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Peak alpha frequency as an
objective biomarker for cognitive
assessment in post-stroke
cognitive impairment
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Objective: To investigate regional associations between peak alpha frequency
(PAF) and poststroke cognitive impairment (PSCI) and evaluate PAF as an
objective biomarker for cognitive assessment in PSCI.

Methods: A cross-sectional study compared 103 participants [PSCI, poststroke
non-impaired (PSN), and healthy controls]. Cognitive function was assessed
using MoCA scores. PAF characteristics were analyzed across brain regions via
EEG, with logistic regression and Random Forest identifying key predictors.
We aimed to evaluate whether PAF can be an effective indicator of
cognitive status in PSCI.

Results: The Kruskal-Wallis test with post hoc Bonferroni correction revealed
that PSCI exhibited significantly lower PAF compared to HC across all major
brain regions (frontal, temporal, central, and parieto-occipital; all P < 0.05).
Compared to PSN, the PSCI group showed significantly reduced PAF at specific
electrodes (F3, F4, F7, T3, T6, Fz; P < 0.05). Spearman correlation analysis
demonstrated that PAF at multiple leads was positively correlated with MoCA
scores across all subjects. Notably, after FDR correction, only T3PAF and
T4PAF remained significantly negatively correlated with MoCA in all subjects
(@ < 0.05). Binary logistic regression identified T4PAF as the most discriminative
predictor for distinguishing PSCI from HC (OR = 2.525). Random Forest analysis
corroborated these findings, identifying F7PAF, O2PAF, T3PAF, and T4PAF as the
most important predictors. Both models demonstrated excellent discriminatory
power, with AUCs of 0.761 (logistic regression) and 0.773 (Random Forest),
indicating robust performance of EEG-based biomarkers for PSCI detection.

Conclusion: Peak alpha frequency serves as a robust electrophysiological
biomarker for PSCI. Multi-region PAF analysis enhances diagnostic precision for
poststroke cognitive decline.
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Introduction

Poststroke cognitive impairment (PSCI) has a spectrum of
severity ranging from mild to severe and affects up to 60% of
stroke survivors within the first year after stroke (Douiri et al., 2013;
Jacquin et al., 2014; Lo et al., 2019). It has been reported that 20%
of mild PSCI patients who receive early intervention can recover
completely within 2 years (Rasquin et al., 2005).

The assessment of PSCI is mostly based on subjective scales,
Mini-Mental State Examination (Burton and Tyson, 2015; Stolwyk
et al, 2014) and the Montreal Cognitive Assessment (Burton
and Tyson, 2015; Hachinski et al., 2006) have been the most
widely studied cognitive screening instruments. But most screening
instruments were not developed to identify the heterogeneous
presentation of poststroke cognitive deficit and might miss
subtle (yet impactful) poststroke cognitive changes (El Husseini
et al,, 2023). Furthermore, stroke-related impairments may render
standard cognitive screening tools inadequate, such as motor
weakness, unilateral neglect, and aphasia, as well as demographic
factors such as education, language, or culture (El Husseini et al.,
2023). There is a growing consensus supporting the incorporation
of objective, neurophysiological markers that reflect biological
mechanisms of disease to improve PSCI assessment (Biesbroek and
Biessels, 2023). Electroencephalography (EEG) offers a promising
avenue in this regard. EEG captures electrophysiological brain
activity and has the advantage of being applicable across all patient
populations.

Previous work suggested that individual performance in
cognitive can be predicted by resting state oscillatory neuronal
activity (Clements et al.,, 2021; Klimesch, 1997; Mahjoory et al.,
2019). The electrical signal generated by the activity of brain
neurons can indirectly reflect the pathological and physiological
information of the subject. EEG mainly generates different
waveforms according to spontaneous electrophysiological activity
signals generated by the brain, it can reflect changes in brain
function and activity (Miiller-Putz, 2020). In particular, alpha-
band activity has emerged as a central focus due to its role as
the dominant resting-state rhythm and its widespread distribution
across cortical networks. Alpha oscillations are believed to
constitute a structural and functional foundation for cognitive
control (Haegens et al., 2015; Sadaghiani and Kleinschmidt, 2016).
Among various EEG metrics, the peak alpha frequency (PAF)-the
frequency within the alpha band exhibiting maximal power (Finley
et al., 2024; Keitel et al., 2019; Ramsay et al., 2021) ~has proven
to be a stable and reliable neurophysiological trait associated with
cognitive performance (Perez et al., 2024). In healthy adults, higher
PAF is correlated with better cognitive abilities (Grandy et al., 2013;
Finley et al., 2024). Notably, PAF has also demonstrated predictive
value in stroke contexts, with one study reporting 74.2% accuracy in
predicting cognitive outcomes after stroke (Schleiger et al., 2017).
These findings position PAF as a promising electrophysiological
marker capable of complementing existing clinical evaluations.

Research indicates that inter-individual differences in PAF
demonstrate the characteristics of a stable neurophysiological trait.
This robust index appears to be unaltered by the presence of
subjective memory complaints (Poland et al., 2021). Longitudinal
studies further indicate that PAF may serve as a prognostic marker
for cognitive decline from midlife to older age (Finley et al., 2024).
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A review in the same year also confirmed that higher PAF was
associated with higher intelligence, executive function, and general
cognitive performance scores. A review (Chino et al., n.d.) suggests
that a higher PAF is linked with a higher score in intelligence,
executive function, and general cognitive performance and could
be considered an optimal, and easy-to-assess, electrophysiological
marker of cognitive health in older adults. Notably, PAF has also
demonstrated predictive value in stroke contexts, with one study
reporting 74.2% accuracy in predicting cognitive outcomes after
stroke (Schleiger et al., 2017). Given its predictive value for such
a broad range of cognitive abilities, some researchers have even
proposed that PAF may serve as a marker of general intelligence
(Grandy et al., 2013). These findings position PAF as a promising
electrophysiological marker capable of complementing existing
clinical evaluations.

We aim to investigate PAF as an electrophysiological biomarker
for PSCI, with the goal of identifying effective and sensitive
indicators that can complement standard clinical assessments. Our
specific objectives are to: (1) quantitatively evaluate PAF parameters
in individuals with PSCI, and (2) establish cut-off values for
these alpha-band activity metrics that demonstrate high screening
accuracy for cognitive impairment. To our knowledge, this is the
first study to examine PAF specifically in PSCI, offering novel
insights into neurophysiological markers relevant to cognitive
rehabilitation after stroke.

Materials and methods

Ethical approval for this study was granted by the Ethics
Committee of the Rehabilitation Hospital affiliated with Fujian
University of Chinese Medicine (2023Y]S-003-01). The research
was carried out in compliance with the World Medical Association
Declaration of Helsinki. Written informed consent was obtained
from all patients prior to their inclusion in the study.

Study design and population

A total of 41 PSCI patients,24 PSN (Post-Stroke Cognitively
Normal) patients were recruited from the Rehabilitation Hospital
affiliated with Fujian University of Chinese Medicine (Fuzhou,
China); at the same time, 38 healthy controls matched by age
were included (Table 1). The diagnosis of PSCI comprises the
following criteria: (i) a definitive stroke diagnosis supported by
clinical or imaging evidence, encompassing hemorrhagic stroke,
and ischemic stroke; (ii) the presence of cognitive impairment,
as reported by patients or informed observers or as assessed
by experienced clinicians and confirmed by neuropsychological
evidence of functional impairment in multiple cognitive areas or
evidence of significant cognitive decline compared to previous
levels; and (iii) a temporal relationship between the stroke
event and the onset of cognitive impairment, with symptoms
persisting for 3-6 months poststroke. All subjects completed the
neuropathology scale and EEG examination within 7 days after
enrollment. All the subjects volunteered to participate in the study
and provided written informed consent.

All participants with PSCI fulfilled the PSCI diagnosis. The
exclusion criteria were as follows: (i) had cognitive impairment
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resulting from brain tumor, senile dementia, hypothyroidism,
traumatic brain injury, or other diseases; (ii) had sequelae due
to previous cerebral infarction; (iii) had impaired consciousness,
aphasic, severe visual or auditory impairments, or speech disorders;
(iii) had fever, electrolyte imbalance or unstable vital signs; and (iii)
had severe heart, lung, liver, kidney or other major organ failure.

Study assessment

Assessment of demographic and clinical
information

All the subjects were native Chinese speakers and right-handed.
The demographic and clinical data at baseline are presented in
Table 1.

Assessment of cognitive function

The MoCA scale was used to assess cognition (Fang et al.,
2017), including visual space/execution, name, attention, language,
abstraction, delayed recall, and directing, for a total of 30 points,
and the scale score was positively correlated with cognitive ability.
A MoCA score less than 26 was considered to indicate cognitive
impairment. All subjects were assessed with the MoCA.

Assessment of alpha activity

The recorded EEG data were subjected to comprehensive
power spectral density (PSD) analysis, encompassing all 19
channels. This involved measurements across eight distinct
frequency bands, given our focus on alpha band, this study
exclusively analyzes the alpha band (7-13 Hz). The EEG signals
were preprocessed and subsequently analyzed using a tailored
routine. The PSD was derived by employing a fast Fourier
transform (FFT) with a step size of 0.25 Hz, a Hann window,
and a window length of 4 s. This process yielded the frequency-
power spectrum of brain oscillations. The PAF was identified as
the frequency point exhibiting the highest PSD within the « band,
ranging from 7 to 13 Hz (Klimesch, 1999).

EEG recordings and preprocessing

During the EEG recording session, participants were seated
in a chamber designed for optimal comfort and minimal external
stimulation-it was soundproof, dimly lit, and furnished with a
cozy armchair. Following a 3-min period of acclimation to these
controlled conditions, the subjects were guided to close their

TABLE 1 Clinical characteristics of PSCI and healthy group.
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eyes. Their resting-state EEG activity was then captured using
a sophisticated 19-channel EEG system (supplied by Nanjing
Neuromed Technology Group Co., Ltd., Nanjing, China). Standard
EEG electrodes were precisely positioned on the scalp according
to the internationally recognized 10-20 system, specifically at
locations Fpl, Fp2, F7, F8, F3, F4, T3, T4, C3, C4, P3, P4, T5,
T6, O1, O2, CZ, PZ and FZ. The names of the electrodes indicate
their anatomical locations (F: frontal lobe, T: temporal lobe, C
central, P: parietal lobe, O: occipital lobe; numbers: even numbers
represent the right hemisphere, odd numbers represent the left
hemisphere). Additionally, a reference electrode was strategically
placed on both ear lobes (designated Al and A2). The contact
resistance between the electrodes and the scalp was rigorously
maintained below 20 K, in alignment with established protocols
(Lee et al., 2013).

The internal parameters include a 24-bit A/D conversion,
a sampling rate of 50 KHz, a common mode rejection ratio
(CMRR) of not less than 110 dB, an input impedance of not less
than 100 MOhm, and a noise level of not exceeding 1 wV. The
alternating current was set at 220 V and 50 Hz. The sampling rate
was set at 2000 Hz, with a high-pass filter set at 0.5 Hz, a low-pass
filter set at 30 Hz, and a notch filter set at 50 Hz. The Infomax
Independent Components Analysis (ICA) module in EEGLAB was
used to decompose the EEGs, and artifact components (including
2007;
Pion-Tonachini et al., 2019). The raw signals were processed using
Butterworth band-pass filtering to remove non-neural noise such
as high-frequency electromyographic (EMG) artifacts and low-

ocular and muscle artifacts) were removed (Delorme et al.,

frequency drifts. The decomposition of oscillatory and aperiodic
components from the power spectrum was performed using
the FOOOF algorithm. Parameter settings were as follows: the
peak width limits (peak_width_limits) were set to [1, 6] Hz to
cover typical neural oscillation bands; the maximum number of
peaks allowed for extraction (max_n_peaks) was set to 6; and
the peak threshold (min_peak_height) was set to 0.05 [unit:
log10(power)]. These parameter choices were based on the official
FOOOF recommendations and preliminary analysis of the data
characteristics in this study, aiming to reliably extract significant
2020). The periodic
component for each peak was defined as its absolute power above

oscillatory components (Donoghue et al,

the aperiodic fit, obtained by subtracting the aperiodic component
in the linear power domain (Gyurkovics et al., 2021). The data
quality was further examined via a manual checking procedure.
For every participant, we employed the MATLAB function
“findpeaks” to identify the PAF with the highest amplitude falling
within the range of 7-13 Hz. Subsequently, we determined

Variable PSCI group PSN group Healthy control Statistical P value
(n=41) (n = 24) (n =38) value

Sex (Male/Female) 30/11 18/6
Age (years) 61.30 & 10.27 59.58 & 8.50
MoCA score 18.34 +3.42 26.38 +£0.92
Hemisphere (Right/Left) 25/16 45855

25/13 =0.349 0.706

63.21 + 5.88 F=1382 0.256

26.21 + 1.34 F=141.46 <0.0001*
- X? =2.828 0.43

Continuous variables were presented as mean =+ standard deviation, categorical variables were presented as frequencies. *P < 0.05, indicating that there is a significant statistical difference in

the MoCA score between groups.
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the corresponding peak o amplitude by computing the average
amplitude within =1 Hz of the identified frequency.

Topographic analysis

Group-average topographic maps of alpha power and peak
frequency were generated for visualization. The data from each
subject’s alpha power and frequency value at the IAPF were
interpolated across the scalp using the MNE-Python’s default
interpolation method (based on spherical splines) and plotted on
a 2D projection of the scalp. Separate maps were created for the
HC, PSN, and PSCI groups.

Statistical analyses

The statistical analysis was conducted using IBM SPSS Statistics
version 26.0. Age, MoCA scores and all alpha activity paraments
are represented as x =+ s. Normality of data distribution was
assessed using Shapiro-Wilk tests. Comparisons between groups
were performed with one-way analysis of variance (ANOVA)
for normally distributed variables and Kruskal-Wallis test for
non-normally distributed variables. To address the multiple
comparisons arising from testing the same hypothesis across 19
channels, Bonferroni correction was applied. The significance level
was adjusted to o = 0.05/3 &~ 0.0167. Therefore, only results with a
P-value < 0.0167 were considered statistically significant for these
analyses. To assess the associations between PSCI alpha activity
parameters and cognitive scale scores, Spearman correlation
analysis was performed, to correct for multiple hypotheses testing,
we used the False Discovery Ratio (FDR) method with a corrected
significance threshold of 0.05. To identify the optimal predictors of
PSCI, we employed a stepwise logistic regression procedure with
the Akaike Information Criterion (AIC) as the sole criterion for
model selection. This algorithm automatically determines whether
to add or remove a variable at each step to achieve the model with
the lowest AIC value, thus balancing model fit and complexity.
The analysis identified T4PAF as the most parsimonious and
significant predictor.

To identify the most significant predictors for distinguishing
PSCI from HC, a Random Forest (RF) classifier was employed.
All predictors identified from prior univariate analyses with
clinical potential were included in the model. The analysis was
implemented using the “randomForest” package in R. The model
training parameters were configured as follows: the number of
trees (ntree) was set to 1000 to ensure stability in error estimation;
the number of variables randomly sampled at each split (mtry)
was set to the default value (the square root of the total number
of predictors). Variable importance was quantified by the mean
decrease in the Gini impurity index; a higher value indicates a
greater contribution of the variable to the model’s classification
accuracy. Internal validation and overall performance of the RF
model were assessed using the out-of-bag (OOB) error rate, which
provides an unbiased estimate of prediction error. The RF model
was trained on the training set (n = 76) and its hyperparameters
were optimized. To rigorously assess the model’s performance
and mitigate overfitting, we employed a 5-fold cross-validation
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procedure on the training set. The model’s generalization ability
was ultimately evaluated on a held-out independent test set (n = 19).
The primary performance metric was the area under the receiver
operating characteristic curve (AUC).

To identify the optimal PAF threshold for distinguishing
patients with PSCI from HCs, a ROC curve analysis was performed.
The state variable was defined as PSCI (1) versus HC (0), and the
test variable was the individual PAF value from each electrode. The
optimal cutoff value was determined by calculating the ROC curve
for each electrode and identifying the PAF value corresponding to
the maximum Youden’s index (J = sensitivity + specificity—1).

Results

Demographic variables

All the subjects were right-handed. All enrolled patients
were Chinese. Table 1 shows demographics and basic clinical
characteristics of the three subject groups. There were no significant
differences in age between the three groups (P > 0.05). The total
mean MoCA score of the PSCI group was lower than that of
another two groups (P < 0.05) (Table 1).

Comparison of alpha activity among the
three groups

Kruskal-Wallis test was conducted among the
three groups

Post hoc analyses with Bonferroni correction revealed that the
PSCI group exhibited significantly lower PAF compared to HC
group across all major brain regions: the frontal lobe (FP1, FP2, F3,
F4,FZ; P < 0.05), temporal lobe [T3, T4, T5, T6, F7, F8; (P < 0.05)],
central region [C3, C4, CZ; (P < 0.05)], and parieto-occipital lobe
[P3, P4, PZ, O1, O2; (P < 0.05)]. Compared with the PSN group,
the PAF of leads F3, F4, F7, T3, T6 and Fz in the PSCI group
were significantly lower (P < 0.05), as illustrated in Figure 1 and
Supplementary Table 1. We selected PZ, 02, CZ, F4 electrodes
to generate the density distributions of peak alpha frequency
(Figure 2), cause they provide comprehensive coverage of brain
regions most relevant to alpha rhythm generation and cognitive
functions typically impaired in PSCI. The posterior electrodes
(PZ, O2) capture the primary alpha generators, while the frontal
electrode (F4) allows assessment of anterior brain involvement.
Figure 3 revealed systematic group differences across all electrode
sites. The PSCI group consistently showed a leftward shift in
PAF values, with distribution peaks below the alpha frequency
range, while HC participants exhibited peaks within or above
the conventional alpha band. Visual inspection of the PAF-PSD
relationship (Supplementary Figure 4) revealed distinct clustering
patterns among the three groups. The PSCI group consistently
exhibited lower PAF values across all electrode sites, with the most
pronounced separation observed at posterior locations (PZ and
02).

In contrast, analysis of alpha power showed no significant
differences among the three groups across any of the leads (all
P > 0.05; see Supplementary Figure 1).
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Dot plots of the PAF among three groups. The PAF in the bilateral frontal, temporal, parietal, and occipital regions was significantly lower in the PSCI
group than in the HC. Post hoc pairwise comparisons were conducted using the t-test corrected by Bonferroni (the corrected significance level was
set at a = 0.0167). Error bars represent 1 standard error of the mean. PSCI, poststroke cognitive impairment; PSN, poststroke non-impaired; HC,

healthy controls; PAF, peak alpha frequency. *Represents P < 0.0167 after Bonferroni correction. ns represents no statistical difference (P > 0.0167).

To visualize the spatial distribution patterns of these
differences, we plotted scalp topologies of group average Alpha
power and peak frequency (Figure 4). As shown in Figure 3, the
PAF in the HC group was generally higher (Figure 4c), while in
contrast, the PAF in the PSCI group showed extensive attenuation
across the entire brain (Figure 4a). The PAF distribution pattern in
the PSN group was similar to that in the HC group, but the overall
intensity was slightly lower (Figure 4b).

Analysis in the association between alpha
activity and cognition level in the PSCI

Spearman correlation between cognitive
performance and PAF

We first assessed the correlations between MoCA scores and
PAF across all subjects. Our analysis revealed that PAF in multiple
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brain regions-including the frontal (FP1, FP2, F3, F4, F7, F8, FZ),
temporal (T3, T4, T5, T6), central (C3, C4, CZ), and parietal (P3)
areas—was significantly positively correlated with total MoCA score
prior to multiple comparisons correction. However, after FDR
correction, T3PAF remained significantly positively correlated with
total MoCA score and the Visuospatial/Executive, Abstraction sub-
score (q < 0.05). In addition, T4PAF showed significant positive
correlations with the Visuospatial/Executive sub-score following
FDR correction. The full set of uncorrected correlation results is
presented in Figure 3.

The initial analysis examined the relationship between
PAF and MoCA scores across all participants. However, as
anticipated, the MoCA scores of the HC group exhibited a
pronounced ceiling effect. This attenuation of variability limits the
interpretability of correlation analyses in the combined cohort,
as the observed association may be predominantly driven by
mean differences between the healthy and cognitively impaired
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groups, rather than reflecting a continuous functional relationship.
Therefore, to more sensitively investigate the specific association
between slowed neural oscillations and cognitive deficits under
pathological conditions, subsequent correlation analyses were
focused specifically on the PSCI group, within which the MoCA
scores demonstrated a clinically relevant range of variation.

Next, we analyzed the correlations between these peak
frequency indicators and the MoCA scores (including its sub-
items) in the PSCI group. It was found that FP2, F4, C4, O2, F8,
T4, T6, FZPAF were negatively correlated with the Abstraction
(P < 0.05). After FDR correction, FP2, F4, F8, O2 and T6PAF
remained significantly negatively correlated with the Abstraction
sub-score (g < 0.05; Figure 5). However, no significant correlations
were observed with the total MoCA score or other sub-items.

Prediction effect of EEG indicators on
PSCI

We employed two distinct statistical approaches—a machine
learning-based Random Forest classifier and a traditional stepwise

Frontiers in Aging Neuroscience

logistic regression-to identify and validate the most salient EEG
features for discriminating PSCI from HCs.

Initial group comparisons (using ANOVA/Kruskal-Wallis
tests) revealed that the most pronounced and consistent differences
existed between the PSCI and HC groups, while the differences
between the PSN group and the HC group were less distinct or
not statistically significant. So we focused the subsequent logistic
regression and ROC curve analyses on the binary classification
between PSCI and HC. Variables that showed significant differences
in univariate analyses or were deemed clinically relevant were
entered into the model.

To control for multicollinearity, the variance inflation factor
(VIF) was calculated for each variable, and predictors with
VIF > 10 were excluded, Table 2 lists all the indicators included
in the analysis. Then, variables were selected using a stepwise
selection procedure based on the Akaike Information Criterion.
The remaining variables were entered into logistic regression
model to identify the optimal combination for discriminating
between PSCI and HC groups. The final model included T4PAF
(OR = 2.525) as significant predictor (see Table 2 for details). To
identify the optimal threshold for each PAF value in distinguishing
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Heatmap of correlations between PAF and cognitive performance. Cognitive performance was assessed using the total score and sub-scores of
MoCA. The color scale represents the strength and direction of the Pearson’s correlation coefficient (r). PAF values from 19 channels were included.
MoCA subdomains include visuospatial/executive function, naming, attention, language, abstraction, delayed recall, and orientation. Statistical
significance was determined after FDR correction (controlling the false discovery rate at 5%) (g < 0.05*). MoCA, Montreal Cognitive Assessment; PAF,
peak alpha frequency. Uncorrected statistical trends are indicated by daggers (*P < 0.05).
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PSCI from HC, we performed a receiver operating characteristic
(ROC) curve analysis. For each electrode (e.g., T4), the continuous
PAF value was used as the test variable, and the group membership
(PSCI = 1, HC = 0) as the state variable. The ROC curve was
constructed by calculating the sensitivity and 1-specificity pairs
at a series of consecutive thresholds spanning the entire range of
observed PAF values. The optimal cutoff value for each electrode
was then defined as the threshold that maximized Youden’s index
(J = sensitivity + specificity—1).

We also employed the Random Forest (RF) algorithm for
both feature selection and predictive model construction. In our
model, the error rate stabilized when ntree was set to 1000.
The RF model can quantify the influence of each independent
variable on the dependent variable and calculate importance scores
(Supplementary Figure 2). The feature set for this study comprised
PAF values from all 19 channels. Thus, each participant was
represented by a 19-dimensional feature vector. These feature
vectors, along with their class labels (PSCI or HC), formed the final
dataset. A Random Forest classifier was employed to discriminate
between PSCI patients and HCs. The model was implemented using
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the Scikit-learn library in Python. The dataset was randomly split
into a training set and a hold-out test set with a ratio of 4:1. The
model’s performance was evaluated on the test set using the Area
Under the Receiver Operating Characteristic Curve (AUC-ROC),
accuracy, sensitivity, and specificity (Supplementary Figure 3). Our
study developed a Random Forest model that showed promising
discriminative ability (AUC = 0.818) (Supplementary Figure 2) on
an independent test set for classifying stroke patients. However, we
acknowledge the limitations raised by the internal cross-validation.
The considerable variability in the cross-validation AUC scores
(mean: 0.689 £ 0.230) suggests that the model’s performance
is not yet fully stable, likely due to the constrained sample
size of our cohort.

To validate the identified key biomarkers and develop a more
parsimonious model, we constructed a second ROC using only the
top 4 most important features 02PAF, T3PAF, T4PAF and T5PAF
(Figure 6).

We proceeded to conduct ROC curve analyses to investigate
whether the two models might facilitate discrimination between
PSCI and PSN (Figure 6). The logistic regression model and
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Group Average Alpha Analysis
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FIGURE 4

A scalp topological graph of the average alpha power and peak frequency among three groups. (a) Scalp distribution of the average PAF (left) and
alpha PSD (right) in the PSCI. (b) The corresponding topological map of PSN. (c) The corresponding topological map of HC. PSCI, poststroke
cognitive impairment; PSN, poststroke non-impaired; HC, healthy controls; PAF, peak alpha frequency. PSD, power spectral density. The color bars
respectively represent the power value (11V2/Hz) and the frequency value (Hz).
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Correlation analysis between the PAF and abstraction in PSCI group. A significant negative correlation was observed between FP2, F4, C4, O2, F8,
T4, T6 and FZPAF and the abstraction subscore of MoCA in PSCI. Shaded areas represent 95% confidence intervals around the slope of regression
line. After FDR correction (controlling the false discovery rate at 5%), the correlations in FP2, F4, O2, F8 and T6 remained significant (g < 0.05). PAF,
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TABLE 2 Regression results for the relationship between alpha activity and PSCI.

Indices B coefficient Wald X2 (0] P 95% ClI ‘
C3PAF 0.611 7.598 1.842 0.006 1.193,2.844
P4PAF 0.732 8.902 2.080 0.003 1.286, 3.364
OIPAF 0.457 3.832 1.579 0.05 0.999, 2.494
O2PAF 0.897 10.000 2451 0.002 1.406, 4.272
FSPAF 0.551 5.124 1.735 0.024 1.077, 2.796
T3PAF 0.767 7.867 2.154 0.005 1.260, 3.681
T4PAF 0.926 11.791 2.525 0.001 1.488, 4.284
TSPAF 0.599 6.781 1.820 0.009 1.160,2.856
TGPAF 1.003 11.164 2726 0.001 1.514,4.910
CZPAF 0.551 5.124 1.735 0.024 1.077,2.796

Employed forward stepwise regression to identify independent variables. The culminating model comprised of T4PAF as its predictive components (Bold). Data presented as B coefficients.
The dependent variables are PSCI or not, whereas independent variables are alpha activity indices. This means that the f coefficients just indicate in which direction (positive or negative) and
how strong the associations are. PAF, peak alpha frequency; OR, odds ratio; 95% CI, confidence interval.

the Random Forest classifier demonstrated comparable and
excellent discriminatory power, with AUCs of 0.761 and 0.773,
respectively. In summary, both traditional logistic regression and
Random Forest approaches identified a parsimonious set of EEG-
based predictors, predominantly involving PAF in the temporal
and occipital regions, that robustly discriminate patients with
PSCI from healthy controls. The models demonstrated excellent
discrimination, good calibration, and potential clinical utility.

In addition, we endeavored to incorporate all significant
indicators for ROC curve analysis and uncovered an intriguing
phenomenon. Across nearly all leads, the cutoff value for PAF
was consistently found to be 8.9 Hz. This uniform cutoff value
implies that, irrespective of the functional differences among brain
regions, a reduction in PAF below 8.9 Hz may represent a common
characteristic of PSCI. This finding reflects widespread neural
oscillation abnormalities and suggests that the overall suppression
of the a band could be a fundamental mechanism underlying PSCI
(Supplementary Table 2).
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Discussion

In recent years, the assessment of cognitive function using
peak alpha frequency (PAF) and alpha PSD has emerged as
a prominent area of research, garnering significant attention
(Clements et al, 2021; Mahjoory et al, 2019). Numerous
studies have established a positive correlation between alpha
activity and cognitive function (Seleznov et al., 2019; Williams
Roberson et al, 2022). While previous studies have suggested
PAF as an index for cognitive ability in a large variety of
performance measures, but there always remains few studies in
Poststroke Cognitive Impairment (PSCI). There are numerous
factors influencing the current scale assessment, including the
cognitive level of subjects, limb dysfunction, comprehension
impairment, and others. Additionally, there remains a lack of
objective assessment methods. However, our EEG index can serve
as an objective supplementary tool for evaluating the cognitive
function of individuals with PSCI.
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Receiver operating characteristic curves based on the Random Forest (RF) and logistic regression method of the differential PAF between PSCI and
HC. The AUC was 0.761 for logistic regression model (blue curve for T4PAF), 0.773 for random forest model (red curve for O2, T3, T4, T5PAF
combined). PAF, peak alpha frequency; ROC, receiver operating characteristic; AUC, area under the curve.

Characteristics of alpha activity in PSCI
patients

Numerous studies have established a correlation between
slowed resting-state o activity and deterioration in attention and
memory functions (Babiloni et al., 2006, 2007; Doppelmayr et al.,
2005; Grabner et al., 2004; Schumacher et al., 2020).

In our study, we investigated differences in alpha activity
among HC, PSN, and PSCI. The results revealed a significant
reduction in PAF among PSCI patients compared to HC
participants. This slowing of alpha rhythms has been consistently
linked to cognitive decline, serving as a potential biomarker
for conditions such as Alzheimer’s disease and autism spectrum
disorder (Lopez et al., 2020; Lopez-Sanz et al., 2016).

The underlying mechanisms may involve stroke-induced B-
amyloid (AB) deposition and microglial activation, which can
disrupt the excitatory-inhibitory balance of cortical networks,
thereby suppressing the generation of o rhythms (Kang et al., 2023).

At the circuit level, thalamocortical dysfunction represents
another key mechanism. The thalamus, particularly the thalamic
reticular nucleus, serves as a pacemaker for alpha oscillations,
and cerebrovascular injury may disrupt these critical regulatory
circuits. This thalamocortical dysregulation could explain the
widespread nature of alpha slowing observed in our PSCI patients
(Hughes and Crunelli, 2005).

Furthermore, from a systems perspective, slower alpha peaks
may reflect reduced neural metabolic efficiency and compromised
information processing capacity. According to the neural efficiency
hypothesis, optimal cognitive performance relies on efficient neural
resource allocation, and alpha frequency slowing may indicate that
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compromised networks require more temporal cycles to process
information (Ociepka et al., 2022). This is consistent with our
findings that PAF varied with cognitive performance, with PSCI
patients exhibiting significantly lower PAF than the PSN group.

The regional specificity of these effects, particularly in
frontotemporal areas, suggests additional vulnerability in networks
supporting higher-order cognition. Cortical thinning in prefrontal
and temporal areas reflects a loss of neurons and synapses
and is associated with functional decline (Molad et al., 2019).
While alterations in cerebral blood flow and metabolism within
these regions further contribute to cognitive impairment. Petrovic
et al. (2017) similarly identified slowed alpha generation and
synchronization as potential biomarkers of post-stroke cognitive
impairment and compensatory reorganization.

Overall, our results support the view that PAF slowing,
particularly in frontotemporal regions, may serve as an
electrophysiological signature of post-stroke cognitive impairment,
reflecting disruptions across multiple levels of neural organization—
from molecular and cellular mechanisms to circuit-level dynamics
and systems-level efficiency. These findings position alpha
frequency as a sensitive indicator of the neurostructural and
neurovascular disruptions underlying PSCI.

Relationships between alpha activity and

cognition in PSCI patients

Across the entire cohort, MoCA scores showed a positive
correlation with PAF values at almost all electrodes; however, after
false discovery rate (FDR) correction, only the correlation with
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PAF at the T3 and T4 electrode remained statistically significant.
This suggests that although alpha rhythm may broadly relate
to cognitive function, more robust and specific associations are
localized to particular regions. First, the cognitive role of alpha
activity in the temporal lobe has been well established. Using
MEG, Foster et al. (2017) demonstrated that alpha activity in the
temporal cortex plays an active inhibitory role in working memory,
rather than merely reflecting passive processes. This aligns with
our finding that T3/T4 activity is associated with abstract thinking,
both in anatomical location and cognitive function. Second, the
central role of the right temporoparietal network in executive
function is widely recognized. Bagherzadeh et al. (2020) reported
that alpha oscillations in the parietal and temporal lobes serve
as sensitive biomarkers of executive function. Benwell et al
(2019) emphasized the right-lateralized advantage in attentional
control processes. Furthermore, EEG studies have also shown
that alpha activity in temporoparietal regions is closely related to
cognitive processes such as attentional reorienting (Sauseng et al.,
2005). Therefore, we postulate that the PAF changes captured
by the T4 electrode may genuinely reflect the functional status
of the impaired right ventral attention-executive control network
following stroke.

Our study revealed that in the PSCI patient cohort, the
PAF values in brain regions including the right prefrontal
cortex (F4, F8, FP2), temporal lobe (T4, T6), central area (C4),
occipital lobe (O2), and midline region (Fz) were significantly
negatively correlated with the MoCA abstraction subscore.
This finding contrasts with the patterns observed in both
the healthy control group and the PSN group, potentially
untangling unique neuropathophysiological mechanisms in PSCL
This inverse relationship may reflect compensatory neural
mechanisms or pathological slowing in networks supporting
high-level cognitive processing after stroke (Keser et al., 2022;
Liu et al., 2017). Compensatory hyperactivation and functional
reorganization in the right hemisphere may also contribute
(Han et al,, 2024). Abstraction function is inherently largely
dependent on right-hemisphere networks (Ueda et al., 2025).
After stroke, homologous regions in the right hemisphere may
be over-recruited in an attempt to compensate for functional
deficits in the left hemisphere or other impaired brain regions
(Dai et al., 2025).

Notably, the temporal regions appear to be critically involved.
The sustained correlation at T3 and T4 after multiple comparisons
correction aligns with the known role of the middle temporal
region in memory and integrative cognitive functions (Goyal et al.,
2018). These findings are supported by existing literature indicating
that stroke-induced cognitive impairment disrupts normal alpha
oscillatory activity (Sun et al., 2021), particularly in posterior and
temporal cortices, which are essential for maintaining cognitive
network integrity.

The suitability of alpha activity for the
diagnosis of PSCI

Our analysis employed a dual statistical approach-binary
logistic regression and Random Forest-to identify the most
sensitive EEG biomarkers for discriminating between PSCI and
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HC. Binary logistic regression analysis revealed that T4PAF
(peak alpha frequency at the T4 electrode) was the single
most discriminative predictor for distinguishing PSCI from HC.
The Random Forest classifier, robust to multicollinearity and
capable of capturing complex interactions (Becker et al., 2023),
identified a set of four predictors with the highest importance
scores for classification: O2PAF, T3PAF, T4PAF and TS5PAF.
The concurrence of T4PAF across both models underscores the
particular vulnerability of the temporal lobes in PSCI. The inclusion
of O2PAF (right occipital) by the Random Forest model suggests
that PSCI might involve a broader network disruption beyond the
temporal region, encompassing occipital visuospatial processing
areas (Bonkhoff et al., 2020).

The selected alpha activity indicators demonstrated robust
performance in screening for dichotomized PSCI. The logistic
regression model and the Random Forest classifier achieved AUCs
of 0.761 and 0.773, respectively, indicating good discriminatory
power. Notably, the predictive performance of the T4PAF
individual indicator was also optimal on its own. This reinforces
the notion that peak alpha frequency in the temporal lobe may
be a particularly strong indicator of cognitive status in PSCI.
These results were consistent whether cognitive outcome was
treated as dichotomous (PSCI vs. HC) or as numerical data from
cognitive tests.

A previous study observing the peak frequency changes from
mild cognitive impairment to Alzheimer’s disease indicated that
when the posterior dominant alpha frequency falls below 9 Hz
(the typical lower limit of the alpha band), the risk of conversion
significantly increases (Lopez et al., 2020). Our findings, showing
a moderate level of AUC values, again confirm the potential of
resting-state EEG biomarkers to serve as a valuable supplement
substitute to the MoCA for post-stroke cognitive screening. It
is important to note that due to the limited spatial resolution
of scalp EEG, the observed associations between PAF at specific
electrodes and cognitive performance should be interpreted as
reflecting the general involvement of broader brain regions rather
than pinpointing exact neural generators.

Our study has several limitations. First, we used MoCA to
measure global cognitive function. However, the MoCA does
not assess specific cognitive domains. As a result, its diagnostic
accuracy may be limited. In future studies, we plan to include
more targeted scales for evaluation. Additionally, all participants
were recruited from a single institution in China. Cultural
and educational factors are known to influence performance
on cognitive screening tools like the MoCA. Therefore, the
generalizability of our proposed biomarkers to other populations
with different demographic and cultural backgrounds requires
further investigation. Our study developed a Random Forest model
that showed promising discriminative ability (AUC = 0.818) on an
independent test set for classifying stroke patients. However, we
acknowledge the limitations raised by the internal cross-validation.
The considerable variability in the cross-validation AUC scores
(mean: 0.689 £ 0.230) suggests that the model’s performance is
not yet fully stable, likely due to the constrained sample size of our
cohort. This underscores a risk of overfitting and highlights that
our findings should be interpreted as preliminary and hypothesis-
generating. The improvement in AUC on the independent test
set is an encouraging sign of generalizability, but it may also be
influenced by the specific distribution of the small test sample.
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Therefore, external validation in a larger, prospective cohort is
essential to confirm the robustness and clinical utility of our model
before any potential clinical application.

Electroencephalography measures may provide types of
information different from those offered by neuropsychological
scales, particularly in patients who cannot be adequately
assessed using standard cognitive screening tools such as
the MoCA or more comprehensive batteries. This includes
individuals with stroke-related symptoms-such as apraxia,
hemiplegia, or reduced alertness-as well as those non-fluent
in the primary language of assessment. Even EEG setups
with a limited number of electrodes can yield valuable
physiological insights that complement behavioral measures,
offering an alternative source of functional data where traditional
testing is infeasible.

Conclusion

In conclusion, the present findings reveal a clear association
between PAF in EEG and cognitive function. These results strongly
imply that o peak activity could be a key factor in evaluating
cognitive abilities.
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