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Autism Spectrum Disorder (ASD) manifests as a group of neurodevelopmental 
disorders with high clinical and genetic heterogeneity, characterized by core 
features including social communication deficits, repetitive behaviors, and restricted 
interests. Current research primarily focuses on genetic variations, immune 
dysregulation, synaptic dysfunction, and gene–environment interactions. Nowadays, 
accumulating evidence indicates that maternal gut microbiota dysbiosis, induced 
by high-fat diets, antibiotic overuse, and urbanization, significantly correlates 
with abnormal fetal neurodevelopment and increased ASD risk. This review 
systematically delineates three transplacental mechanisms whereby maternal 
dysbiosis regulates fetal neurodevelopment: Metabolite-mediated pathways, 
Immune pathway activation, and Epigenetic reprogramming. Meanwhile, the key 
translational challenges are highlighted. At last, metagenomics-metabolomics-fetal 
neuroimaging, Development of microbiota metabolite-treated brain organoids, 
and Artificial Intelligence-driven (AI-driven) probiotic screening were proposed 
as research directions in future.
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1 Introduction

Autism Spectrum Disorder (ASD) is a highly heterogeneous, 
complex neurodevelopmental disorder. Its core clinical manifestations 
consist of persistent deficits in social communication/interaction and 
restricted, repetitive behavioral patterns with narrow interests 
(Urbonaite et al., 2022). Notably, the global prevalence of ASD has 
increased significantly, exceeding 1% in some regions (Elvers et al., 
2020). This underscores that etiological research impacts not only 
individual health but also public health.

For a long time, researches of ASD have focused on interactions 
between genetic susceptibility and environmental factors. There 
have been excellent reviews for the roles of genetic factors and the 
interaction of genetic and environmental factors in the 
pathogenesis in ASD (Grayson and Guidotti, 2016; Cheroni et al., 
2020; Masini et al., 2020; Sandin et al., 2014), which are not the 
major topics of this review. Recently, the gut microbiota—a 
dynamic community of bacteria (predominant), archaea, viruses, 
fungi, and protists inhabiting the gastrointestinal tract—and its 
collective gene pool (the gut microbiome) have transformed ASD 
research paradigms. With a gene catalog surpassing the host 
genome, the microbiome is termed the “second genome” (Zhang 
et al., 2021). It maintains gastrointestinal homeostasis, regulates 
immune development/function, and reinforces intestinal barrier 
integrity (Winglee et  al., 2017). Its composition is highly 
individualized, shaped by genetics, age, diet, medications 
(especially antibiotics), and environment.

Clinical observations frequently report comorbid gastrointestinal 
dysfunction, such as chronic constipation, diarrhea, and abdominal 
pain in ASD children. The severity of such symptoms often correlates 
with core behavioral deficits (Hassib et al., 2023). This association 
implicates the gut-brain axis—a bidirectional communication network 
linking the gut microbiome, intestinal mucosa, and nervous system 
via neural, endocrine, immune, and metabolic pathways [e.g., 
neurotransmitters, short-chain fatty acids (SCFAs, a type of fatty acid 
with less than six carbon atoms including acetic acid (acetate), 
propionic acid (propionate) and butyric acid (butyrate)) (Mann et al., 
2024)], tryptophan metabolites, cytokines (Tian et al., 2023). This axis 
profoundly influences neurodevelopment and behavior.

Microbial colonization begins during critical windows of early-life 
through maternal-offspring microbial transmission (Amat et  al., 
2022). This process spans three phases: (1) Prenatal: Emerging 
evidence—though still debated—challenges the “sterile womb” 
hypothesis, suggesting potential low-biomass microbial transfer 
occurring through blood or placenta (Hernández-Martínez et  al., 
2022). (2) Intrapartum: Vaginal delivery exposes neonates to maternal 
vaginal/perianal microbes, such as Lactobacillus, Prevotella and 
Sneathia, whereas cesarean section results in colonization by skin and 
environmental taxa, including Staphylococcus, Streptococcus and 
Corynebacterium (Wu et  al., 2017). (3) Postnatal: Breastfeeding 
[conveying microbes/HMOs (human milk oligosaccharides, 
consisting of multifunctional, unconjugated, and non-digestible 
glycans) (Dinleyici et  al., 2023)], skin contact, and caregiving 
behaviors further shape the infant microbiome, influenced by 
maternal diet/health/antibiotics (Choi et al., 2016). These processes 
train immune development, metabolic programming, and 
neurodevelopment. The disruptions of these processes are implicated 
in ASD pathogenesis (Luoto et al., 2010).

In ASD research, the gut-brain-microbiota axis represents a 
critical frontier. Compelling evidence reveals widespread gut 
microbial dysbiosis in ASD, characterized by reduced diversity, 
decreased beneficial symbionts (the microbial organisms 
mutualistically interacting with the host and the interactions are 
beneficial to both the host and the microbial organisms, e.g., 
Bifidobacterium), and increased potential pathobionts (members of 
the microbiota associated with the development of clinical diseases, 
e.g., some Clostridium spp.) (Zhang et al., 2021). Such dysbiosis may 
drive ASD pathophysiology through: (i) Disruption of intestinal 
barrier integrity (intestinal hyperpermeability [“leaky gut”]), 
permitting systemic influx of pro-inflammatory mediators; (ii) 
Alterations in microbial metabolites (SCFAs, secondary bile acids, 
neuroactive compounds); (iii) Induction of local/systemic immune 
inflammation (e.g., elevated pro-inflammatory cytokines like IL-6); 
(iv) Epigenetic modulation of host gene expression (Tartaglione 
et al., 2022).

Although causality remains debated (e.g., dietary habits may 
influence microbiota), recent animal models and microbiota 
transplantation studies support pathogenic roles for gut microbes in 
ASD (Kang et al., 2013). This supports probiotic [live microorganisms 
conferring health benefits at adequate doses; e.g., Lactobacillus, 
Bifidobacterium, Saccharomyces boulardii (Sun et al., 2024)] and fecal 
microbiota transplantation (FMT) as translational interventions.

This review summarizes key advances linking gut microbiota to 
ASD. The conceptual frameworks (gut microbiome, gut-brain axis, 
microbial transmission) were outlined, the mechanistic hypotheses 
(barrier dysfunction, microbial metabolites, neuroimmune signaling, 
epigenetics) were analyzed, the clinical/experimental evidence was 
evaluated, and the challenges for microbial interventions were 
discussed. Genetic/epigenetic factors were discussed only where they 
interact with microbiota as they are not the major topics in this review. 
Future breakthroughs require multi-omics integration to elucidate 
microbiota-mediated neurodevelopmental mechanisms and enable 
personalized therapies.

2 The gut microbiome in autism 
spectrum disorder: the association 
hypothesis

2.1 Landmark historical events

During the clinical observation phase from the 1960s to the 1990s, 
healthcare workers noted that children with autism spectrum disorder 
(ASD) frequently exhibited feeding difficulties, constipation, diarrhea, 
and other gastrointestinal (GI) symptoms. These observations 
suggested potential dysfunctions within the digestive system in ASD 
patients (McElhanon et  al., 2014). Although the 1998 study by 
Wakefield and colleagues—subsequently retracted due to scientific 
misconduct—erroneously linked the measles, mumps, and rubella 
(MMR) vaccine and intestinal inflammation to ASD onset, its invalid 
conclusions inadvertently heightened scientific and public awareness 
of gut-related factors in ASD (Sikora, 2015). This attention indirectly 
stimulated subsequent researches (Zheng et al., 2020).

The advent of high-throughput sequencing technologies, 
including 16S rRNA gene sequencing and metagenomics along with 
metabolomics in the 21st century provided the core technical 

https://doi.org/10.3389/fnagi.2025.1642240
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Zhang et al.� 10.3389/fnagi.2025.1642240

Frontiers in Aging Neuroscience 03 frontiersin.org

foundation for large-scale, detailed characterization of gut microbiota 
composition and functional activity in ASD individuals (Xu et al., 
2022; Chang et al., 2024). This facilitated the transition of this field 
into a period of rapid advancement (Wang X. Q. et al., 2018).

Driven by these technologies, some population studies revealed 
potential dysbiosis patterns in the gut microbiota of ASD patients. For 
instance, work by Finegold et al. in 2002 and 2010 reported early 
observations of increased Clostridium species abundance in fecal 
samples from ASD children (Lu and Claud, 2019; Finegold et al., 2002; 
Finegold et al., 2010). Subsequently, studies by Kang and colleagues in 
2013 and 2017, utilizing large cohorts of ASD children, systematically 
identified several core features of the ASD gut microbiome: reduced 
alpha diversity, decreased relative abundance of Prevotella, and 
significant alterations in the Bacteroidota/Bacillota ratio (Kang et al., 
2013; Grochowska et al., 2018). Associations between the abundance 
of specific bacterial genera and the severity of core ASD symptoms 
were also observed, providing early evidence for microbiota-behavior 
links. Critically, their research using the maternal immune activation 
(MIA) animal model offered experimental support for the biological 
mechanism whereby maternal infection or inflammatory states might 
alter offspring gut microbiota and thereby impact neurodevelopment 
(Liu et al., 2022).

To investigate the potential causal role of gut microbiota in ASD 
pathophysiology, functional validation approaches were employed. A 
landmark work by Kang et  al. (2019) in 2019 demonstrated that 
transplantation of fecal microbiota from ASD donors into germ-free 
(GF) mice recapitulated certain ASD-like behavioral phenotypes, such 
as social deficits and increased repetitive behaviors. This was 
accompanied by altered expression of ASD-associated 
neurodevelopmental genes. This study provided the first direct 
evidence in a living organism that the ASD gut microbiota possesses 
functional activity sufficient to influence host neurobehavior, crucially 
establishing causal evidence for gut microbial regulation of central 
nervous system function.

As the microbiota compositional features have been increasingly 
delineated, the researches focus in this field have progressively shifted 
from descriptive analyses towards mechanistic dissection. Current 
investigations are deeply exploring several core subjects: the potential 
neuromodulatory effects of microbial metabolites (e.g., SCFAs, 
bacterial lipopolysaccharide [LPS], tryptophan derivatives) (Silva 
et al., 2020; Marć et al., 2022; Cox and Weiner, 2018); the role of 
compromised intestinal barrier integrity (often termed the “leaky gut” 
hypothesis) in facilitating systemic access for microbial products or 
inflammatory mediators, potentially impacting the central nervous 
system (Kelly et  al., 2015); and the contribution of microbiota-
dysbiosis-induced aberrant neuroimmune activation to 
neurodevelopmental disorders (Wang et al., 2023). Collectively, the 
results of these researches suggest a potential contributory role of 
complex microbiota-gut-brain axis (MGBA) mechanisms in ASD 
pathogenesis (Ho et al., 2020).

2.2 Key theories

2.2.1 Leaky gut syndrome
The increased intestinal permeability, often termed “leaky gut 

syndrome,” refers to a pathological state characterized by impaired 
integrity of the intestinal epithelial barrier (Fiorentino et al., 2016). 

This dysfunction permits the abnormal translocation of undigested 
food macromolecules, endotoxins (e.g., LPS), microbial metabolites, 
and other luminal contents into the systemic circulation (Ruiz-
Rodríguez et al., 2022). Investigations within ASD researches have 
delineated biological features associated with this condition in subsets 
of affected children (Liu, 2022). Clinical evidence links autism 
spectrum disorder to gut microbiota dysbiosis and barrier 
dysfunction, with interventions targeting this axis showing therapeutic 
potential (Al-Ayadhi et al., 2021); concurrently, broader clinical and 
preclinical studies implicate this ‘leaky gut’ phenotype in the 
pathogenesis of diverse neurological disorders through neuroimmune 
mechanisms (Parodi and Kerlero de Rosbo, 2021). Multiple clinical 
studies reported aberrant serological markers in specific ASD 
subgroups (Al-Ayadhi et al., 2021). These frequently included elevated 
levels of zonulin, a protein regulating intestinal tight junctions 
(although contradictory findings exist in a minority of studies), and 
elevated levels of lipopolysaccharide-binding protein (LBP) or 
endotoxin antibodies (Nalbant et  al., 2022). Urine metabolomic 
analyses further revealed significant alterations in concentrations of 
gut microbiota-associated metabolites, such as p-cresol sulfate and 
3-(3-hydroxyphenyl)-3-hydroxypropionic acid (HPHPA) (Sanctuary 
et al., 2018). Collectively, this evidence suggests that the increased 
intestinal permeability and systemic translocation of gut microbial 
products occur in a subset of ASD individuals. Crucially, these 
alterations are not universally present across the ASD population, 
highlighting significant heterogeneity.

The potential biological mechanisms linking increased intestinal 
permeability to altered neurodevelopment in ASD patients remain to 
be  incompletely elucidated and are subject to ongoing scientific 
discourse. The researches, primarily based on animal models, in vitro 
studies, and clinical observations, proposed two interconnected (yet 
unproven causal) pathways. The first is the immune-inflammation 
pathway hypothesis: translocation of microbial-associated molecular 
patterns such as LPS may activate circulating immune cells like 
monocytes and macrophages, eliciting a state of low-grade systemic 
inflammation (Tucureanu et  al., 2018). Subsequently, 
pro-inflammatory cytokines such as IL-6, IL-1β and TNF-α released 
in this response could impact the central nervous system (CNS) via 
mechanisms including transport across the blood–brain barrier (BBB) 
and vagal nerve signaling (Morris and Maes, 2014). In animal models, 
such peripheral inflammation and the ensuing neuroinflammation, 
for example microglial activation, disrupt synaptic pruning, 
neurotransmitter balance, and neurogenesis. Within the ASD context, 
this mechanism represents a biologically plausible hypothesis; 
however, it is essential to emphasize that the precise multifactorial 
etiology of ASD remains undefined. The second is the neuroactive 
substance hypothesis: under conditions of intestinal hyperpermeability, 
gut microbiota-derived metabolites—certain organic acids—that 
potentially influence GABAergic signaling or tryptophan-serotonin 
metabolic pathways may gain aberrant access to the systemic 
circulation (Boccuto et al., 2013). This hypothesis, however, contains 
several points of contention. For instance, whether microbially 
produced GABA can efficiently cross the BBB and attain 
concentrations sufficient to directly modulate CNS function is 
questionable; indirect effects, such as modulation of host metabolic 
pathways, might be  more relevant. Conversely, dysregulation of 
tryptophan metabolism is a hot research focus strongly implicated in 
neuropsychiatric disorders, including ASD.
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Key limitations impede a deeper understanding of the role of 
intestinal hyperpermeability in ASD. The primary challenge is 
establishing causality: Existing evidence linking this condition to ASD 
largely derives from cross-sectional studies (Liu, 2022). Thus, it 
remains difficult to discern whether increased intestinal permeability 
and associated dysbiosis are primary drivers of ASD pathogenesis, or 
if they represent secondary consequences of other ASD-related factors 
such as restricted dietary patterns, inherent genetic variations, or 
downstream neurobehavioral alterations affecting gut function. A 
large-scale metagenomic study by Yap et al. (2021) (n = 247) revealed 
only a very weak direct association between ASD and gut microbial 
structure, with Romboutsia timonensis being the only species showing 
statistical significance, albeit with a small effect size. The study further 
indicated that the observed differences in the gut microbiome of 
children with ASD are more likely a consequence of their behavioral 
characteristics (such as restricted dietary preferences and low intake 
diversity) rather than a causal factor in the development of 
ASD. However, there are still other factors such as the mode of 
maternal delivery, breastfeeding, genetics, and drugs attributed to the 
changes of the gut microbiota in children (Takyi et  al., 2025). 
Furthermore, a meta-analysis (Gao et  al., 2025) suggested that 
microbiome-targeted interventions could have a mild positive effect 
on improving behavioral symptoms in individuals with ASD, but the 
overall improvement in gastrointestinal symptoms did not reach 
statistical significance. This conclusion is limited by the heterogeneity 
and methodological quality of existing studies, underscoring the need 
for more rigorously designed clinical trials for validation. Overall, 
alterations in the gut microbiota of children with ASD result from the 
interplay of multiple factors, including genetics, perinatal influences, 
dietary patterns, medication use, and immune-metabolic 
abnormalities. The current debate highlights the complexity of the 
etiological mechanisms underlying ASD and suggests that future 
research should place greater emphasis on the role of intrauterine 
environment and early developmental factors. Well-designed 
longitudinal studies, particularly cohorts initiated in early 
development, are critically needed to delineate the temporal sequence 
and potential causal relationships. Secondly, there is an issue of 
biomarker specificity: elevated serum levels of zonulin, LBP, and other 
markers are not unique to ASD (Heidt et al., 2023; Kim et al., 2023; 
Ohlsson et  al., 2017). Similar elevations are observed in other 
gastrointestinal disorders (e.g., celiac disease, irritable bowel 
syndrome) and various systemic inflammatory states, limiting their 
utility as specific diagnostic or subtyping tools for ASD. Lastly, there 
is limited therapeutic evidence: interventions targeting gut microbiota 
modulation, such as specific probiotic formulations or FMT, have 
reported improvements on behavioral scales (e.g., Autism Behavior 
Checklist, ABC score) in some underpowered, non-blinded, or open-
label studies (Prosperi et al., 2022). Nevertheless, these preliminary 
findings currently lack validation through high-quality, large-scale, 
randomized, double-blind, placebo-controlled trials (RCTs). The 
clinical efficacy, identification of responsive subgroups, and long-term 
safety of such interventions require rigorous evaluation (Zhang 
et al., 2022).

Given this complex evidentiary landscape, the prevailing scientific 
consensus posits that, within the current knowledge framework, 
increased intestinal permeability is not considered a direct etiological 
factor for ASD. A more precise conceptualization positions it as a 
potential “environmental trigger/perpetuating factor” or “disease 

modifier,” acting primarily within specific ASD subgroups harboring 
particular genetic susceptibilities (Zheng et  al., 2020). It may 
contribute to neurodevelopmental deviation or exacerbate behavioral 
symptoms through the aforementioned immune-inflammatory and 
neuroactive substance pathways, acting upon an existing genetic 
predisposition (Fiorentino et  al., 2016; Rylaarsdam and Guemez-
Gamboa, 2019; Zhu et al., 2020). To overcome current limitations and 
precisely evaluate its pathological significance and potential 
therapeutic relevance, future research could integrate multi-omics 
approaches along the gut-brain axis with rigorously designed, 
prospective, large-scale clinical cohort studies (Takyi et al., 2025). This 
integrated strategy is essential to definitively elucidate the causal 
mechanisms of increased intestinal permeability within specific ASD 
endophenotypes and provide an evidence base for 
personalized interventions.

2.2.2 Metabolite-neuronal pathway validation
The gut microbiota ecosystem produces diverse metabolites 

through fermentation of substrates like dietary fiber, some of which 
exhibit confirmed or suspected neuroactive potential (Miri et  al., 
2023). These metabolites can mediate gut-brain axis communication 
through multiple routes, such as the circulatory system, direct vagus 
nerve transmission, or the enteroendocrine cell-vagus nerve pathway, 
indirectly influencing central nervous system (CNS) function and 
development (Kasarello et  al., 2023). Key microbial metabolic 
pathways and their potential roles in ASD are now widely investigated.

SCFAs, the core end-products of dietary fiber fermentation, are 
primarily generated by specific strains within the Bacteroidetes and 
Firmicutes phyla (e.g., Faecalibacterium prausnitzii, Roseburia spp. 
luojiarufa junshu—Luojiaru Bacteria Genus), predominantly including 
acetate, propionate, and butyrate (Chang et al., 2019; Al-Qadami et al., 
2022). Butyrate plays multiple beneficial roles in gut health: serving as 
the preferred energy source for colonic epithelial cells, which is crucial 
for maintaining intestinal barrier integrity (Al-Qadami et al., 2022; 
Lee et al., 2021). Furthermore, butyrate’s anti-inflammatory properties 
and inhibition of histone deacetylases (HDACs) suggest potential 
regulation of neural plasticity via epigenetic mechanisms (McClung 
and Nestler, 2008; Dash et al., 2009). Notably, several studies reported 
decreased abundance of butyrate-producing microbiota with key 
functional roles (e.g., F. prausnitzii pulasuojun—Pulasou Bacteria) in 
fecal samples from individuals with ASD, implying impaired butyrate 
production might contribute to ASD pathogenesis (Retuerto et al., 
2024). Conversely, the neurobiological effects of propionic acid (PPA) 
exhibit significant complexity and dose-dependence (Nankova et al., 
2014; Le Poul et al., 2003). While PPA acts as an important energy 
substrate and signaling molecule at physiological concentrations, 
neurotoxic evidence from animal models—primarily involving 
non-physiological high-dose intracerebroventricular or 
intraperitoneal injections—clearly demonstrates its ability to induce 
core ASD-like behavioral phenotypes in rodents, including social 
deficits, increased stereotypy/stereotypic movements, and sensory 
processing abnormalities (Choi et al., 2018). Potential mechanisms 
identified in these models involve mitochondrial dysfunction, 
aberrant neurotransmitter release—dopamine and glutamate—
exacerbated oxidative stress, microglial activation, enhanced 
neuroinflammation, and aberrant epigenetic regulation (Choi et al., 
2018; Nankova et al., 2014; Csoka et al., 2024). Critical controversy 
remains, however, regarding whether endogenous physiological 
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concentrations or the mild PPA elevation observed in some ASD 
cohorts suffice to reach significant neurotoxic thresholds within the 
human CNS (Le Poul et al., 2003). Crucially, the highly inconsistent 
findings on SCFA profiles in stool or plasma from ASD populations, 
reflected substantial sample heterogeneity and potential influences of 
sample type and analytical methodologies (Liu et al., 2019). Moreover, 
certain behavioral effects of injected PPA were not fully replicated in 
female rodent models, highlighting the need for caution regarding sex 
differences when extrapolating model data to humans, especially given 
ASD’s marked male bias (Kamalmaz et al., 2023).

Beyond SCFAs, the tryptophan metabolic pathway constitutes 
another critical node linking the gut microbiota to host neural 
function. As an essential amino acid, tryptophan serves as the 
precursor for the key CNS neurotransmitter serotonin, which 
regulates mood and cognition, and melatonin, which regulates for 
sleep–wake cycles. Gut microbiota (e.g., Clostridium spp.) profoundly 
influence tryptophan metabolism: they directly utilize it for bacterial 
protein synthesis and convert it to indole derivatives (Wang G. et al., 
2024). Importantly, a substantial proportion of dietary tryptophan is 
metabolized via the host kynurenine pathway (KP) (Munn and Mellor, 
2016). Under pro-inflammatory conditions, which are triggered by 
diverse etiologies, indoleamine 2,3-dioxygenase (IDO) activity is 
significantly upregulated in host cells—immune cells, enterocytes and 
hepatocytes—and shunts tryptophan towards kynurenine (KYN) 
synthesis (Munn and Mellor, 2016). This appears congruent with 
observations of reduced plasma tryptophan and elevated KYN/
tryptophan ratios in some ASD cohorts, indicating potentially 
widespread IDO activation mediated by inflammatory status. CNS 
exposure to KP metabolites is critical, as distinct pathway metabolites 
exert mutually antagonistic neural effects: further KYN metabolism 
generates the excitotoxic quinolinic acid (QUIN), an N-methyl-D-
aspartate (NMDA) receptor agonist inducing excitotoxicity and 
oxidative stress (Guillemin et al., 2007); concurrently, neuroprotective 
kynurenic acid (KYNA) is produced, acting as an antagonist at NMDA 
and α7-nicotinic acetylcholine receptors (Guillemin et  al., 2007). 
Some ASD studies suggested the evidence for upregulated IDO 
pathway activity and metabolic imbalance, which potentially favors 
neurotoxicity or excitotoxicity, in affected individuals, and these 
alterations showed some correlation with clinical symptom severity. 
However, the core causal mechanisms by which tryptophan-KP 
alterations drive ASD neuropathology and their precise CNS targets 
require further elucidation (Savino et al., 2020).

Finally, other microbially-derived metabolites with potential 
neuroactivity are of growing research interest. For instance, p-cresol, 
produced by certain Clostridia, transforms into its sulfate derivative 
(p-Cresyl sulfate, PCS) upon host sulfation (Harrison et al., 2021); 
PCS has been reported enriched in urine from some ASD children 
(Osredkar et  al., 2023). Although its toxicity mechanisms remain 
incompletely defined, PCS is hypothesized to potentially exert 
neuroactive effects via interference with critical sulfation pathways or 
mitochondrial impairment (Mueller et al., 2018); however, current 
evidence favors its influence on neurodevelopment primarily through 
complex immune modulation, with direct significant neurotoxicity 
currently lacking definitive support. Furthermore, secondary bile 
acids (SBA), generated from host primary bile acids by gut bacterial 
modification, act as the key signaling molecules (Tie et al., 2023). By 
activating receptors such as the farnesoid X receptor (FXR) and G 
protein-coupled bile acid receptor 1 (TGR5/GPBAR1), SBAs regulate 

host metabolism and inflammation (Tie et al., 2023; Wang Y. et al., 
2024). Theoretically capable of mediating brain function via vagal 
afferent signaling or neuro-immune crosstalk, SBAs represent an 
emerging research area in gut-brain communication (Kim et  al., 
2016). Preliminary animal behavioral studies and limited human data 
suggest associations between altered SBA profiles and certain 
neurobehavioral traits; however, their specific roles and causal 
involvement in ASD await systematic investigation and 
robust evidence.

3 External factors influencing 
maternal gut microbiota and offspring 
neurodevelopment

Previous studies have suggested that several external factors could 
attend in offspring neurodevelopment by affecting maternal gut 
microbiota (Figure 1).

3.1 Environmental factors

Epidemiological studies confirmed that prenatal exposure to 
environmental pollutants such as PM2.5 and bisphenol A and 
alterations in delivery modes significantly impacted maternal gut 
microbiota dynamics (Wang W. et  al., 2018). This manifested as 
increased relative abundance of specific bacterial genera such as 
Ruminococcus and Staphylococcus and perturbations in key metabolic 
pathways such as arachidonic acid metabolism (Filardo et al., 2022). 
Observational data further revealed statistical associations between 
such dysbiosis and offspring outcomes including cognitive 
developmental delay and ASD risk, with pollutant effects exhibiting 
dose-dependency (Agathokleous et  al., 2022). However, 
existing evidence cannot establish direct causal relationships 
between individual microbial taxa/metabolic pathways and 
neurodevelopmental outcomes (Matsuyama et al., 2022).

Biologically, maternal dysbiosis affects fetal neurodevelopment 
through three principal mechanisms: (i) Microbial metabolites (e.g., 
SCFAs) regulate brain-derived neurotrophic factor expression via 
vagus nerve activation or central nervous system GPR41/43 receptors 
(Kasarello et al., 2023); (ii) Immune-gut-brain axis-mediated Th1/
Th2 imbalance induces maternal-fetal interface inflammation, 
disrupting fetal blood–brain barrier development and triggering 
neuroinflammatory pathways (Zha et al., 2022; El Ahdab et al., 2021); 
(iii) Gut microbial biosynthesis of neurotransmitter precursors—5-
hydroxytryptamine and γ-aminobutyric acid—exerts developmental 
programming effects (Park and Im, 2022).

Animal models provide critical validation: Probiotic 
interventions enhanced offspring hippocampal neuroplasticity and 
improve cognitive performance (Romo-Araiza et  al., 2023). 
Experimental simulations of PM2.5 or bisphenol A exposure 
successfully replicated human phenotypes including reduced 
maternal microbial diversity and offspring neurodevelopmental 
abnormalities (Liu, 2018; Senaldi and Smith-Raska, 2020). Current 
research faces methodological challenges: interindividual 
heterogeneity in baseline microbiota impedes intervention 
assessment (Louis et al., 2016); observational studies struggle to 
exclude confounders, with path analysis indicates that 
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approximately 32% of PM2.5 effects may be microbiota-mediated, 
though weighting depends on model assumptions (Senaldi and 
Smith-Raska, 2020); additionally, traditional dose–response models 
inadequately resolve nonlinear exposure patterns, such as short-
term pollutant peaks, thereby limiting the generalizability (Hoel 
and Portier, 1994).

Translational strategies prioritize optimizing environmental 
exposure thresholds and developing microbiota-targeted 
interventions. Cross-generational transplantation experiments 
demonstrated that maternal microbiota modulation partially rescued 
pollutant-induced teratogenic effects (Hassib et  al., 2023). Given 
substantial interindividual variation in circulating SCFAs during 
pregnancy (coefficient of variation [CV] = 62%) and host genetic 
regulation, future researches could integrate exposomics with multi-
omics technologies (Hsu et al., 2021). This integration will enable 
construction of interactive network models spanning environmental 
exposure dynamics, microbiota succession, and neurodevelopmental 
trajectories to advance precision prevention (Deek et al., 2024).

3.2 Maternal health and behavioral 
determinants

Epidemiological studies indicated that maternal metabolic status 
(Krakowiak et  al., 2012), nutritional intake patterns, and stress 
exposure during gestation were associated with offspring risk of 
ASD. Specifically, maternal metabolic disturbances (e.g., obesity or 
diabetes) were found to increase ASD risk [reported odds ratios 
[ORs] = 1.6–2.3 (Krakowiak et al., 2012; Li et al., 2016)], with evidence 
suggesting a dose-dependent trend. These conditions may impact 
neurodevelopment through elevated circulating proinflammatory 

cytokines, such as IL-6 and TNF-α, and impaired fetal microglial 
differentiation (Li et al., 2016).

Animal models demonstrated that high-fat diet (HFD) exposure 
during pregnancy activated placental inflammatory pathways, leading 
to aberrant amygdala-prefrontal circuit development (Hill et  al., 
2015). In specific models, this correlated with an 89% increase in 
ASD-like behaviors. Maternal deficiencies in key nutrients, such as 
iron and folate, were linked to compromised hippocampal synaptic 
plasticity and dopaminergic dysfunction (Bastian et  al., 2016). 
Additionally, prenatal stress-induced glucocorticoids might 
dysregulate offspring hypothalamic–pituitary–adrenal (HPA) axis 
reactivity via epigenetic modifications, potentially elevating comorbid 
anxiety risk in ASD (Hill et al., 2015).

The intricate gut microbiota-host metabolic-immune crosstalk is 
considered to be the biological basis. Microbiota-derived metabolites 
such as butyrate and kynurenine may indirectly influence fetal 
neurodevelopment through histone-modifying enzymes like HDACs 
by affecting glial differentiation (Yan et al., 2012). Animal evidence 
supports these mechanisms: antibiotic-induced maternal microbiota 
depletion caused cerebellar axonal deficits and motor dysfunction in 
offspring; HFD-exposed dams produced offspring with reduced 
hippocampal neurogenesis and social deficits; and maternal immune 
activation via polyinosinic-polycytidylic acid (poly(I: C)) reduced 
cortical synaptic density, with IL-17A identified as a key mediator.

Notably, targeted interventions (e.g., Bacteroides fragilis or 
B. thetaiotaomicron transplantation; multispecies probiotics) partially 
attenuated these abnormalities in models, supporting microbiota-
mediated effects. A phase II trial reported potential language 
improvement after vaginal microbiota transplantation (VMT) 
(Wrønding et al., 2023), but long-term neurological safety requires 
systematic follow-up. Future research must establish ethnically diverse 

FIGURE 1

Integrative impact of external factors on maternal gut microbiome and offspring neurodevelopment. Environmental, maternal, genetic, and nutritional 
factors converge to shape the maternal gut microbiome, which in turn modulates fetal neurodevelopment through metabolic, immune, and 
epigenetic mechanisms, influencing ASD susceptibility (created in BioRender; Xie, 2025, https://BioRender.com/0xsjbrb).
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maternal-child cohorts with lifelong tracking to bridge mechanistic 
insights and clinical prevention.

Current evidence faces significant constraints. Human studies 
predominantly involve European-ancestry populations (representing 
approximately 78% of participants in major cohorts) (Pérez-Morales 
et al., 2024), leading to limitations in generalizability. Furthermore, 
critical confounders, such as environmental toxin exposure, remain 
inadequately controlled for in analyses (Keller, 2014; Hernandez et al., 
2019). While emerging, robust dose–response data for specific 
probiotic or prebiotic strains are still scarce (Rees et  al., 2002). 
Translation of research findings into clinical practice requires 
optimized strategies. Promising avenues include combinatorial 
approaches; for example, combining high-fiber diets with select 
prebiotics that modulate Roseburia abundance and glutamate 
transporters might enhance therapeutic efficacy. Additionally, the 
development and validation of novel biomarkers could significantly 
improve patient risk stratification, as evidenced by certain composite 
models achieving promising receiver operating characteristic (ROC)-
area under the curve (AUC) values of 0.87 (Li et al., 2019).

3.3 Genetic and immunological factors

Epidemiological studies indicated that the maternal genetic 
background might interact with the gut microbiota, collectively 
influencing offspring risk for ASD (Rees et al., 2002; Li et al., 2019). 
Cohort studies revealed that maternal polymorphisms in IL10 can 
affect IL-10-mediated immunosuppressive function (Rees et al., 2002). 
Population-based research further identified that such polymorphisms 
were accompanied by altered abundance of specific maternal gut 
microbiota members, such as the family Alcaligenaceae and the genus 
Acinetobacter (Li et  al., 2019). This gene-microbiota interaction 
pattern is hypothesized to potentially affect the fetal immune 
microenvironment via microbial metabolites.

A research on mother-infant microbiota vertical transmission 
demonstrated that the children later diagnosed with ASD frequently 
exhibited reduced abundance of gut bacterial genera involved in 
SCFAs production, such as Prevotella (Li et al., 2019). This reduction 
correlated with dysregulated Th17/Treg immune balance and was 
associated with neuroinflammation (Li et  al., 2019; Blagonravova 
et al., 2021; Bik et al., 2018).

As to biological mechanisms, animal model studies suggested that 
maternal factors—including genetic variants like PTEN mutations or 
environmental exposures such as high-fat diet, or HFD might 
influence the bioavailability of aryl hydrocarbon receptor (AhR) 
ligands, for example, certain microbial metabolites derived from 
tryptophan metabolism through epigenetic reprogramming (Kirstein 
et al., 2021). This, in turn, could potentially impair fetal microglial 
functions, such as synaptic pruning. Preliminary research proposed 
the hypothesis that gut microbe-derived serotonin (5-HT) precursors 
might influence amygdala development via vagal nerve signaling 
pathways (Dinan and Cryan, 2017a; Spencer et al., 2024; Raskov et al., 
2016). These cumulative findings underscore the important role of a 
“microbiota-immunity-neural” axis in neurodevelopment.

Animal models provided supportive evidence for exploring these 
potential mechanisms: the offsprings of GF dams exhibited deficits in 
axonal outgrowth, which could be  ameliorated by butyrate 
supplementation in this model (Onyszkiewicz et al., 2019); in the 

maternal immune activation (MIA) model, blocking IL-17a signaling 
mitigated synaptic-associated gene expression abnormalities in 
offspring brains (Choi et al., 2016). However, these models and their 
derived conclusions face methodological limitations. Serum IL-8, a 
commonly studied systemic inflammation marker, showed weak 
correlations (R2 < 0.2) with local intestinal immune status, such as 
lamina propria lymphocyte composition (Bukys et al., 2024; Lammers-
Lietz et al., 2022), challenging the direct extrapolation of peripheral 
markers to gut immunity. Furthermore, acute MIA models induced 
by high-dose LPS inadequately recapitulated the complexity of 
chronic, low-grade inflammation experienced during human 
pregnancy. Notably, in human studies, analyses primarily based on 
European populations may not capture potential heterogeneity in 
HLA (human leukocyte antigen)-microbiota interactions across 
different ethnic/racial groups (Van Dorp et al., 2014). Moreover, the 
influence of paternally derived epigenetic reprogramming on offspring 
immune system development remains insufficiently evidenced and is 
typically not systematically addressed in existing models (Soubry 
et  al., 2014; Eggert et  al., 2014). These methodological challenges 
complicate causal inference regarding specific metabolic pathways.

Explorations into gene-microbiota interactions are driving 
translational research on intervention strategies. Some studies 
suggested that combined assessment of maternal IL-10 levels and 
Alcaligenaceae abundance held potential for auxiliary ASD risk 
assessment models (Li et al., 2019), while maternal supplementation 
with AhR agonists such as indole-3-carbinol or specific probiotics 
aimed at promoting defined gut colonization has shown preliminary 
promise in early-phase clinical studies (Puccetti et al., 2022; Zhao 
et  al., 2021). However, some bottlenecks must be  overcome for 
effective personalized interventions: the development of higher 
spatiotemporal resolution immune cell profiling is needed to precisely 
distinguish functional IL-10 subtypes and their sites of action 
(Mangiola et  al., 2024), and large-scale, multi-ethnic population 
cohorts are imperative to systematically validate the role of microbial 
metabolites within complex genetic contexts, such as HLA-restricted 
antigen presentation. Future intervention designs should rigorously 
incorporate multilayered interactions between individual genetic 
susceptibility backgrounds and environmental exposures to more 
effectively support fetal neuroimmune homeostasis (Dahoun et al., 
2017; Suh et al., 2019).

3.4 Nutritional and metabolic factors

Epidemiological studies suggested a potential intergenerational 
link between maternal nutritional imbalance during pregnancy and 
altered offspring microbiota-gut-brain axis function. Maternal 
high-fat diet (MHFD) induces compositional shifts in gut microbiota, 
characterized by reduced abundance of Bacteroidetes phylum 
members associated with metabolic regulation, alongside over-
representation of specific Clostridium species—C. bolteae and 
C. histolyticum—linked to metabolic dysfunction. This dysbiotic state 
correlates positively with increased risk of aASD in offspring. 
Diminished synthesis of SCFAs and concomitant increased LPS 
leakage potentially contribute, via induction of maternal-fetal interface 
inflammation, to the downregulation of key neurodevelopmental 
genes (e.g., BDNF, SHANK3). Evidence suggested this reduced 
expression might be attributed to epigenetic mechanisms (Esposito 
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et al., 2023; Cermak et al., 2010). Notably, selective dietary preferences 
common in ASD children, such as low-fiber and high-sugar diets, may 
theoretically compound the effects of antenatal maternal dysbiosis, 
creating a cyclical interaction of metabolic and microbial imbalance 
that could exacerbate potential neurodevelopmental sequelae 
(Esposito et al., 2023; Cermak et al., 2010).

At the biological mechanism level, interactions between gut 
microbial metabolites and the maternal immune-fetal neural axis 
constitute a significant regulatory network. Butyrate deficiency, for 
instance, may impair blood–brain barrier integrity, indirectly 
activating microglia and disrupting synaptic pruning. MIA-induced 
inflammatory signals could inhibit differentiation of fetal 
dopaminergic neurons via Toll-like receptor 4 (TLR4)-dependent 
pathways (Islam et al., 2009). Concurrently, impairment of specific 
microbial functions, such as diminished folate biosynthesis capabilities 
of Bacteroides species and disruption of serotonin precursor 
metabolism primarily driven by Bifidobacterium (Engevik et al., 2021; 
Zheng et al., 2024), has been linked to impaired neocortical neuronal 
migration. Crucially, animal model studies indicated that the 
neurodevelopmental impact of dysbiosis was developmental-stage 
dependent: microbiota interventions administered prenatally, but not 
post-weaning, effectively reversed offspring autism-like behavioral 
phenotypes (Tartaglione et al., 2022), underscoring the importance of 
targeting critical developmental windows. However, mechanistic 
insights derived from models like germ-free mice warrant cautious 
extrapolation to the complex human physiological milieu.

Translational research indicated that antenatal supplementation 
with n-3 polyunsaturated fatty acids (PUFAs) or selected probiotics, 
in some studies, improved maternal microbiota diversity/composition 
alongside better offspring social behavior outcomes (Chen et  al., 
2019). Nevertheless, the significant methodological heterogeneity 
across existing clinical trials—concerning probiotic strains, 
intervention protocols, inclusion criteria, and outcome measures—
substantially limits the generalizability of findings and their clinical 
translatability. For example, while germ-free murine models are vital 
for elucidating mechanisms such as microbiota-regulated synaptic 
protein expression, a critical limitation lies in their inability to fully 
recapitulate the multidimensional diet-microbiota-host genetics 
interactions inherent to humans. Furthermore, the absence of robust 
longitudinal data complicates efforts to disentangle the independent 
or synergistic effects of prenatal nutritional interventions from the 
influences of offspring postnatal microbial colonization dynamics. 
Future research necessitates integrating multi-omics approaches to 
precisely define key metabolic-epigenetic regulatory nodes. Utilizing 
more sophisticated animal models accommodating human 
microbiota, namely human microbiota-associated gnotobiotic models, 
is essential to overcome translational bottlenecks and move beyond 
broad-spectrum probiotics towards the development of strain-specific 
and function-targeted interventions.

4 Molecular mechanisms underlying 
the influence of maternal gut 
microbiota on offspring 
neurodevelopment

To understand the roles of maternal gut microbiota in the 
offspring neurodevelopment, an abundance of researches has been 

performed and several molecular mechanisms have been elucidated 
(Figure 2).

4.1 Impairment of blood–brain barrier 
integrity as an underlying mechanism

Experimental models, particularly GF animal models, have 
demonstrated that the maternal gut microbiota fundamentally 
programs the development of the offspring’s BBB. Compared to 
offspring of normally raised dams, offspring exposed to a GF 
environment in utero exhibited significantly increased BBB 
permeability and a corresponding significant decrease of 
approximately 30–40% in the transcription of key tight junction (TJ) 
core proteins, such as occludin and claudin-5 (Gong et al., 2008). 
Studies found that gut microbiota status influenced BBB plasticity, as 
FMT into adult GF mice partially reversed BBB hyperpermeability, 
with leakage decreasing by approximately 25% (Gong et al., 2008). 
This microbial programming occurs, in part, via microbiota-host 
metabolic-immune crosstalk. Microbiota-derived SCFAs impacted 
downstream molecules of the NF-κB pathway by activating free fatty 
acid receptors (e.g., FFAR3), suppressing endothelial inflammation 
and potentially enhancing TJ stability. Conversely, pro-inflammatory 
microbial products, such as LPS, likely impaired TJ integrity via TLR4 
signaling (Gong et al., 2008). The placenta acts as a critical barrier with 
selective transfer mechanisms. Direct evidence indicated that the 
human placenta efficiently transported SCFAs, such as acetate 
(Krajmalnik-Brown et  al., 2015), while partially clearing larger 
molecules like LPS from the maternal circulation via CD14-mediated 
mechanisms (Faulk et al., 1987). This sculpts a relatively favorable 
intrauterine microenvironment for robust fetal BBB development.

Immune dysregulation and sustained inflammation driven by gut 
dysbiosis in the mother are key factors in disrupting BBB integrity. 
Animal models of maternal dysbiosis showed that dysbiosis 
potentiated T helper 17 (Th17) cell responses and differentiation, 
leading to significantly elevated circulating levels of pro-inflammatory 
cytokines. This subsequently induced phosphorylation and activation 
of signal transducer and activator of transcription 3 (STAT3), which 
suppresses expression of critical TJ proteins such as ZO-1and 
claudin-5 (Honda and Littman, 2012). Concurrent neutrophil 
activation enhanced matrix metalloproteinase-9 (MMP-9) activity 
and reactive oxygen species (ROS) production, with reported increases 
of around 70%, which contributed to vascular basement membrane 
degradation and endothelial injury (De Bondt et  al., 2020). BBB 
dysfunction may link to neuropsychiatric disorders. While human 
studies reported inconsistent results, animal models supported the 
notion that BBB structural abnormalities could precipitate behavioral 
deficits. Specifically, developmental BBB defects caused by deficient 
Sonic hedgehog (Shh)/Wnt signaling pathway regulation in the 
endothelium induced ASD-like stereotyped behaviors in endothelial 
cell-specific Shh knockout models. This suggests a possible causal 
relationship between BBB structural abnormalities and 
neurobehavioral phenotypes, although its significance in humans 
requires further elucidation.

A multidimensional challenge for understanding microbiota-BBB 
interactions persists. First, SCFA effects are complex and 
concentration-dependent; for instance, propionate enhanced TJ 
protein expression at low concentrations via FFAR2 but may promote 
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inflammation at high concentrations via FFAR3 (Han K. et al., 2024). 
Second, probiotic interventions often exhibit strain-specific effects, 
demanding systematic dissection of precise molecular networks. 
Clinical translation faces obstacles, including: significant species 
differences—despite high sequence homology for key TJ molecules 
like claudin-5—in regulatory networks and expression profiles; and 
limitations of in vitro BBB models whose transendothelial electrical 
resistance (TEER) values typically fall well below physiological levels 
(many achieve only ~50% or less). Furthermore, insufficient research 
addresses individual heterogeneity, such as sex differences—where 
BBB integrity decline in specific aging or disease models like 
Alzheimer’s models may occur earlier or faster in males compared to 
females—and critical window sensitivity, whereby the impact of 
perinatal interventions on neurodevelopmental risk often exceeds that 
of adult interventions. Future research necessitates integration of 
spatiotemporal dynamics and individualized variables, such as genetic 
background, sex and age, to build refined pathogenic mechanisms and 
interventional frameworks.

4.2 Neurodevelopmental regulation by 
microbial metabolites

The maternal gut microbiota can directly or indirectly regulate 
fetal brain development through the production of diverse metabolites 
(Tian et al., 2023). Core mechanisms primarily include three aspects: 
microbial synthesis or modulation of neurotransmitters and their 
precursors; mediation of epigenetic modifications; and regulation of 
maternal-fetal barrier function and its interactions (Brown et al., 2003; 
Bromer et al., 2013; Greene et al., 2019).

Taking SCFAs, as an example, these metabolites can cross the 
placenta via monocarboxylate transporters (MCTs) and enter the fetal 
circulation. Within the fetal brain, SCFAs activate G protein-coupled 
receptors (e.g., GPR41/43) on neurons, thereby modulating synaptic 
plasticity through the cAMP-PKA-CREB signaling pathway. Butyrate, 
as a HDAC inhibitor, upregulates the expression of key 
neurodevelopmental genes (e.g., BDNF) by elevating histone 
acetylation levels in their promoter regions. Animal model studies 

FIGURE 2

Multifaceted mechanisms of SCFAs in maternal gut microbiota-mediated programming of offspring neurodevelopment. Maternal gut microbiota-
derived short-chain fatty acids (SCFAs) regulate offspring neurodevelopment through five core mechanisms: (A) Barrier enhancement: SCFAs (e.g., 
butyrate) strengthen blood–brain barrier (BBB) integrity by upregulating tight junction proteins (Claudin-5, Occludin) and inhibiting nuclear factor 
kappa-B (NF-κB) inflammatory signaling; (B) Immune modulation: They induce anti-inflammatory cytokines and regulatory T cell (Treg) differentiation, 
fostering a neuroprotective immune microenvironment; (C) Epigenetic regulation: As histone deacetylase inhibitors (HDACi) and one-carbon 
metabolic modulators, SCFAs control histone acetylation and DNA methylation of neurodevelopmental genes (e.g., brain-derived neurotrophic factor, 
BDNF); (D) Signaling activation: SCFAs trigger neuronal G protein-coupled receptor 41/43 (GPR41/43)-cyclic adenosine monophosphate (cAMP) and 
tropomyosin receptor kinase B (TrkB)-mechanistic target of rapamycin (mTOR) pathways, directing axonal outgrowth and synaptic pruning; 
(E) Placental transport: The illustration depicts transplacental SCFA transfer via specific monocarboxylate transporters (MCTs) from maternal circulation 
to the fetus. These interconnected mechanisms highlight the complexity of prenatal microbial programming (Created in BioRender; Xie, 2025, https://
BioRender.com/2ksz0di).
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substantiated this: offspring of germ-free dams exhibited 
downregulated expression of axonogenesis-related genes (e.g., Ntn1, 
Dcc) and impaired function of BBB tight junction proteins (e.g., 
occludin). Exogenous SCFA supplementation partially rescued these 
phenotypes (Bromer et al., 2013; Greene et al., 2019), underscoring 
the potential significance of SCFAs in neurodevelopment.

Beyond SCFAs, other gut microbial metabolites participate in 
neurodevelopmental regulation. For instance, the tryptophan-derived 
metabolite indole-3-propionic acid (IPA) acted as a ligand for the AhR 
to modulate synaptic pruning by microglia. Certain microbiota-
derived metabolites may also confer indirect neuroprotection by 
inhibiting β-amyloid aggregation (Dong and Perdew, 2020). The 
vertical transmission and functional impact of such metabolites 
depend on complex transport and signal integration mechanisms. 
While SCFAs can partially diffuse passively across the placenta (Ilyés 
et al., 2023), secondary bile acids regulated neuroinflammation by 
activating TGR5 receptors on placental and fetal tissues, synergizing 
with immune mediators at the maternal-placental interface to 
influence fetal neuroimmune homeostasis (Wang et al., 2011).

Epigenetically, butyrate-mediated histone acetylation alterations 
in the placenta promote neuronal differentiation in specific brain 
regions such as hippocampus (Jaju Bhattad et al., 2020; Levenson 
et  al., 2004). Propionate may protect the developing BBB against 
oxidative stress by activating the Nrf2 antioxidant pathway (González-
Bosch et al., 2021). Notably, rodent models indicated concentration-
dependent effects of SCFAs on BBB permeability (Braniste et  al., 
2014). However, human analyses reveal that physiological SCFA 
concentrations in fetal brain tissue were significantly lower than 
exogenous doses required for interventions in animal models 
(Generoso et  al., 2021). This pronounced species difference 
necessitates careful evaluation of metabolic kinetics in 
translational research.

Human cohort studies provide epidemiological support for 
associations between specific microbial metabolites and offspring 
neurodevelopmental outcomes (Moreau et al., 2019; Padilha et al., 
2025). For example, prospective observational studies reported a 
positive correlation between maternal fecal butyrate levels during 
pregnancy and specific language scores in offspring (Hernández-
Martínez et al., 2022; Barbian et al., 2022; Han W. et al., 2024); other 
studies describe abnormalities in levels of neuroactive metabolites and 
abundance of butyrate-producing bacteria in the gut microbiota of 
women at high risk of bearing children with ASD (Ahmed et al., 2022; 
Chen et al., 2020; Descamps et al., 2019). Nevertheless, establishing 
definitive causality remains challenging. Limitations arise from 
inherent constraints in metabolome-transcriptome correlation 
analyses, such as difficulties in distinguishing causal relationships 
from correlative changes or identifying dominant drivers (Sen et al., 
2023; Paternain and Campion, 2013), as well as from confounding 
factors, and physiological or dosage differences between humans and 
animal models. Existing evidence also contains inconsistencies; for 
instance, the relationship between maternal plasma trimethylamine 
N-oxide (TMAO) levels and offspring ASD risk was debated across 
studies (Quan et  al., 2020), reflecting the critical influence of 
confounders like ethnicity and diet on TMAO metabolic pathways 
and biological effects.

Future investigations necessitate integrative approaches to dissect 
causal mechanisms and guide interventions. Conditional gene 
knockout techniques in animal models, coupled with interventions 

during specific gestational time windows (Zhang et  al., 2012; 
Nishimura et  al., 2020), could precisely delineate the dynamic 
sensitivity of critical fetal brain developmental periods to distinct 
microbiota-derived metabolites (Faulk et al., 1987; Schirmbeck et al., 
2022). Concurrently, quantifying the effects of sex dimorphism—such 
as the observed potential advantage in male fetal responsiveness to the 
microbial metabolite queuine (Queuine) (Faulk et al., 1987; Kokko, 
2008)—on heterogeneity in neuroprotection or susceptibility 
mechanisms is required.

4.3 Dysregulated immune activation and 
neuroinflammation

Maternal gut probiotics such as Lactobacillus and Bifidobacterium 
may enhance gut barrier integrity and induce an anti-inflammatory 
milieu by activating pattern recognition receptors including TLRs in 
intestinal epithelial cells and through microbial metabolites such as 
SCFAs. SCFAs epigenetically modulate immune responses by 
inhibiting HDACs, thereby promoting anti-inflammatory cytokines 
and suppressing Th17 cell differentiation. Studies in germ-free mouse 
models indicated that supplementation with specific strains (e.g., 
Lactobacillus reuteri) elevated TGF-β and IgA levels in breast milk, 
subsequently inducing Treg differentiation in offspring (Alsharairi, 
2023; Leser and Baker, 2024). However, this effect demonstrated 
strain-specific and population-dependent variations: some human 
studies report fluctuations in breast milk IgA levels, though strain-
specific impacts require further clinical validation (Leser and 
Baker, 2024).

During MIA, hyperactivation of the Th17/IL-17A axis may 
increase placental permeability, facilitating fetal translocation of 
maternal proinflammatory cytokines such as IL-6. Current evidence 
suggested (though not directly confirms) that IL-6 suppressed fetal 
insulin-like growth factor 1 (IGF1) signaling via the placental JAK/
STAT3 pathway while upregulating local proinflammatory proteins 
(Hsiao and Patterson, 2011). Animal experiments demonstrated that 
the blockade of placental IL-6 signaling mitigated MIA-associated 
offspring neurodevelopmental abnormalities; however, causal links 
between placental IL-6 and fetal brain pathology warrant further 
investigation (Wu et  al., 2017). Clinical cohort studies revealed 
positive correlations between elevated maternal serum IL-6 and 
increased proinflammatory factors (e.g., IL-8, CXCL1) in umbilical 
cord blood, indicating a fetal proinflammatory microenvironment 
(Wu et  al., 2017). Under extreme inflammation, such 
microenvironments may activate fetal microglia and increase neuronal 
injury risk (Yanowitz et al., 2002). Excess IL-6 may additionally inhibit 
brain-derived neurotrophic factor (BDNF) signaling, while IL-17A 
could disrupt post-translational modifications of neurodevelopmental 
proteins. Postmortem studies of ASD patients show elevated 
proinflammatory markers, microglial activation, and reduced 
neuronal density in the brain (Voineagu et al., 2011; Kim et al., 2017); 
however, causal attribution to prenatal immune exposure requires 
cautious interpretation.

Although specific probiotic formulations exhibit neuroprotective 
potential in animal models, translating these findings to humans 
shows substantial heterogeneity (Wang et  al., 2016). For instance, 
Lactobacillus reuteri improves synaptic pruning defects in rodents but 
remains unconfirmed in human trials. Bacteroides fragilis ameliorated 
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social behavior deficits only in subpopulations with elevated 
inflammatory markers, highlighting the importance of strain 
specificity and host immune context (Buffington et al., 2016; Hsiao 
et  al., 2013). This translational gap likely arises from: (i) weak 
correlation between peripheral inflammatory markers and central 
nervous system pathology, and (ii) the complexities of host immunity 
represent a significant consideration; for instance, confounding factors 
involving a Th2 bias in type I diabetes pregnancies may contribute to 
the risk of ASD. Future research should integrate single-cell placental 
transcriptomics with functional cerebral organoids to dissect dynamic 
crosstalk between SCFAs and immune pathways, thereby defining 
spatiotemporally precise windows for probiotic interventions.

4.4 Epigenetic modifications and gene 
expression regulation

Maternal gut microbiota-derived metabolites have been 
demonstrated to possess the potential to modulate the activity of key 
host epigenetic enzymes. This modulation may consequently affect the 
spatiotemporal expression of genes critical for neurodevelopment. 
SCFAs are among the core effectors. In animal model studies, butyrate 
was shown to significantly inhibit the activity of histone deacetylases 
HDAC1, HDAC2, and HDAC3, leading to elevated acetylation levels 
at histone H3K9 and H4K16 residues in neuronal precursor cells 
(Korsten et al., 2023; Večeřa et al., 2018). This was concomitant with 
a marked increase in the transcriptional activity of the Bdnf gene 
(McClung and Nestler, 2008).

Conversely, propionate, a critical contributor to one-carbon 
metabolism, impacted DNA methylation by modulating methyl donor 
pools (Wu et al., 2023). Mechanistic studies suggested that it may 
enhance the activity of DNA methyltransferases (DNMTs), thereby 
driving differential methylation patterns of the imprinted gene Igf2 in 
placental and fetal brain tissue (Wang et al., 2013; Steegers-Theunissen 
et al., 2009), which probably disrupted the proliferation/differentiation 
balance in neural precursor cells (Latchney et al., 2011).

Other metabolites, including specific vitamins such as folic acid, 
vitamin B12, as well as bile acids, may interact synergistically or 
antagonistically with SCFA pathways. For instance, folic acid, 
synthesized by microbiota including specific Bifidobacterium strains, 
served as an essential cofactor in the DNA methylation cycle (Pompei 
et al., 2007). It helped maintain a hypomethylation state at promoters 
of genes vital for neural tube development such as Pax3 (Song et al., 
2015). Observational evidence consistently indicated that low 
maternal folate levels during pregnancy significantly increased the risk 
of neural tube defects in offspring (pooled OR = 2.4, 95% CI: 1.6–3.7).

In contrast, the secondary bile acid deoxycholic acid (DCA) was 
observed in some experimental models to activate the FXR-nuclear 
receptor-mediated HDAC3 pathway, significantly suppressing Shh 
gene expression in the cerebellum (Struhl, 1998; Chiang, 2013). This 
effect may involve decreased histone acetylation at its promoter 
region, potentially impacting nervous system development. It is noted 
that the folic acid synthesis capability is strain-specific among 
Bifidobacteria (Sugahara et al., 2015).

Crucial neurodevelopmental genes such as BDNF and MECP2 
are subject to highly dynamic and complex epigenetic regulation 
(Allison et al., 2021). Maternal microbial metabolites bidirectionally 
modulate these genes by altering DNA methylation and histone 

modification states. For example, maternal gut microbiota dysbiosis 
induced by a high-fat diet correlated significantly with 
hypermethylation at the CpG dinucleotide within exon IV of the 
Bdnf gene in the offspring hippocampus in mouse models (Kimura 
et  al., 2020). Conversely, butyrate supplementation restored 
phosphorylation levels of Methyl-CpG-binding protein 2 (MeCP2) 
in specific animal models, potentially alleviating its repression of 
Bdnf transcription. The functional consequences of DNA 
methylation are highly context-dependent: MeCP2 binding to the 
methylated CpG island at the Dlx5 gene locus, involved in 
GABAergic neuronal differentiation, resulted in repression (Chen 
et al., 2003). Maternal probiotic intervention reduced methylation 
levels at specific Dlx5 CpG sites in mouse models, concomitant with 
mitigated impairment of GABAergic neuronal differentiation (Liao 
et al., 2023). Single-cell epigenomic analyses have further indicated 
that aberrant methylation at non-CpG sites, such as CHH 
trinucleotides, may be  associated with alterations in chromatin 
spatial conformation—a phenomenon observed in approximately 
30% of ASD animal models—and could independently influence 
synaptic pruning. Nevertheless, the precise regulatory mechanisms 
remain unvalidated.

Current research underscores sophisticated interactions between 
specific strain-derived metabolites and the host epigenetic system. 
Translating these findings presents substantial challenges. Clinical 
cohort analyses report that hypermethylation of the OXTR (Oxytocin 
Receptor) gene in peripheral blood of ASD children inversely 
correlated with maternal Prevotella abundance (Andari et al., 2020). 
This remains an observational association. Reference suggests the 
probiotic strain Lactobacillus reuteri may induce hypomethylation at 
the Foxp3 locus, a key transcription factor for regulatory T cells, 
potentially via secretion of bioactive folate forms like 
5-methyltetrahydrofolate, thereby mitigating neuroinflammation risk.

However, significant limitations persist: foundational studies often 
rely on broad-spectrum antibiotic-induced microbiota depletion 
models or direct metabolite injection/gavage, poorly replicating the 
spatiotemporal heterogeneity and metabolic dynamics present within 
a natural gut microbiota network (Gheorghe et al., 2021; Mao et al., 
2022). Furthermore, observed associations between specific histone 
modifications and metabolite abundances in human populations lack 
established causality. Future research must integrate data on placental 
and BBB transport dynamics of microbial metabolites with high-
resolution single-cell epigenomics to systematically delineate strain-
host interactions within specific tissues and developmental timepoints, 
overcoming mechanistic fragmentation and advancing microbiota-
based epigenetic intervention strategies (Duck and Connor, 2016).

4.5 Neuronal connectivity and signaling 
pathway interference

Maternal gut microbiota could potentially regulate fetal neural 
circuit development—including neurite formation and refinement—
through microbiota-derived metabolites acting on signaling pathways. 
Current evidence indicated limited placental penetration capacity of 
specific microbial metabolites (Kolahi et al., 2018). These compounds 
may modulate critical neuronal signaling pathways such as AKT/
mTOR and Wnt/β-catenin in the developing fetal central nervous 
system (Li et al., 2023).
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In GF mouse models, researchers observed impaired axonal 
development—manifested as reduced axonal length—compared to 
conventionally colonized controls. This impairment correlated with 
dysregulated expression of axon guidance molecules. Exogenous 
supplementation with microbiota metabolites (e.g., IPA or 
4-ethylphenylsulfate [4-EPS]) was found to improve axonal branching 
complexity under specific conditions (MacKay et al., 2024). This effect 
may partially involve β-catenin stability regulation or 
nuclear translocation.

Furthermore, bifidobacterial colonization in murine models 
downregulated genes associated with excessive synaptogenesis (Wang 
et  al., 2014). This colonization concomitantly alleviated abnormal 
hippocampal synapse density elevation observed in GF models. These 
findings suggest microbiota metabolites may regulate synaptic 
developmental processes and influence microglia-mediated synaptic 
pruning, though their effects demonstrate bidirectional modulation.

Maternal dysbiosis during gestation may disrupt key 
neurodevelopmental signaling pathways, impairing normal neural 
circuit establishment. Evidence suggested microbiota imbalances 
affect Wnt signaling activity. In specific models, altered expression of 
cell cycle-related genes was observed in the fetal prefrontal cortex, 
potentially disrupting neurodevelopmental trajectories (Li et  al., 
2023). Interventions with particular bifidobacterial strains were 
reported to restore Wnt/β-catenin pathway equilibrium in 
corresponding models.

The BDNF-tropomyosin receptor kinase B (TrkB) pathway also 
exhibited microbiota connections (Sudo et  al., 2004). Maternal 
probiotic administration elevated BDNF expression in offspring 
hippocampi across multiple studies. This upregulation was postulated 
to enhance dendritic spine maturation via downstream signaling 
activation, coinciding with behavioral improvements such as reduced 
social avoidance in male offspring. Conversely, GF models 
demonstrated diminished cortical BDNF/mTOR axis activity, 
accompanied by synaptic transmission deficits (e.g., reduced synaptic 
vesicle release frequency). These anomalies align with inhibitory 
synaptic defects [e.g., decreased miniature inhibitory postsynaptic 
current (mIPSC) amplitude] in neurodevelopmental disorder models.

However, several key challenges persist in understanding the 
maternal microbiota-fetal neurodevelopment axis. The regulatory 
processes exhibit significant spatiotemporal heterogeneity, and 
interspecies physiological differences—placental barrier permeability 
and metabolic capacity—hinder clinical translation. Notably, reported 
discrepancies in indole metabolite processing between humans and 
rodents require rigorous validation. Future studies should integrate 
multi-omics data, including metagenomics, metabolomics, 
epigenomics, and employ high spatiotemporal-resolution techniques, 
for instance, single-cell multi-omics coupled with live imaging, to 
dissect key pathways like the vagus-immune-metabolic axis.

5 Role of probiotics in preventing 
offspring autism

5.1 Mechanistic links

Emerging evidence indicates characteristic gut microbial dysbiosis 
in children with ASD, typically manifesting as reduced microbial 
diversity (Kang et al., 2013). While multiple studies report decreased 

Prevotella abundance and enriched Clostridium populations, a 2024 
conference abstract documented contrasting findings (Prevotella and 
Clostridium enrichment), suggesting microbiome profiles may 
be  influenced by geographical variations, cohort heterogeneity, or 
methodological factors (Debelius et al., 2016; Chu et al., 2024; Sun 
et al., 2020). The generalizability of these signatures requires large-
scale validation.

Animal models provide critical evidence for the gut-microbiota-
brain axis: Fecal microbiota transplantation from ASD donors to 
germ-free mice induces social deficits in recipients, with the microbial 
metabolite p-cresol identified as a key mediator of such behavioral 
abnormalities (Bermudez-Martin et al., 2021). Mechanisms linking 
dysbiosis to neurodevelopmental disruption involve multi-pathway 
crosstalk. Immunologically, maternal dysbiosis promotes Th17 cell 
differentiation and amplifies IL-17a production; this cytokine—
transferred placentally or locally produced—directly impairs fetal 
cortical neuron migration (Choi et al., 2016). Metabolically, SCFA 
deficiency inhibits hippocampal synaptic plasticity via suppressed 
HDAC activity, whereas reduced levels of TMAO, a positive 
neurodevelopmental regulator, correlate with developmental 
impairments (Tang and Li, 2021; Li et  al., 2018). Epigenetically, 
maternal high-fat diets alter microbiota-derived metabolites, 
modulating DNA methylation patterns in the placenta and fetal brain, 
thereby regulating expression of neurodevelopmental genes like 
BDNF (Martinowich et  al., 2003; D’Aquila et  al., 2020; Keleher 
et al., 2018).

Maternal gut microbiota may influence offspring 
neurodevelopment through vertical transmission; although elevated 
Alcaligenaceae abundance occurs in ASD children, direct evidence 
establishing causal links between maternal transmission of this taxon 
and ASD risk is lacking, and the mechanistic role of maternal-specific 
microbial shifts requires further validation (Cook and Prinz, 2022). 
Hypotheses regarding conserved “core microbiota signatures” across 
populations face limitations, as stability observed in plant-microbe 
systems cannot be  directly extrapolated to human ASD studies; 
human gut microbiota heterogeneity is dynamically shaped by diet, 
antibiotic exposure, and socioeconomic status, challenging the 
universality of putative core microbial features (West et al., 2022).

Maternal intervention studies offer critical insights: In MIA 
models, probiotic treatment (Bacteroides fragilis) ameliorates offspring 
neurobehavioral deficits, potentially via central GABA receptor 
modulation or SCFA metabolic pathway restoration (Hsiao et  al., 
2013; Sharon et  al., 2019). Current evidence supports two 
non-mutually exclusive hypotheses, yet their robustness warrants 
cautious interpretation (Vuong and Hsiao, 2017; Cryan et al., 2019). 
The Vertical Transmission Hypothesis posits microbial inheritance, 
yet evidence remains limited in complex human microbiomes; 
microbes and metabolites may indirectly affect neurodevelopment via 
birth mode or breastfeeding, but causal chains linking specific taxa 
transmission to ASD pathogenesis have not been established (Ferretti 
et al., 2018; Aatsinki et al., 2019; Sordillo et al., 2019). The Critical 
Window Intervention Hypothesis suggests perinatal probiotic 
supplementation exerts neuroprotective effects in animals, and 
observational studies suggest potential neurodevelopmental benefits; 
nonetheless, human translation faces challenges, as animal models 
incompletely recapitulate gene–environment interactions, and human 
studies are confounded by unmeasured variables (Buffington et al., 
2016; Slykerman et al., 2017; Dinan and Cryan, 2017b).
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Future research should integrate large prospective cohorts with 
multi-omics approaches and develop humanized animal models or 
conditional knockout systems to address: (1) causality and molecular 
mechanisms of maternal-offspring microbial transmission; (2) 
reliability of ASD-associated “core microbiota signatures” across 
diverse populations; and (3) efficacy and safety of microbiota-targeted 
interventions in human clinical translation.

5.2 Clinical efficacy of prenatal probiotic 
intervention

5.2.1 Current evidence gap
Robust evidence from large-scale, high-quality RCTs or 

prospective cohort studies is currently lacking to support the universal 
efficacy of prenatal probiotic supplementation in reducing ASD risk 
in offspring.

5.2.2 Animal model findings
Rodent studies have indicated that specific probiotic strains, such 

as select Lactobacillus spp., may improve offspring neurobehavioral 
phenotypes, including reduced stereotyped behaviors and enhanced 
social interaction, while also decreasing neuroinflammatory markers; 
such effects are hypothesized to occur via modulation of the gut-brain 
axis, although the clinical translatability of these findings requires 
cautious interpretation.

5.2.3 Limitations in human studies
Direct investigation of prenatal probiotics for preventing offspring 

ASD is scarce, with existing studies typically limited by small sample 
sizes; most human data focus on probiotic administration to children 
with established ASD diagnoses, and results from such interventions 
show mixed efficacy and frequently lack statistical significance, 
indicating that further investigation is warranted (Zyoud et al., 2023). 
Current clinical research on autism spectrum disorder (ASD) 
primarily focuses on interventions targeting the gut microbiota, 
including probiotics, prebiotics, synbiotics, fecal microbiota 
transplantation (FMT), microbiota transfer therapy, dietary 
interventions, as well as antibiotic and antifungal therapies. Although 
many studies report symptomatic improvements following these 
interventions, their conclusions remain limited due to challenges in 
establishing causality, generally small cohort sizes, and a limited 
number of available studies. Thus, further large-scale and rigorously 
designed studies are warranted to validate the clinical efficacy and 
mechanisms of these interventions (Liu, 2022; Buffington et al., 2016; 
Burket et al., 2013; Callery and Geelhaar, 1985; Caporaso et al., 2010).

5.2.4 Indirect effects and heterogeneity
Indirect evidence suggests that prenatal probiotics may influence 

neurodevelopmental trajectories by mitigating maternal complications 
such as gestational diabetes mellitus (GDM) (Appleton, 2018; Barthow 
et al., 2016; Kijmanawat et al., 2019). Nevertheless, a definitive causal 
pathway linking GDM mitigation via probiotics to ASD risk reduction 
remains unestablished (Berding and Donovan, 2016; Cryan et al., 
2019). Major sources of inconsistency include probiotic strain 
selection, dose variability, and timing and duration of administration 
(Kristensen et al., 2016; McFarland et al., 2018). Given the high genetic 
heterogeneity and multifactorial etiology of ASD, probiotics may offer 

benefits only in specific high-risk subpopulations, particularly 
individuals with baseline gut dysbiosis or carriers of 
neurodevelopmental disorder-associated genetic variants (Ronald and 
Hoekstra, 2011; Kang et al., 2019; Sharon et al., 2019).

5.2.5 Proposed mechanisms
Two mechanistic hypotheses potentially explain the 

neuroprotective effects. First, the Gut-Brain Axis Modulation 
hypothesis posits that maternal gut dysbiosis linked to ASD disrupts 
fetal neurodevelopment via altered production of microbial 
metabolites, modified synthesis of neuroactive compounds, and 
induction of systemic low-grade inflammation (Hsiao et al., 2012; 
Stilling et al., 2016; O’Mahony et al., 2015). Probiotics might remodel 
the maternal gut microbiota, thereby potentially influencing fetal 
gut-immune-neural circuit development (El Aidy et al., 2012; Vuong 
et  al., 2020). Animal models further suggest that probiotics exert 
strain-specific effects on HPA axis regulation and maternal metabolic 
homeostasis, potentially mitigating adverse impacts on hippocampal 
neurogenesis (Sgritta et al., 2019; Möhle et al., 2016). Second, the 
Vertical Transmission Hypothesis proposes that maternal microbes 
and/or their metabolites program fetal epigenetic landscapes, 
subsequently shaping immune maturation and neural plasticity 
(Gomez de Agüero et al., 2016; Thion et al., 2018b). It is important to 
note that these mechanisms derive predominantly from preclinical 
models; rigorous experimental validation in humans remains essential 
(Needham et al., 2021).

5.2.6 Future research imperatives
Standardized study designs should incorporate uniform core 

parameters, including clinically validated probiotic formulations, 
defined dosages, standardized intervention windows, and consistent 
neurodevelopmental endpoints, while clinical trials should prioritize 
high-risk subgroups, such as carriers of neurodevelopmental copy 
number variants (CNVs) mutations or individuals with severe 
baseline dysbiosis, coupled with longitudinal cohorts for long-term 
offspring follow-up (Reid, 2016; McFarland et al., 2018; Zwaigenbaum 
et al., 2015; Vuong and Hsiao, 2017). Further, mechanistic studies 
should leverage advanced models, such as blood–brain barrier 
organoids and fetal brain organoid cocultures, to probe the direct 
effects of probiotic metabolites on blood–brain barrier function and 
synaptogenesis (Gabriel et al., 2020; Qian et al., 2019). Metagenomic-
metabolomic correlative analyses may identify key maternal-fetal 
microbial and metabolite transfer hubs (Walker et al., 2017; Younge 
et al., 2019). Finally, integrating these mechanistic insights with real-
world evidence will ultimately define clinical applicability, target 
populations, and risk–benefit ratios for ASD precision prevention 
(Geschwind and State, 2015; Kim et al., 2018; Courchesne et al., 2020).

6 Future perspectives

6.1 Systematic resolution of spatiotemporal 
specificity in gut microbiota-mediated 
neural development

Although current studies reveal associations between gut 
microbial metabolites and fetal neuronal axonogenesis, their 
precise impact on ASD-related neural circuit development remains 
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unclear (Needham et al., 2021). This gap pertains particularly to 
dose–response dynamics and temporal mechanisms during critical 
gestational windows (Dunlop et al., 2015). Existing models exhibit 
critical limitations: broad-spectrum antibiotic perturbation fails to 
recapitulate complex host-microbiota interactions in human 
pregnancy, while cross-sectional studies cannot establish causality 
(Dunlop et al., 2015). Addressing this will require spatiotemporally 
precise intervention and monitoring tools. We  will integrate 
CRISPR-associated protein 9 (CRISPR-Cas9)-mediated targeted 
editing of gut commensals with in vivo two-photon microscopy to 
establish gestational-stage-specific models (Dunlop et al., 2015). 
Such models will enable real-time tracking of how concentration 
gradients of specific microbial metabolites or precursors regulate 
axon guidance signaling pathways in vivo (Thion et al., 2018a). 
Implementing this strategy will necessitate: (i) applying advanced 
spatial metabolomics coupled with high-resolution mass 
spectrometry to enhance tissue-level metabolite localization; and 
(ii) performing three-dimensional imaging of intestinal crypt 
architectures to resolve spatial distributions of commensal 
microbes and metabolites within intestinal niches at submillimeter 
resolution. This integrated platform will resolve whether key 
developmental processes—such as embryonic neural crest cell 
migration—depend on spatially patterned microbial 
metabolic activities.

6.2 Integrated multi-omics approaches 
confront dual challenges of data 
heterogeneity and causal complexity

Research on microbiome-host interactions faces dual 
challenges: (i) Highly nonlinear relationships between high-
dimensional microbial features and host physiological pathways 
impede critical regulatory insights from conventional linear models 
(Lloyd-Price et al., 2019); (ii) The limited resolution of 16S rRNA 
gene sequencing frequently fails to distinguish functionally active 
strains, potentially yielding spurious associations (Jovel et al., 2016). 
Current understanding of Bifidobacterium-mediated serotonin 
biosynthesis regulation, for instance, remains correlative, lacking 
mechanistic validation (Yano et  al., 2015). To overcome these 
limitations, two innovative strategies have been proposed: 
constructing heterogeneous biological networks integrating 
microbe-metabolite-host gene nodes, within which graph neural 
networks (GNNs) with attention mechanisms could quantify 
regulatory weights and directionality for keystone species acting on 
host pathways within complex ecologies (Faust et al., 2012); and 
combining variational autoencoders (VAEs) with microbial 
ecological constraints to infer biologically plausible absolute 
abundances from relative abundance data, thereby mitigating 
compositional bias effects (Faust et  al., 2012). For robust causal 
inference, frameworks beyond univariate Mendelian randomization 
(MR) are essential (Bowden et  al., 2017). Future studies should 
implement structural equation modeling (SEM) incorporating 
ecological network dynamics. Such approaches could quantitatively 
validate observed microbiome-host relationships—as exemplified 
by Butyricicoccus members, which have experimentally 
demonstrated HDAC inhibition activity affecting host pathways like 
GABAergic neuron differentiation.

6.3 Intergenerational mechanistic 
validation requires humanized research 
paradigms

Human cohort studies face ethical constraints in controlling 
maternal diet-environment toxin interactions (Hanrahan et al., 1992). 
To address this and the evolutionary limitations of rodent models for 
gut-brain axis translation—alongside the absence of systematic 
immune-microbiota simulation in current human brain organoids—
innovative solutions target two domains: confounder control and 
cross-platform integration (Quadrato et al., 2017). For confounder 
control, researchers should prioritize prospective cohort designs or 
standardize interventions, applying high-dimensional multivariate 
models to correct biases (Magnus et  al., 2016). Cross-platform 
integration requires: (i) engineering 3D-bioprinted microfluidic 
systems that incorporate placental barrier organoids/chips within 
BSL-2 containment integrated with humanized living bacterial 
biofilms (Blundell et al., 2018); and (ii) establishing computational-
experimental feedback loops via exposome models derived from 
mother-infant multi-omics data—including metagenomic, 
metabolomic, and epigenomic profiles—to predict targets, with 
subsequent ex vivo validation (Wild, 2012). Locally validated targets 
warrant development of gut-restricted delivery systems using 
pH-responsive chitosan coatings for oral gavage with site-specific 
release. Current achievable goals must focus on localized intestinal 
interventions—excluding systemic OMV delivery or maternal 
metabolic gradient simulation. This integrated strategy spanning 
bioinformatic prediction, multi-dimensional organoids, and 
engineered delivery provides a systematic framework to resolve 
prenatal microbiota-host networks underlying ASD risk (Hsiao 
et al., 2013).

7 Summary

Maternal gut dysbiosis is recognized as a significant 
non-independent environmental factor contributing to the risk of 
offspring ASD. Current understanding of its pathological 
mechanisms, primarily derived from preclinical studies, supports a 
multi-pathway synergistic model: Strong preclinical evidence 
indicates that dysbiosis triggers aberrant maternal immune activation, 
disrupts homeostasis of key metabolites, and potentially induces 
epigenetic reprogramming.

Collectively, these changes impair critical fetal 
neurodevelopmental processes in animal models, encompassing 
synaptogenesis, synaptic pruning, and the establishment and 
functional maturation of the BBB.

However, translating probiotic interventions into effective ASD 
prevention or treatment presents substantial challenges. Key scientific 
bottlenecks include heterogeneity in intervention efficacy due to 
strain-specific effects of probiotics and complexity in host-microbiome 
interactions; unresolved questions regarding maternal gut microbiota-
derived metabolites in humans—specifically, their efficient placental 
transfer, post-transfer metabolic transformations, effective target-site 
concentrations, and precise mechanisms of action on fetal 
neurodevelopment; and limitations in existing human evidence 
supporting the pathogenic chain, which relies heavily on observational 
studies frequently confounded by covariates such as maternal diet, 
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antibiotic usage, and environmental exposures, thereby compromising 
causal inference.

Consequently, it must be  unequivocally emphasized that 
conclusive causal evidence linking maternal dysbiosis to altered fetal 
neurodevelopment and subsequent ASD pathogenesis in humans 
remains insufficient, and probiotic efficacy for ASD prevention or 
treatment lacks consistent validation through adequately powered and 
rigorously designed human RCTs.

Probiotics and fecal microbiota transplantation (FMT) show 
potential in modulating gut microbiota and alleviating symptoms of 
autism spectrum disorder (ASD). However, due to limited evidence 
quality, lack of standardization, and potential risks, they remain 
experimental therapies at present. Future large-scale randomized 
controlled trials (RCTs) are warranted to elucidate their efficacy 
mechanisms, establish individualized protocols, and rigorously 
monitor long-term safety.

To overcome current limitations and shift from associative 
findings to actionable target identification, future research must 
elucidate the spatiotemporal dynamics of dysbiosis-induced 
neurodevelopmental perturbations during critical gestational 
windows; integrate multi-omics data (e.g., metagenomics, 
metabolomics, and epigenomics) and employ advanced 
computational approaches to reconstruct and decode the 
“microbiota-metabolite-host gene/pathway” interaction network, 
enabling precise identification of core drivers and causal pathways; 
develop human-relevant gut-brain axis organoid models that better 
recapitulate human physiology; and design rigorous clinical trials to 
systematically validate mechanistic hypotheses and 
intervention strategies.
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