurodevelopmental abnormalities; however, causal links
between placental IL-6 and fetal brain pathology warrant further
investigation (Wu et al., 2017). Clinical cohort studies revealed
positive correlations between elevated maternal serum IL-6 and
increased proinflammatory factors (e.g., IL-8, CXCL1) in umbilical
cord blood, indicating a fetal proinflammatory microenvironment
(Wu et al, 2017). Under
microenvironments may activate fetal microglia and increase neuronal

extreme inflammation, such
injury risk (Yanowitz et al., 2002). Excess IL-6 may additionally inhibit
brain-derived neurotrophic factor (BDNF) signaling, while IL-17A
could disrupt post-translational modifications of neurodevelopmental
proteins. Postmortem studies of ASD patients show elevated
proinflammatory markers, microglial activation, and reduced
neuronal density in the brain (Voineagu et al., 2011; Kim et al., 2017);
however, causal attribution to prenatal immune exposure requires
cautious interpretation.

Although specific probiotic formulations exhibit neuroprotective
potential in animal models, translating these findings to humans
shows substantial heterogeneity (Wang et al., 2016). For instance,
Lactobacillus reuteri improves synaptic pruning defects in rodents but
remains unconfirmed in human trials. Bacteroides fragilis ameliorated
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social behavior deficits only in subpopulations with elevated
inflammatory markers, highlighting the importance of strain
specificity and host immune context (Buffington et al., 2016; Hsiao
et al, 2013). This translational gap likely arises from: (i) weak
correlation between peripheral inflammatory markers and central
nervous system pathology, and (ii) the complexities of host immunity
represent a significant consideration; for instance, confounding factors
involving a Th2 bias in type I diabetes pregnancies may contribute to
the risk of ASD. Future research should integrate single-cell placental
transcriptomics with functional cerebral organoids to dissect dynamic
crosstalk between SCFAs and immune pathways, thereby defining
spatiotemporally precise windows for probiotic interventions.

4.4 Epigenetic modifications and gene
expression regulation

Maternal gut microbiota-derived metabolites have been
demonstrated to possess the potential to modulate the activity of key
host epigenetic enzymes. This modulation may consequently affect the
spatiotemporal expression of genes critical for neurodevelopment.
SCFAs are among the core effectors. In animal model studies, butyrate
was shown to significantly inhibit the activity of histone deacetylases
HDACI, HDAC2, and HDACS3, leading to elevated acetylation levels
at histone H3K9 and H4K16 residues in neuronal precursor cells
(Korsten et al., 2023; Vecera et al., 2018). This was concomitant with
a marked increase in the transcriptional activity of the Bdnf gene
(McClung and Nestler, 2008).

Conversely, propionate, a critical contributor to one-carbon
metabolism, impacted DNA methylation by modulating methyl donor
pools (Wu et al., 2023). Mechanistic studies suggested that it may
enhance the activity of DNA methyltransferases (DNMTs), thereby
driving differential methylation patterns of the imprinted gene Igf2 in
placental and fetal brain tissue (Wang et al., 2013; Steegers-Theunissen
etal., 2009), which probably disrupted the proliferation/differentiation
balance in neural precursor cells (Latchney et al., 2011).

Other metabolites, including specific vitamins such as folic acid,
vitamin B12, as well as bile acids, may interact synergistically or
antagonistically with SCFA pathways. For instance, folic acid,
synthesized by microbiota including specific Bifidobacterium strains,
served as an essential cofactor in the DNA methylation cycle (Pompei
etal,, 2007). It helped maintain a hypomethylation state at promoters
of genes vital for neural tube development such as Pax3 (Song et al.,
2015). Observational evidence consistently indicated that low
maternal folate levels during pregnancy significantly increased the risk
of neural tube defects in offspring (pooled OR = 2.4, 95% CI: 1.6-3.7).

In contrast, the secondary bile acid deoxycholic acid (DCA) was
observed in some experimental models to activate the FXR-nuclear
receptor-mediated HDAC3 pathway, significantly suppressing Shh
gene expression in the cerebellum (Struhl, 1998; Chiang, 2013). This
effect may involve decreased histone acetylation at its promoter
region, potentially impacting nervous system development. It is noted
that the folic acid synthesis capability is strain-specific among
Bifidobacteria (Sugahara et al., 2015).

Crucial neurodevelopmental genes such as BDNF and MECP2
are subject to highly dynamic and complex epigenetic regulation
(Allison et al., 2021). Maternal microbial metabolites bidirectionally
modulate these genes by altering DNA methylation and histone
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modification states. For example, maternal gut microbiota dysbiosis
induced by a high-fat diet correlated significantly with
hypermethylation at the CpG dinucleotide within exon IV of the
Bdnf gene in the offspring hippocampus in mouse models (Kimura
et al, 2020). Conversely, butyrate supplementation restored
phosphorylation levels of Methyl-CpG-binding protein 2 (MeCP2)
in specific animal models, potentially alleviating its repression of
Bdnf transcription. The functional consequences of DNA
methylation are highly context-dependent: MeCP2 binding to the
methylated CpG island at the DIx5 gene locus, involved in
GABAergic neuronal differentiation, resulted in repression (Chen
et al., 2003). Maternal probiotic intervention reduced methylation
levels at specific DIx5 CpG sites in mouse models, concomitant with
mitigated impairment of GABAergic neuronal differentiation (Liao
et al,, 2023). Single-cell epigenomic analyses have further indicated
that aberrant methylation at non-CpG sites, such as CHH
trinucleotides, may be associated with alterations in chromatin
spatial conformation—a phenomenon observed in approximately
30% of ASD animal models—and could independently influence
synaptic pruning. Nevertheless, the precise regulatory mechanisms
remain unvalidated.

Current research underscores sophisticated interactions between
specific strain-derived metabolites and the host epigenetic system.
Translating these findings presents substantial challenges. Clinical
cohort analyses report that hypermethylation of the OXTR (Oxytocin
Receptor) gene in peripheral blood of ASD children inversely
correlated with maternal Prevotella abundance (Andari et al., 2020).
This remains an observational association. Reference suggests the
probiotic strain Lactobacillus reuteri may induce hypomethylation at
the Foxp3 locus, a key transcription factor for regulatory T cells,
folate like
5-methyltetrahydrofolate, thereby mitigating neuroinflammation risk.

potentially via secretion of bioactive forms
However, significant limitations persist: foundational studies often
rely on broad-spectrum antibiotic-induced microbiota depletion
models or direct metabolite injection/gavage, poorly replicating the
spatiotemporal heterogeneity and metabolic dynamics present within
a natural gut microbiota network (Gheorghe et al., 2021; Mao et al,,
2022). Furthermore, observed associations between specific histone
modifications and metabolite abundances in human populations lack
established causality. Future research must integrate data on placental
and BBB transport dynamics of microbial metabolites with high-
resolution single-cell epigenomics to systematically delineate strain-
host interactions within specific tissues and developmental timepoints,
overcoming mechanistic fragmentation and advancing microbiota-
based epigenetic intervention strategies (Duck and Connor, 2016).

4.5 Neuronal connectivity and signaling
pathway interference

Maternal gut microbiota could potentially regulate fetal neural
circuit development—including neurite formation and refinement—
through microbiota-derived metabolites acting on signaling pathways.
Current evidence indicated limited placental penetration capacity of
specific microbial metabolites (Kolahi et al., 2018). These compounds
may modulate critical neuronal signaling pathways such as AKT/
mTOR and Wnt/f-catenin in the developing fetal central nervous
system (Li et al., 2023).
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In GF mouse models, researchers observed impaired axonal
development—manifested as reduced axonal length—compared to
conventionally colonized controls. This impairment correlated with
dysregulated expression of axon guidance molecules. Exogenous
supplementation with microbiota metabolites (e.g., IPA or
4-ethylphenylsulfate [4-EPS]) was found to improve axonal branching
complexity under specific conditions (MacKay et al., 2024). This effect
may partially involve P-catenin stability regulation or
nuclear translocation.

Furthermore, bifidobacterial colonization in murine models
downregulated genes associated with excessive synaptogenesis (Wang
et al., 2014). This colonization concomitantly alleviated abnormal
hippocampal synapse density elevation observed in GF models. These
findings suggest microbiota metabolites may regulate synaptic
developmental processes and influence microglia-mediated synaptic
pruning, though their effects demonstrate bidirectional modulation.

Maternal dysbiosis during gestation may disrupt key
neurodevelopmental signaling pathways, impairing normal neural
circuit establishment. Evidence suggested microbiota imbalances
affect Wnt signaling activity. In specific models, altered expression of
cell cycle-related genes was observed in the fetal prefrontal cortex,
potentially disrupting neurodevelopmental trajectories (Li et al,
2023). Interventions with particular bifidobacterial strains were
reported to restore Wnt/f-catenin pathway equilibrium in
corresponding models.

The BDNF-tropomyosin receptor kinase B (TrkB) pathway also
exhibited microbiota connections (Sudo et al., 2004). Maternal
probiotic administration elevated BDNF expression in offspring
hippocampi across multiple studies. This upregulation was postulated
to enhance dendritic spine maturation via downstream signaling
activation, coinciding with behavioral improvements such as reduced
social avoidance in male offspring. Conversely, GF models
demonstrated diminished cortical BDNF/mTOR axis activity,
accompanied by synaptic transmission deficits (e.g., reduced synaptic
vesicle release frequency). These anomalies align with inhibitory
synaptic defects [e.g., decreased miniature inhibitory postsynaptic
current (mIPSC) amplitude] in neurodevelopmental disorder models.

However, several key challenges persist in understanding the
maternal microbiota-fetal neurodevelopment axis. The regulatory
processes exhibit significant spatiotemporal heterogeneity, and
interspecies physiological differences—placental barrier permeability
and metabolic capacity—hinder clinical translation. Notably, reported
discrepancies in indole metabolite processing between humans and
rodents require rigorous validation. Future studies should integrate
data,

epigenomics, and employ high spatiotemporal-resolution techniques,

multi-omics including metagenomics, metabolomics,

for instance, single-cell multi-omics coupled with live imaging, to
dissect key pathways like the vagus-immune-metabolic axis.

5 Role of probiotics in preventing
offspring autism

5.1 Mechanistic links

Emerging evidence indicates characteristic gut microbial dysbiosis
in children with ASD, typically manifesting as reduced microbial
diversity (Kang et al., 2013). While multiple studies report decreased
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Prevotella abundance and enriched Clostridium populations, a 2024
conference abstract documented contrasting findings (Prevotella and
Clostridium enrichment), suggesting microbiome profiles may
be influenced by geographical variations, cohort heterogeneity, or
methodological factors (Debelius et al., 2016; Chu et al., 2024; Sun
et al., 2020). The generalizability of these signatures requires large-
scale validation.

Animal models provide critical evidence for the gut-microbiota-
brain axis: Fecal microbiota transplantation from ASD donors to
germ-free mice induces social deficits in recipients, with the microbial
metabolite p-cresol identified as a key mediator of such behavioral
abnormalities (Bermudez-Martin et al., 2021). Mechanisms linking
dysbiosis to neurodevelopmental disruption involve multi-pathway
crosstalk. Immunologically, maternal dysbiosis promotes Th17 cell
differentiation and amplifies IL-17a production; this cytokine—
transferred placentally or locally produced—directly impairs fetal
cortical neuron migration (Choi et al., 2016). Metabolically, SCFA
deficiency inhibits hippocampal synaptic plasticity via suppressed
HDAC activity, whereas reduced levels of TMAO, a positive
neurodevelopmental regulator, correlate with developmental
impairments (Tang and Li, 2021; Li et al.,, 2018). Epigenetically,
maternal high-fat diets alter microbiota-derived metabolites,
modulating DNA methylation patterns in the placenta and fetal brain,
thereby regulating expression of neurodevelopmental genes like
BDNF (Martinowich et al.,, 2003; D’Aquila et al.,, 2020; Keleher
etal., 2018).

Maternal gut microbiota may influence offspring
neurodevelopment through vertical transmission; although elevated
Alcaligenaceae abundance occurs in ASD children, direct evidence
establishing causal links between maternal transmission of this taxon
and ASD risk is lacking, and the mechanistic role of maternal-specific
microbial shifts requires further validation (Cook and Prinz, 2022).
Hypotheses regarding conserved “core microbiota signatures” across
populations face limitations, as stability observed in plant-microbe
systems cannot be directly extrapolated to human ASD studies;
human gut microbiota heterogeneity is dynamically shaped by diet,
antibiotic exposure, and socioeconomic status, challenging the
universality of putative core microbial features (West et al., 2022).

Maternal intervention studies offer critical insights: In MIA
models, probiotic treatment (Bacteroides fragilis) ameliorates offspring
neurobehavioral deficits, potentially via central GABA receptor
modulation or SCFA metabolic pathway restoration (Hsiao et al.,
2013; Sharon et al, 2019). Current evidence supports two
non-mutually exclusive hypotheses, yet their robustness warrants
cautious interpretation (Vuong and Hsiao, 2017; Cryan et al., 2019).
The Vertical Transmission Hypothesis posits microbial inheritance,
yet evidence remains limited in complex human microbiomes;
microbes and metabolites may indirectly affect neurodevelopment via
birth mode or breastfeeding, but causal chains linking specific taxa
transmission to ASD pathogenesis have not been established (Ferretti
et al., 2018; Aatsinki et al., 2019; Sordillo et al., 2019). The Critical
Window Intervention Hypothesis suggests perinatal probiotic
supplementation exerts neuroprotective effects in animals, and
observational studies suggest potential neurodevelopmental benefits;
nonetheless, human translation faces challenges, as animal models
incompletely recapitulate gene-environment interactions, and human
studies are confounded by unmeasured variables (Buffington et al.,
2016; Slykerman et al., 2017; Dinan and Cryan, 2017b).
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Future research should integrate large prospective cohorts with
multi-omics approaches and develop humanized animal models or
conditional knockout systems to address: (1) causality and molecular
mechanisms of maternal-offspring microbial transmission; (2)
reliability of ASD-associated “core microbiota signatures” across
diverse populations; and (3) efficacy and safety of microbiota-targeted
interventions in human clinical translation.

5.2 Clinical efficacy of prenatal probiotic
intervention

5.2.1 Current evidence gap

Robust evidence from large-scale, high-quality RCTs or
prospective cohort studies is currently lacking to support the universal
efficacy of prenatal probiotic supplementation in reducing ASD risk
in offspring.

5.2.2 Animal model findings

Rodent studies have indicated that specific probiotic strains, such
as select Lactobacillus spp., may improve offspring neurobehavioral
phenotypes, including reduced stereotyped behaviors and enhanced
social interaction, while also decreasing neuroinflammatory markers;
such effects are hypothesized to occur via modulation of the gut-brain
axis, although the clinical translatability of these findings requires
cautious interpretation.

5.2.3 Limitations in human studies

Direct investigation of prenatal probiotics for preventing offspring
ASD is scarce, with existing studies typically limited by small sample
sizes; most human data focus on probiotic administration to children
with established ASD diagnoses, and results from such interventions
show mixed efficacy and frequently lack statistical significance,
indicating that further investigation is warranted (Zyoud et al., 2023).
Current clinical research on autism spectrum disorder (ASD)
primarily focuses on interventions targeting the gut microbiota,
including probiotics, prebiotics, synbiotics, fecal microbiota
transplantation (FMT), microbiota transfer therapy, dietary
interventions, as well as antibiotic and antifungal therapies. Although
many studies report symptomatic improvements following these
interventions, their conclusions remain limited due to challenges in
establishing causality, generally small cohort sizes, and a limited
number of available studies. Thus, further large-scale and rigorously
designed studies are warranted to validate the clinical efficacy and
mechanisms of these interventions (Liu, 2022; Buffington et al., 2016;
Burket et al., 2013; Callery and Geelhaar, 1985; Caporaso et al., 2010).

5.2.4 Indirect effects and heterogeneity

Indirect evidence suggests that prenatal probiotics may influence
neurodevelopmental trajectories by mitigating maternal complications
such as gestational diabetes mellitus (GDM) (Appleton, 2018; Barthow
etal, 2016; Kijmanawat et al., 2019). Nevertheless, a definitive causal
pathway linking GDM mitigation via probiotics to ASD risk reduction
remains unestablished (Berding and Donovan, 2016; Cryan et al,,
2019). Major sources of inconsistency include probiotic strain
selection, dose variability, and timing and duration of administration
(Kristensen et al., 2016; McFarland et al., 2018). Given the high genetic
heterogeneity and multifactorial etiology of ASD, probiotics may offer
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benefits only in specific high-risk subpopulations, particularly

individuals with baseline gut dysbiosis or carriers of
neurodevelopmental disorder-associated genetic variants (Ronald and

Hoekstra, 2011; Kang et al., 2019; Sharon et al., 2019).

5.2.5 Proposed mechanisms

Two mechanistic hypotheses potentially explain the
neuroprotective effects. First, the Gut-Brain Axis Modulation
hypothesis posits that maternal gut dysbiosis linked to ASD disrupts
fetal neurodevelopment via altered production of microbial
metabolites, modified synthesis of neuroactive compounds, and
induction of systemic low-grade inflammation (Hsiao et al., 2012;
Stilling et al., 2016; O’'Mahony et al., 2015). Probiotics might remodel
the maternal gut microbiota, thereby potentially influencing fetal
gut-immune-neural circuit development (El Aidy et al., 2012; Vuong
et al,, 2020). Animal models further suggest that probiotics exert
strain-specific effects on HPA axis regulation and maternal metabolic
homeostasis, potentially mitigating adverse impacts on hippocampal
neurogenesis (Sgritta et al., 2019; Mohle et al.,, 2016). Second, the
Vertical Transmission Hypothesis proposes that maternal microbes
and/or their metabolites program fetal epigenetic landscapes,
subsequently shaping immune maturation and neural plasticity
(Gomez de Agiiero et al., 2016; Thion et al., 2018b). It is important to
note that these mechanisms derive predominantly from preclinical
models; rigorous experimental validation in humans remains essential

(Needham et al., 2021).

5.2.6 Future research imperatives

Standardized study designs should incorporate uniform core
parameters, including clinically validated probiotic formulations,
defined dosages, standardized intervention windows, and consistent
neurodevelopmental endpoints, while clinical trials should prioritize
high-risk subgroups, such as carriers of neurodevelopmental copy
number variants (CNVs) mutations or individuals with severe
baseline dysbiosis, coupled with longitudinal cohorts for long-term
offspring follow-up (Reid, 2016; McFarland et al., 2018; Zwaigenbaum
et al., 2015; Vuong and Hsiao, 2017). Further, mechanistic studies
should leverage advanced models, such as blood-brain barrier
organoids and fetal brain organoid cocultures, to probe the direct
effects of probiotic metabolites on blood-brain barrier function and
synaptogenesis (Gabriel et al., 2020; Qian et al., 2019). Metagenomic-
metabolomic correlative analyses may identify key maternal-fetal
microbial and metabolite transfer hubs (Walker et al., 2017; Younge
etal., 2019). Finally, integrating these mechanistic insights with real-
world evidence will ultimately define clinical applicability, target
populations, and risk-benefit ratios for ASD precision prevention
(Geschwind and State, 2015; Kim et al., 2018; Courchesne et al., 2020).

6 Future perspectives

6.1 Systematic resolution of spatiotemporal
specificity in gut microbiota-mediated
neural development

Although current studies reveal associations between gut

microbial metabolites and fetal neuronal axonogenesis, their
precise impact on ASD-related neural circuit development remains
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unclear (Needham et al., 2021). This gap pertains particularly to
dose-response dynamics and temporal mechanisms during critical
gestational windows (Dunlop et al., 2015). Existing models exhibit
critical limitations: broad-spectrum antibiotic perturbation fails to
recapitulate complex host-microbiota interactions in human
pregnancy, while cross-sectional studies cannot establish causality
(Dunlop et al,, 2015). Addressing this will require spatiotemporally
precise intervention and monitoring tools. We will integrate
CRISPR-associated protein 9 (CRISPR-Cas9)-mediated targeted
editing of gut commensals with in vivo two-photon microscopy to
establish gestational-stage-specific models (Dunlop et al., 2015).
Such models will enable real-time tracking of how concentration
gradients of specific microbial metabolites or precursors regulate
axon guidance signaling pathways in vivo (Thion et al., 2018a).
Implementing this strategy will necessitate: (i) applying advanced
spatial metabolomics coupled with high-resolution mass
spectrometry to enhance tissue-level metabolite localization; and
(ii) performing three-dimensional imaging of intestinal crypt
architectures to resolve spatial distributions of commensal
microbes and metabolites within intestinal niches at submillimeter
resolution. This integrated platform will resolve whether key
developmental processes—such as embryonic neural crest cell
migration—depend  on microbial

spatially  patterned

metabolic activities.

6.2 Integrated multi-omics approaches
confront dual challenges of data
heterogeneity and causal complexity

dual
challenges: (i) Highly nonlinear relationships between high-

Research on microbiome-host interactions faces
dimensional microbial features and host physiological pathways
impede critical regulatory insights from conventional linear models
(Lloyd-Price et al., 2019); (ii) The limited resolution of 16S rRNA
gene sequencing frequently fails to distinguish functionally active
strains, potentially yielding spurious associations (Jovel et al., 2016).
Current understanding of Bifidobacterium-mediated serotonin
biosynthesis regulation, for instance, remains correlative, lacking
mechanistic validation (Yano et al., 2015). To overcome these
limitations, two innovative strategies have been proposed:
constructing heterogeneous biological networks integrating
microbe-metabolite-host gene nodes, within which graph neural
networks (GNNs) with attention mechanisms could quantify
regulatory weights and directionality for keystone species acting on
host pathways within complex ecologies (Faust et al., 2012); and
combining variational autoencoders (VAEs) with microbial
ecological constraints to infer biologically plausible absolute
abundances from relative abundance data, thereby mitigating
compositional bias effects (Faust et al., 2012). For robust causal
inference, frameworks beyond univariate Mendelian randomization
(MR) are essential (Bowden et al., 2017). Future studies should
implement structural equation modeling (SEM) incorporating
ecological network dynamics. Such approaches could quantitatively
validate observed microbiome-host relationships—as exemplified
by Butyricicoccus members, which have experimentally
demonstrated HDAC inhibition activity affecting host pathways like

GABAergic neuron differentiation.
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6.3 Intergenerational mechanistic
validation requires humanized research
paradigms

Human cohort studies face ethical constraints in controlling
maternal diet-environment toxin interactions (Hanrahan et al., 1992).
To address this and the evolutionary limitations of rodent models for
gut-brain axis translation—alongside the absence of systematic
immune-microbiota simulation in current human brain organoids—
innovative solutions target two domains: confounder control and
cross-platform integration (Quadrato et al., 2017). For confounder
control, researchers should prioritize prospective cohort designs or
standardize interventions, applying high-dimensional multivariate
models to correct biases (Magnus et al, 2016). Cross-platform
integration requires: (i) engineering 3D-bioprinted microfluidic
systems that incorporate placental barrier organoids/chips within
BSL-2 containment integrated with humanized living bacterial
biofilms (Blundell et al., 2018); and (ii) establishing computational-
experimental feedback loops via exposome models derived from
mother-infant  multi-omics ~ data—including  metagenomic,
metabolomic, and epigenomic profiles—to predict targets, with
subsequent ex vivo validation (Wild, 2012). Locally validated targets
warrant development of gut-restricted delivery systems using
pH-responsive chitosan coatings for oral gavage with site-specific
release. Current achievable goals must focus on localized intestinal
interventions—excluding systemic OMV delivery or maternal
metabolic gradient simulation. This integrated strategy spanning
bioinformatic prediction, multi-dimensional organoids, and
engineered delivery provides a systematic framework to resolve
prenatal microbiota-host networks underlying ASD risk (Hsiao

etal., 2013).

7 Summary

Maternal gut dysbiosis is recognized as a significant
non-independent environmental factor contributing to the risk of
offspring ASD. Current understanding of its pathological
mechanisms, primarily derived from preclinical studies, supports a
multi-pathway synergistic model: Strong preclinical evidence
indicates that dysbiosis triggers aberrant maternal immune activation,
disrupts homeostasis of key metabolites, and potentially induces
epigenetic reprogramming.
these fetal
neurodevelopmental processes in animal models, encompassing

Collectively, changes  impair  critical
synaptogenesis, synaptic pruning, and the establishment and
functional maturation of the BBB.

However, translating probiotic interventions into effective ASD
prevention or treatment presents substantial challenges. Key scientific
bottlenecks include heterogeneity in intervention efficacy due to
strain-specific effects of probiotics and complexity in host-microbiome
interactions; unresolved questions regarding maternal gut microbiota-
derived metabolites in humans—specifically, their efficient placental
transfer, post-transfer metabolic transformations, effective target-site
concentrations, and precise mechanisms of action on fetal
neurodevelopment; and limitations in existing human evidence
supporting the pathogenic chain, which relies heavily on observational

studies frequently confounded by covariates such as maternal diet,
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antibiotic usage, and environmental exposures, thereby compromising
causal inference.

Consequently, it must be unequivocally emphasized that
conclusive causal evidence linking maternal dysbiosis to altered fetal
neurodevelopment and subsequent ASD pathogenesis in humans
remains insufficient, and probiotic efficacy for ASD prevention or
treatment lacks consistent validation through adequately powered and
rigorously designed human RCTs.

Probiotics and fecal microbiota transplantation (FMT) show
potential in modulating gut microbiota and alleviating symptoms of
autism spectrum disorder (ASD). However, due to limited evidence
quality, lack of standardization, and potential risks, they remain
experimental therapies at present. Future large-scale randomized
controlled trials (RCTs) are warranted to elucidate their efficacy
mechanisms, establish individualized protocols, and rigorously
monitor long-term safety.

To overcome current limitations and shift from associative
findings to actionable target identification, future research must
elucidate the spatiotemporal dynamics of dysbiosis-induced
neurodevelopmental perturbations during critical gestational
windows; integrate multi-omics

data (e.g., metagenomics,

metabolomics, and epigenomics) and employ advanced
computational approaches to reconstruct and decode the
“microbiota-metabolite-host gene/pathway” interaction network,
enabling precise identification of core drivers and causal pathways;
develop human-relevant gut-brain axis organoid models that better
recapitulate human physiology; and design rigorous clinical trials to
validate ~ mechanistic and

systematically hypotheses

intervention strategies.
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