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Objective: To investigate regional associations between peak alpha frequency

(PAF) and poststroke cognitive impairment (PSCI) and evaluate PAF as an

objective biomarker for cognitive assessment in PSCI.

Methods: A cross-sectional study compared 103 participants [PSCI, poststroke

non-impaired (PSN), and healthy controls]. Cognitive function was assessed

using MoCA scores. PAF characteristics were analyzed across brain regions via

EEG, with logistic regression and Random Forest identifying key predictors.

We aimed to evaluate whether PAF can be an effective indicator of

cognitive status in PSCI.

Results: The Kruskal-Wallis test with post hoc Bonferroni correction revealed

that PSCI exhibited significantly lower PAF compared to HC across all major

brain regions (frontal, temporal, central, and parieto-occipital; all P < 0.05).

Compared to PSN, the PSCI group showed significantly reduced PAF at specific

electrodes (F3, F4, F7, T3, T6, Fz; P < 0.05). Spearman correlation analysis

demonstrated that PAF at multiple leads was positively correlated with MoCA

scores across all subjects. Notably, after FDR correction, only T3PAF and

T4PAF remained significantly negatively correlated with MoCA in all subjects

(q < 0.05). Binary logistic regression identified T4PAF as the most discriminative

predictor for distinguishing PSCI from HC (OR = 2.525). Random Forest analysis

corroborated these findings, identifying F7PAF, O2PAF, T3PAF, and T4PAF as the

most important predictors. Both models demonstrated excellent discriminatory

power, with AUCs of 0.761 (logistic regression) and 0.773 (Random Forest),

indicating robust performance of EEG-based biomarkers for PSCI detection.

Conclusion: Peak alpha frequency serves as a robust electrophysiological

biomarker for PSCI. Multi-region PAF analysis enhances diagnostic precision for

poststroke cognitive decline.
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Introduction 

Poststroke cognitive impairment (PSCI) has a spectrum of 
severity ranging from mild to severe and aects up to 60% of 
stroke survivors within the first year after stroke (Douiri et al., 2013; 
Jacquin et al., 2014; Lo et al., 2019). It has been reported that 20% 
of mild PSCI patients who receive early intervention can recover 
completely within 2 years (Rasquin et al., 2005). 

The assessment of PSCI is mostly based on subjective scales, 
Mini-Mental State Examination (Burton and Tyson, 2015; Stolwyk 
et al., 2014) and the Montreal Cognitive Assessment (Burton 
and Tyson, 2015; Hachinski et al., 2006) have been the most 
widely studied cognitive screening instruments. But most screening 
instruments were not developed to identify the heterogeneous 
presentation of poststroke cognitive deficit and might miss 
subtle (yet impactful) poststroke cognitive changes (El Husseini 
et al., 2023). Furthermore, stroke-related impairments may render 
standard cognitive screening tools inadequate, such as motor 
weakness, unilateral neglect, and aphasia, as well as demographic 
factors such as education, language, or culture (El Husseini et al., 
2023). There is a growing consensus supporting the incorporation 
of objective, neurophysiological markers that reflect biological 
mechanisms of disease to improve PSCI assessment (Biesbroek and 
Biessels, 2023). Electroencephalography (EEG) oers a promising 
avenue in this regard. EEG captures electrophysiological brain 
activity and has the advantage of being applicable across all patient 
populations. 

Previous work suggested that individual performance in 
cognitive can be predicted by resting state oscillatory neuronal 
activity (Clements et al., 2021; Klimesch, 1997; Mahjoory et al., 
2019). The electrical signal generated by the activity of brain 
neurons can indirectly reflect the pathological and physiological 
information of the subject. EEG mainly generates dierent 
waveforms according to spontaneous electrophysiological activity 
signals generated by the brain, it can reflect changes in brain 
function and activity (Müller-Putz, 2020). In particular, alpha-
band activity has emerged as a central focus due to its role as 
the dominant resting-state rhythm and its widespread distribution 
across cortical networks. Alpha oscillations are believed to 
constitute a structural and functional foundation for cognitive 
control (Haegens et al., 2015; Sadaghiani and Kleinschmidt, 2016). 
Among various EEG metrics, the peak alpha frequency (PAF)–the 
frequency within the alpha band exhibiting maximal power (Finley 
et al., 2024; Keitel et al., 2019; Ramsay et al., 2021) –has proven 
to be a stable and reliable neurophysiological trait associated with 
cognitive performance (Perez et al., 2024). In healthy adults, higher 
PAF is correlated with better cognitive abilities (Grandy et al., 2013; 
Finley et al., 2024). Notably, PAF has also demonstrated predictive 
value in stroke contexts, with one study reporting 74.2% accuracy in 
predicting cognitive outcomes after stroke (Schleiger et al., 2017). 
These findings position PAF as a promising electrophysiological 
marker capable of complementing existing clinical evaluations. 

Research indicates that inter-individual dierences in PAF 
demonstrate the characteristics of a stable neurophysiological trait. 
This robust index appears to be unaltered by the presence of 
subjective memory complaints (Poland et al., 2021). Longitudinal 
studies further indicate that PAF may serve as a prognostic marker 
for cognitive decline from midlife to older age (Finley et al., 2024). 

A review in the same year also confirmed that higher PAF was 
associated with higher intelligence, executive function, and general 
cognitive performance scores. A review (Chino et al., n.d.) suggests 
that a higher PAF is linked with a higher score in intelligence, 
executive function, and general cognitive performance and could 
be considered an optimal, and easy-to-assess, electrophysiological 
marker of cognitive health in older adults. Notably, PAF has also 
demonstrated predictive value in stroke contexts, with one study 
reporting 74.2% accuracy in predicting cognitive outcomes after 
stroke (Schleiger et al., 2017). Given its predictive value for such 
a broad range of cognitive abilities, some researchers have even 
proposed that PAF may serve as a marker of general intelligence 
(Grandy et al., 2013). These findings position PAF as a promising 
electrophysiological marker capable of complementing existing 
clinical evaluations. 

We aim to investigate PAF as an electrophysiological biomarker 
for PSCI, with the goal of identifying eective and sensitive 
indicators that can complement standard clinical assessments. Our 
specific objectives are to: (1) quantitatively evaluate PAF parameters 
in individuals with PSCI, and (2) establish cut-o values for 
these alpha-band activity metrics that demonstrate high screening 
accuracy for cognitive impairment. To our knowledge, this is the 
first study to examine PAF specifically in PSCI, oering novel 
insights into neurophysiological markers relevant to cognitive 
rehabilitation after stroke. 

Materials and methods 

Ethical approval for this study was granted by the Ethics 
Committee of the Rehabilitation Hospital aÿliated with Fujian 
University of Chinese Medicine (2023YJS-003-01). The research 
was carried out in compliance with the World Medical Association 
Declaration of Helsinki. Written informed consent was obtained 
from all patients prior to their inclusion in the study. 

Study design and population 

A total of 41 PSCI patients,24 PSN (Post-Stroke Cognitively 
Normal) patients were recruited from the Rehabilitation Hospital 
aÿliated with Fujian University of Chinese Medicine (Fuzhou, 
China); at the same time, 38 healthy controls matched by age 
were included (Table 1). The diagnosis of PSCI comprises the 
following criteria: (i) a definitive stroke diagnosis supported by 
clinical or imaging evidence, encompassing hemorrhagic stroke, 
and ischemic stroke; (ii) the presence of cognitive impairment, 
as reported by patients or informed observers or as assessed 
by experienced clinicians and confirmed by neuropsychological 
evidence of functional impairment in multiple cognitive areas or 
evidence of significant cognitive decline compared to previous 
levels; and (iii) a temporal relationship between the stroke 
event and the onset of cognitive impairment, with symptoms 
persisting for 3–6 months poststroke. All subjects completed the 
neuropathology scale and EEG examination within 7 days after 
enrollment. All the subjects volunteered to participate in the study 
and provided written informed consent. 

All participants with PSCI fulfilled the PSCI diagnosis. The 
exclusion criteria were as follows: (i) had cognitive impairment 
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resulting from brain tumor, senile dementia, hypothyroidism, 
traumatic brain injury, or other diseases; (ii) had sequelae due 
to previous cerebral infarction; (iii) had impaired consciousness, 
aphasic, severe visual or auditory impairments, or speech disorders; 
(iii) had fever, electrolyte imbalance or unstable vital signs; and (iii) 
had severe heart, lung, liver, kidney or other major organ failure. 

Study assessment 

Assessment of demographic and clinical 
information 

All the subjects were native Chinese speakers and right-handed. 
The demographic and clinical data at baseline are presented in 
Table 1. 

Assessment of cognitive function 
The MoCA scale was used to assess cognition (Fang et al., 

2017), including visual space/execution, name, attention, language, 
abstraction, delayed recall, and directing, for a total of 30 points, 
and the scale score was positively correlated with cognitive ability. 
A MoCA score less than 26 was considered to indicate cognitive 
impairment. All subjects were assessed with the MoCA. 

Assessment of alpha activity 
The recorded EEG data were subjected to comprehensive 

power spectral density (PSD) analysis, encompassing all 19 
channels. This involved measurements across eight distinct 
frequency bands, given our focus on alpha band, this study 
exclusively analyzes the alpha band (7–13 Hz). The EEG signals 
were preprocessed and subsequently analyzed using a tailored 
routine. The PSD was derived by employing a fast Fourier 
transform (FFT) with a step size of 0.25 Hz, a Hann window, 
and a window length of 4 s. This process yielded the frequency– 
power spectrum of brain oscillations. The PAF was identified as 
the frequency point exhibiting the highest PSD within the α band, 
ranging from 7 to 13 Hz (Klimesch, 1999). 

EEG recordings and preprocessing 

During the EEG recording session, participants were seated 
in a chamber designed for optimal comfort and minimal external 
stimulation–it was soundproof, dimly lit, and furnished with a 
cozy armchair. Following a 3-min period of acclimation to these 
controlled conditions, the subjects were guided to close their 

eyes. Their resting-state EEG activity was then captured using 
a sophisticated 19-channel EEG system (supplied by Nanjing 
Neuromed Technology Group Co., Ltd., Nanjing, China). Standard 
EEG electrodes were precisely positioned on the scalp according 
to the internationally recognized 10–20 system, specifically at 
locations Fp1, Fp2, F7, F8, F3, F4, T3, T4, C3, C4, P3, P4, T5, 
T6, O1, O2, CZ, PZ and FZ. The names of the electrodes indicate 
their anatomical locations (F: frontal lobe, T: temporal lobe, C: 
central, P: parietal lobe, O: occipital lobe; numbers: even numbers 
represent the right hemisphere, odd numbers represent the left 
hemisphere). Additionally, a reference electrode was strategically 
placed on both ear lobes (designated A1 and A2). The contact 
resistance between the electrodes and the scalp was rigorously 
maintained below 20 K, in alignment with established protocols 
(Lee et al., 2013). 

The internal parameters include a 24-bit A/D conversion, 
a sampling rate of 50 KHz, a common mode rejection ratio 
(CMRR) of not less than 110 dB, an input impedance of not less 
than 100 MOhm, and a noise level of not exceeding 1 µV. The 
alternating current was set at 220 V and 50 Hz. The sampling rate 
was set at 2000 Hz, with a high-pass filter set at 0.5 Hz, a low-pass 
filter set at 30 Hz, and a notch filter set at 50 Hz. The Infomax 
Independent Components Analysis (ICA) module in EEGLAB was 
used to decompose the EEGs, and artifact components (including 
ocular and muscle artifacts) were removed (Delorme et al., 2007; 
Pion-Tonachini et al., 2019). The raw signals were processed using 
Butterworth band-pass filtering to remove non-neural noise such 
as high-frequency electromyographic (EMG) artifacts and low-
frequency drifts. The decomposition of oscillatory and aperiodic 
components from the power spectrum was performed using 
the FOOOF algorithm. Parameter settings were as follows: the 
peak width limits (peak_width_limits) were set to [1, 6] Hz to 
cover typical neural oscillation bands; the maximum number of 
peaks allowed for extraction (max_n_peaks) was set to 6; and 
the peak threshold (min_peak_height) was set to 0.05 [unit: 
log10(power)]. These parameter choices were based on the oÿcial 
FOOOF recommendations and preliminary analysis of the data 
characteristics in this study, aiming to reliably extract significant 
oscillatory components (Donoghue et al., 2020). The periodic 
component for each peak was defined as its absolute power above 
the aperiodic fit, obtained by subtracting the aperiodic component 
in the linear power domain (Gyurkovics et al., 2021). The data 
quality was further examined via a manual checking procedure. 

For every participant, we employed the MATLAB function 
“findpeaks” to identify the PAF with the highest amplitude falling 
within the range of 7–13 Hz. Subsequently, we determined 

TABLE 1 Clinical characteristics of PSCI and healthy group. 

Variable PSCI group 
(n = 41) 

PSN group 
(n = 24) 

Healthy control 
(n = 38) 

Statistical 
value 

P value 

Sex (Male/Female) 30/11 18/6 25/13 X2 = 0.349 0.706 

Age (years) 61.30 ± 10.27 59.58 ± 8.50 63.21 ± 5.88 F = 1.382 0.256 

MoCA score 18.34 ± 3.42 26.38 ± 0.92 26.21 ± 1.34 F = 141.46 <0.0001* 

Hemisphere (Right/Left) 25/16 45855 – X2 = 2.828 0.43 

Continuous variables were presented as mean ± standard deviation, categorical variables were presented as frequencies. *P < 0.05, indicating that there is a significant statistical dierence in 
the MoCA score between groups. 
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the corresponding peak α amplitude by computing the average 
amplitude within ±1 Hz of the identified frequency. 

Topographic analysis 

Group-average topographic maps of alpha power and peak 
frequency were generated for visualization. The data from each 
subject’s alpha power and frequency value at the IAPF were 
interpolated across the scalp using the MNE-Python’s default 
interpolation method (based on spherical splines) and plotted on 
a 2D projection of the scalp. Separate maps were created for the 
HC, PSN, and PSCI groups. 

Statistical analyses 

The statistical analysis was conducted using IBM SPSS Statistics 
version 26.0. Age, MoCA scores and all alpha activity paraments 
are represented as x ± s. Normality of data distribution was 
assessed using Shapiro-Wilk tests. Comparisons between groups 
were performed with one-way analysis of variance (ANOVA) 
for normally distributed variables and Kruskal-Wallis test for 
non-normally distributed variables. To address the multiple 
comparisons arising from testing the same hypothesis across 19 
channels, Bonferroni correction was applied. The significance level 
was adjusted to α = 0.05/3 ≈ 0.0167. Therefore, only results with a 
P-value < 0.0167 were considered statistically significant for these 
analyses. To assess the associations between PSCI alpha activity 
parameters and cognitive scale scores, Spearman correlation 
analysis was performed, to correct for multiple hypotheses testing, 
we used the False Discovery Ratio (FDR) method with a corrected 
significance threshold of 0.05. To identify the optimal predictors of 
PSCI, we employed a stepwise logistic regression procedure with 
the Akaike Information Criterion (AIC) as the sole criterion for 
model selection. This algorithm automatically determines whether 
to add or remove a variable at each step to achieve the model with 
the lowest AIC value, thus balancing model fit and complexity. 
The analysis identified T4PAF as the most parsimonious and 
significant predictor. 

To identify the most significant predictors for distinguishing 
PSCI from HC, a Random Forest (RF) classifier was employed. 
All predictors identified from prior univariate analyses with 
clinical potential were included in the model. The analysis was 
implemented using the “randomForest” package in R. The model 
training parameters were configured as follows: the number of 
trees (ntree) was set to 1000 to ensure stability in error estimation; 
the number of variables randomly sampled at each split (mtry) 
was set to the default value (the square root of the total number 
of predictors). Variable importance was quantified by the mean 
decrease in the Gini impurity index; a higher value indicates a 
greater contribution of the variable to the model’s classification 
accuracy. Internal validation and overall performance of the RF 
model were assessed using the out-of-bag (OOB) error rate, which 
provides an unbiased estimate of prediction error. The RF model 
was trained on the training set (n = 76) and its hyperparameters 
were optimized. To rigorously assess the model’s performance 
and mitigate overfitting, we employed a 5-fold cross-validation 

procedure on the training set. The model’s generalization ability 
was ultimately evaluated on a held-out independent test set (n = 19). 
The primary performance metric was the area under the receiver 
operating characteristic curve (AUC). 

To identify the optimal PAF threshold for distinguishing 
patients with PSCI from HCs, a ROC curve analysis was performed. 
The state variable was defined as PSCI (1) versus HC (0), and the 
test variable was the individual PAF value from each electrode. The 
optimal cuto value was determined by calculating the ROC curve 
for each electrode and identifying the PAF value corresponding to 
the maximum Youden’s index (J = sensitivity + specificity−1). 

Results 

Demographic variables 

All the subjects were right-handed. All enrolled patients 
were Chinese. Table 1 shows demographics and basic clinical 
characteristics of the three subject groups. There were no significant 
dierences in age between the three groups (P > 0.05). The total 
mean MoCA score of the PSCI group was lower than that of 
another two groups (P < 0.05) (Table 1). 

Comparison of alpha activity among the 
three groups 

Kruskal-Wallis test was conducted among the 
three groups 

Post hoc analyses with Bonferroni correction revealed that the 
PSCI group exhibited significantly lower PAF compared to HC 
group across all major brain regions: the frontal lobe (FP1, FP2, F3, 
F4, FZ; P < 0.05), temporal lobe [T3, T4, T5, T6, F7, F8; (P < 0.05)], 
central region [C3, C4, CZ; (P < 0.05)], and parieto-occipital lobe 
[P3, P4, PZ, O1, O2; (P < 0.05)]. Compared with the PSN group, 
the PAF of leads F3, F4, F7, T3, T6 and Fz in the PSCI group 
were significantly lower (P < 0.05), as illustrated in Figure 1 and 
Supplementary Table 1. We selected PZ, O2, CZ, F4 electrodes 
to generate the density distributions of peak alpha frequency 
(Figure 2), cause they provide comprehensive coverage of brain 
regions most relevant to alpha rhythm generation and cognitive 
functions typically impaired in PSCI. The posterior electrodes 
(PZ, O2) capture the primary alpha generators, while the frontal 
electrode (F4) allows assessment of anterior brain involvement. 
Figure 3 revealed systematic group dierences across all electrode 
sites. The PSCI group consistently showed a leftward shift in 
PAF values, with distribution peaks below the alpha frequency 
range, while HC participants exhibited peaks within or above 
the conventional alpha band. Visual inspection of the PAF-PSD 
relationship (Supplementary Figure 4) revealed distinct clustering 
patterns among the three groups. The PSCI group consistently 
exhibited lower PAF values across all electrode sites, with the most 
pronounced separation observed at posterior locations (PZ and 
O2). 

In contrast, analysis of alpha power showed no significant 
dierences among the three groups across any of the leads (all 
P > 0.05; see Supplementary Figure 1). 
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FIGURE 1 

Dot plots of the PAF among three groups. The PAF in the bilateral frontal, temporal, parietal, and occipital regions was significantly lower in the PSCI 
group than in the HC. Post hoc pairwise comparisons were conducted using the t-test corrected by Bonferroni (the corrected significance level was 
set at α = 0.0167). Error bars represent ±1 standard error of the mean. PSCI, poststroke cognitive impairment; PSN, poststroke non-impaired; HC, 
healthy controls; PAF, peak alpha frequency. *Represents P < 0.0167 after Bonferroni correction. ns represents no statistical difference (P ≥ 0.0167). 

To visualize the spatial distribution patterns of these 
dierences, we plotted scalp topologies of group average Alpha 
power and peak frequency (Figure 4). As shown in Figure 3, the 
PAF in the HC group was generally higher (Figure 4c), while in 
contrast, the PAF in the PSCI group showed extensive attenuation 
across the entire brain (Figure 4a). The PAF distribution pattern in 
the PSN group was similar to that in the HC group, but the overall 
intensity was slightly lower (Figure 4b). 

Analysis in the association between alpha 
activity and cognition level in the PSCI 

Spearman correlation between cognitive 
performance and PAF 

We first assessed the correlations between MoCA scores and 
PAF across all subjects. Our analysis revealed that PAF in multiple 

brain regions–including the frontal (FP1, FP2, F3, F4, F7, F8, FZ), 
temporal (T3, T4, T5, T6), central (C3, C4, CZ), and parietal (P3) 
areas–was significantly positively correlated with total MoCA score 
prior to multiple comparisons correction. However, after FDR 
correction, T3PAF remained significantly positively correlated with 
total MoCA score and the Visuospatial/Executive, Abstraction sub-
score (q < 0.05). In addition, T4PAF showed significant positive 
correlations with the Visuospatial/Executive sub-score following 
FDR correction. The full set of uncorrected correlation results is 
presented in Figure 3. 

The initial analysis examined the relationship between 
PAF and MoCA scores across all participants. However, as 
anticipated, the MoCA scores of the HC group exhibited a 
pronounced ceiling eect. This attenuation of variability limits the 
interpretability of correlation analyses in the combined cohort, 
as the observed association may be predominantly driven by 
mean dierences between the healthy and cognitively impaired 
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FIGURE 2 

Distribution of peak alpha frequency across groups at representative electrode sites Density plots showing the distribution of peak alpha frequency 
(PAF) values for PSCI (red), PSN (orange), and HC (blue) groups at four electrode locations: PZ, O2, CZ and F4. The gray shaded area indicates the 
conventional alpha frequency band (8-12 Hz). Density curves were estimated using kernel density estimation, with the area under each curve 
normalized to 1. 

groups, rather than reflecting a continuous functional relationship. 
Therefore, to more sensitively investigate the specific association 
between slowed neural oscillations and cognitive deficits under 
pathological conditions, subsequent correlation analyses were 
focused specifically on the PSCI group, within which the MoCA 
scores demonstrated a clinically relevant range of variation. 

Next, we analyzed the correlations between these peak 
frequency indicators and the MoCA scores (including its sub-
items) in the PSCI group. It was found that FP2, F4, C4, O2, F8, 
T4, T6, FZPAF were negatively correlated with the Abstraction 
(P < 0.05). After FDR correction, FP2, F4, F8, O2 and T6PAF 
remained significantly negatively correlated with the Abstraction 
sub-score (q < 0.05; Figure 5). However, no significant correlations 
were observed with the total MoCA score or other sub-items. 

Prediction effect of EEG indicators on 
PSCI 

We employed two distinct statistical approaches–a machine 
learning-based Random Forest classifier and a traditional stepwise 

logistic regression–to identify and validate the most salient EEG 
features for discriminating PSCI from HCs. 

Initial group comparisons (using ANOVA/Kruskal-Wallis 
tests) revealed that the most pronounced and consistent dierences 
existed between the PSCI and HC groups, while the dierences 
between the PSN group and the HC group were less distinct or 
not statistically significant. So we focused the subsequent logistic 
regression and ROC curve analyses on the binary classification 
between PSCI and HC. Variables that showed significant dierences 
in univariate analyses or were deemed clinically relevant were 
entered into the model. 

To control for multicollinearity, the variance inflation factor 
(VIF) was calculated for each variable, and predictors with 
VIF > 10 were excluded, Table 2 lists all the indicators included 
in the analysis. Then, variables were selected using a stepwise 
selection procedure based on the Akaike Information Criterion. 
The remaining variables were entered into logistic regression 
model to identify the optimal combination for discriminating 
between PSCI and HC groups. The final model included T4PAF 
(OR = 2.525) as significant predictor (see Table 2 for details). To 
identify the optimal threshold for each PAF value in distinguishing 
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FIGURE 3 

Heatmap of correlations between PAF and cognitive performance. Cognitive performance was assessed using the total score and sub-scores of 
MoCA. The color scale represents the strength and direction of the Pearson’s correlation coefficient (r). PAF values from 19 channels were included. 
MoCA subdomains include visuospatial/executive function, naming, attention, language, abstraction, delayed recall, and orientation. Statistical 
significance was determined after FDR correction (controlling the false discovery rate at 5%) (q < 0.05*). MoCA, Montreal Cognitive Assessment; PAF, 
peak alpha frequency. Uncorrected statistical trends are indicated by daggers (+P < 0.05). 

PSCI from HC, we performed a receiver operating characteristic 
(ROC) curve analysis. For each electrode (e.g., T4), the continuous 
PAF value was used as the test variable, and the group membership 
(PSCI = 1, HC = 0) as the state variable. The ROC curve was 
constructed by calculating the sensitivity and 1-specificity pairs 
at a series of consecutive thresholds spanning the entire range of 
observed PAF values. The optimal cuto value for each electrode 
was then defined as the threshold that maximized Youden’s index 
(J = sensitivity + specificity−1). 

We also employed the Random Forest (RF) algorithm for 
both feature selection and predictive model construction. In our 
model, the error rate stabilized when ntree was set to 1000. 
The RF model can quantify the influence of each independent 
variable on the dependent variable and calculate importance scores 
(Supplementary Figure 2). The feature set for this study comprised 
PAF values from all 19 channels. Thus, each participant was 
represented by a 19-dimensional feature vector. These feature 
vectors, along with their class labels (PSCI or HC), formed the final 
dataset. A Random Forest classifier was employed to discriminate 
between PSCI patients and HCs. The model was implemented using 

the Scikit-learn library in Python. The dataset was randomly split 
into a training set and a hold-out test set with a ratio of 4:1. The 
model’s performance was evaluated on the test set using the Area 
Under the Receiver Operating Characteristic Curve (AUC-ROC), 
accuracy, sensitivity, and specificity (Supplementary Figure 3). Our 
study developed a Random Forest model that showed promising 
discriminative ability (AUC = 0.818) (Supplementary Figure 2) on 
an independent test set for classifying stroke patients. However, we 
acknowledge the limitations raised by the internal cross-validation. 
The considerable variability in the cross-validation AUC scores 
(mean: 0.689 ± 0.230) suggests that the model’s performance 
is not yet fully stable, likely due to the constrained sample 
size of our cohort. 

To validate the identified key biomarkers and develop a more 
parsimonious model, we constructed a second ROC using only the 
top 4 most important features 02PAF, T3PAF, T4PAF and T5PAF 
(Figure 6). 

We proceeded to conduct ROC curve analyses to investigate 
whether the two models might facilitate discrimination between 
PSCI and PSN (Figure 6). The logistic regression model and 
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FIGURE 4 

A scalp topological graph of the average alpha power and peak frequency among three groups. (a) Scalp distribution of the average PAF (left) and 
alpha PSD (right) in the PSCI. (b) The corresponding topological map of PSN. (c) The corresponding topological map of HC. PSCI, poststroke 
cognitive impairment; PSN, poststroke non-impaired; HC, healthy controls; PAF, peak alpha frequency. PSD, power spectral density. The color bars 
respectively represent the power value (µV2 /Hz) and the frequency value (Hz). 
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FIGURE 5 

Correlation analysis between the PAF and abstraction in PSCI group. A significant negative correlation was observed between FP2, F4, C4, O2, F8, 
T4, T6 and FZPAF and the abstraction subscore of MoCA in PSCI. Shaded areas represent 95% confidence intervals around the slope of regression 
line. After FDR correction (controlling the false discovery rate at 5%), the correlations in FP2, F4, O2, F8 and T6 remained significant (q < 0.05). PAF, 
peak alpha frequency. *P < 0.05. 

TABLE 2 Regression results for the relationship between alpha activity and PSCI. 

Indices β coefficient Wald X2 OR P 95% CI 

C3PAF 0.611 7.598 1.842 0.006 1.193, 2.844 

P4PAF 0.732 8.902 2.080 0.003 1.286, 3.364 

O1PAF 0.457 3.832 1.579 0.05 0.999, 2.494 

O2PAF 0.897 10.000 2.451 0.002 1.406, 4.272 

F8PAF 0.551 5.124 1.735 0.024 1.077, 2.796 

T3PAF 0.767 7.867 2.154 0.005 1.260, 3.681 

T4PAF 0.926 11.791 2.525 0.001 1.488, 4.284 

T5PAF 0.599 6.781 1.820 0.009 1.160,2.856 

T6PAF 1.003 11.164 2.726 0.001 1.514, 4.910 

CZPAF 0.551 5.124 1.735 0.024 1.077, 2.796 

Employed forward stepwise regression to identify independent variables. The culminating model comprised of T4PAF as its predictive components (Bold). Data presented as β coeÿcients. 
The dependent variables are PSCI or not, whereas independent variables are alpha activity indices. This means that the β coeÿcients just indicate in which direction (positive or negative) and 
how strong the associations are. PAF, peak alpha frequency; OR, odds ratio; 95% CI, confidence interval. 

the Random Forest classifier demonstrated comparable and 

excellent discriminatory power, with AUCs of 0.761 and 0.773, 
respectively. In summary, both traditional logistic regression and 

Random Forest approaches identified a parsimonious set of EEG-
based predictors, predominantly involving PAF in the temporal 
and occipital regions, that robustly discriminate patients with 

PSCI from healthy controls. The models demonstrated excellent 
discrimination, good calibration, and potential clinical utility. 

In addition, we endeavored to incorporate all significant 
indicators for ROC curve analysis and uncovered an intriguing 

phenomenon. Across nearly all leads, the cuto value for PAF 

was consistently found to be 8.9 Hz. This uniform cuto value 

implies that, irrespective of the functional dierences among brain 

regions, a reduction in PAF below 8.9 Hz may represent a common 

characteristic of PSCI. This finding reflects widespread neural 
oscillation abnormalities and suggests that the overall suppression 

of the α band could be a fundamental mechanism underlying PSCI 
(Supplementary Table 2). 

Discussion 

In recent years, the assessment of cognitive function using 

peak alpha frequency (PAF) and alpha PSD has emerged as 
a prominent area of research, garnering significant attention 

(Clements et al., 2021; Mahjoory et al., 2019). Numerous 
studies have established a positive correlation between alpha 

activity and cognitive function (Seleznov et al., 2019; Williams 
Roberson et al., 2022). While previous studies have suggested 

PAF as an index for cognitive ability in a large variety of 
performance measures, but there always remains few studies in 

Poststroke Cognitive Impairment (PSCI). There are numerous 
factors influencing the current scale assessment, including the 

cognitive level of subjects, limb dysfunction, comprehension 

impairment, and others. Additionally, there remains a lack of 
objective assessment methods. However, our EEG index can serve 

as an objective supplementary tool for evaluating the cognitive 

function of individuals with PSCI. 
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FIGURE 6 

Receiver operating characteristic curves based on the Random Forest (RF) and logistic regression method of the differential PAF between PSCI and 
HC. The AUC was 0.761 for logistic regression model (blue curve for T4PAF), 0.773 for random forest model (red curve for O2, T3, T4, T5PAF 
combined). PAF, peak alpha frequency; ROC, receiver operating characteristic; AUC, area under the curve. 

Characteristics of alpha activity in PSCI 
patients 

Numerous studies have established a correlation between 
slowed resting-state α activity and deterioration in attention and 
memory functions (Babiloni et al., 2006, 2007; Doppelmayr et al., 
2005; Grabner et al., 2004; Schumacher et al., 2020). 

In our study, we investigated dierences in alpha activity 
among HC, PSN, and PSCI. The results revealed a significant 
reduction in PAF among PSCI patients compared to HC 
participants. This slowing of alpha rhythms has been consistently 
linked to cognitive decline, serving as a potential biomarker 
for conditions such as Alzheimer’s disease and autism spectrum 
disorder (López et al., 2020; López-Sanz et al., 2016). 

The underlying mechanisms may involve stroke-induced β-
amyloid (Aβ) deposition and microglial activation, which can 
disrupt the excitatory-inhibitory balance of cortical networks, 
thereby suppressing the generation of α rhythms (Kang et al., 2023). 

At the circuit level, thalamocortical dysfunction represents 
another key mechanism. The thalamus, particularly the thalamic 
reticular nucleus, serves as a pacemaker for alpha oscillations, 
and cerebrovascular injury may disrupt these critical regulatory 
circuits. This thalamocortical dysregulation could explain the 
widespread nature of alpha slowing observed in our PSCI patients 
(Hughes and Crunelli, 2005). 

Furthermore, from a systems perspective, slower alpha peaks 
may reflect reduced neural metabolic eÿciency and compromised 
information processing capacity. According to the neural eÿciency 
hypothesis, optimal cognitive performance relies on eÿcient neural 
resource allocation, and alpha frequency slowing may indicate that 

compromised networks require more temporal cycles to process 
information (Ociepka et al., 2022). This is consistent with our 
findings that PAF varied with cognitive performance, with PSCI 
patients exhibiting significantly lower PAF than the PSN group. 

The regional specificity of these eects, particularly in 
frontotemporal areas, suggests additional vulnerability in networks 
supporting higher-order cognition. Cortical thinning in prefrontal 
and temporal areas reflects a loss of neurons and synapses 
and is associated with functional decline (Molad et al., 2019). 
While alterations in cerebral blood flow and metabolism within 
these regions further contribute to cognitive impairment. Petrovic 
et al. (2017) similarly identified slowed alpha generation and 
synchronization as potential biomarkers of post-stroke cognitive 
impairment and compensatory reorganization. 

Overall, our results support the view that PAF slowing, 
particularly in frontotemporal regions, may serve as an 
electrophysiological signature of post-stroke cognitive impairment, 
reflecting disruptions across multiple levels of neural organization– 
from molecular and cellular mechanisms to circuit-level dynamics 
and systems-level eÿciency. These findings position alpha 
frequency as a sensitive indicator of the neurostructural and 
neurovascular disruptions underlying PSCI. 

Relationships between alpha activity and 
cognition in PSCI patients 

Across the entire cohort, MoCA scores showed a positive 
correlation with PAF values at almost all electrodes; however, after 
false discovery rate (FDR) correction, only the correlation with 
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PAF at the T3 and T4 electrode remained statistically significant. 
This suggests that although alpha rhythm may broadly relate 
to cognitive function, more robust and specific associations are 
localized to particular regions. First, the cognitive role of alpha 
activity in the temporal lobe has been well established. Using 
MEG, Foster et al. (2017) demonstrated that alpha activity in the 
temporal cortex plays an active inhibitory role in working memory, 
rather than merely reflecting passive processes. This aligns with 
our finding that T3/T4 activity is associated with abstract thinking, 
both in anatomical location and cognitive function. Second, the 
central role of the right temporoparietal network in executive 
function is widely recognized. Bagherzadeh et al. (2020) reported 
that alpha oscillations in the parietal and temporal lobes serve 
as sensitive biomarkers of executive function. Benwell et al. 
(2019) emphasized the right-lateralized advantage in attentional 
control processes. Furthermore, EEG studies have also shown 
that alpha activity in temporoparietal regions is closely related to 
cognitive processes such as attentional reorienting (Sauseng et al., 
2005). Therefore, we postulate that the PAF changes captured 
by the T4 electrode may genuinely reflect the functional status 
of the impaired right ventral attention-executive control network 
following stroke. 

Our study revealed that in the PSCI patient cohort, the 
PAF values in brain regions including the right prefrontal 
cortex (F4, F8, FP2), temporal lobe (T4, T6), central area (C4), 
occipital lobe (O2), and midline region (Fz) were significantly 
negatively correlated with the MoCA abstraction subscore. 
This finding contrasts with the patterns observed in both 
the healthy control group and the PSN group, potentially 
untangling unique neuropathophysiological mechanisms in PSCI. 
This inverse relationship may reflect compensatory neural 
mechanisms or pathological slowing in networks supporting 
high-level cognitive processing after stroke (Keser et al., 2022; 
Liu et al., 2017). Compensatory hyperactivation and functional 
reorganization in the right hemisphere may also contribute 
(Han et al., 2024). Abstraction function is inherently largely 
dependent on right-hemisphere networks (Ueda et al., 2025). 
After stroke, homologous regions in the right hemisphere may 
be over-recruited in an attempt to compensate for functional 
deficits in the left hemisphere or other impaired brain regions 
(Dai et al., 2025). 

Notably, the temporal regions appear to be critically involved. 
The sustained correlation at T3 and T4 after multiple comparisons 
correction aligns with the known role of the middle temporal 
region in memory and integrative cognitive functions (Goyal et al., 
2018). These findings are supported by existing literature indicating 
that stroke-induced cognitive impairment disrupts normal alpha 
oscillatory activity (Sun et al., 2021), particularly in posterior and 
temporal cortices, which are essential for maintaining cognitive 
network integrity. 

The suitability of alpha activity for the 
diagnosis of PSCI 

Our analysis employed a dual statistical approach–binary 
logistic regression and Random Forest–to identify the most 
sensitive EEG biomarkers for discriminating between PSCI and 

HC. Binary logistic regression analysis revealed that T4PAF 
(peak alpha frequency at the T4 electrode) was the single 
most discriminative predictor for distinguishing PSCI from HC. 
The Random Forest classifier, robust to multicollinearity and 
capable of capturing complex interactions (Becker et al., 2023), 
identified a set of four predictors with the highest importance 
scores for classification: O2PAF, T3PAF, T4PAF and T5PAF. 
The concurrence of T4PAF across both models underscores the 
particular vulnerability of the temporal lobes in PSCI. The inclusion 
of O2PAF (right occipital) by the Random Forest model suggests 
that PSCI might involve a broader network disruption beyond the 
temporal region, encompassing occipital visuospatial processing 
areas (Bonkho et al., 2020). 

The selected alpha activity indicators demonstrated robust 
performance in screening for dichotomized PSCI. The logistic 
regression model and the Random Forest classifier achieved AUCs 
of 0.761 and 0.773, respectively, indicating good discriminatory 
power. Notably, the predictive performance of the T4PAF 
individual indicator was also optimal on its own. This reinforces 
the notion that peak alpha frequency in the temporal lobe may 
be a particularly strong indicator of cognitive status in PSCI. 
These results were consistent whether cognitive outcome was 
treated as dichotomous (PSCI vs. HC) or as numerical data from 
cognitive tests. 

A previous study observing the peak frequency changes from 
mild cognitive impairment to Alzheimer’s disease indicated that 
when the posterior dominant alpha frequency falls below 9 Hz 
(the typical lower limit of the alpha band), the risk of conversion 
significantly increases (López et al., 2020). Our findings, showing 
a moderate level of AUC values, again confirm the potential of 
resting-state EEG biomarkers to serve as a valuable supplement 
substitute to the MoCA for post-stroke cognitive screening. It 
is important to note that due to the limited spatial resolution 
of scalp EEG, the observed associations between PAF at specific 
electrodes and cognitive performance should be interpreted as 
reflecting the general involvement of broader brain regions rather 
than pinpointing exact neural generators. 

Our study has several limitations. First, we used MoCA to 
measure global cognitive function. However, the MoCA does 
not assess specific cognitive domains. As a result, its diagnostic 
accuracy may be limited. In future studies, we plan to include 
more targeted scales for evaluation. Additionally, all participants 
were recruited from a single institution in China. Cultural 
and educational factors are known to influence performance 
on cognitive screening tools like the MoCA. Therefore, the 
generalizability of our proposed biomarkers to other populations 
with dierent demographic and cultural backgrounds requires 
further investigation. Our study developed a Random Forest model 
that showed promising discriminative ability (AUC = 0.818) on an 
independent test set for classifying stroke patients. However, we 
acknowledge the limitations raised by the internal cross-validation. 
The considerable variability in the cross-validation AUC scores 
(mean: 0.689 ± 0.230) suggests that the model’s performance is 
not yet fully stable, likely due to the constrained sample size of our 
cohort. This underscores a risk of overfitting and highlights that 
our findings should be interpreted as preliminary and hypothesis-
generating. The improvement in AUC on the independent test 
set is an encouraging sign of generalizability, but it may also be 
influenced by the specific distribution of the small test sample. 
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Therefore, external validation in a larger, prospective cohort is 
essential to confirm the robustness and clinical utility of our model 
before any potential clinical application. 

Electroencephalography measures may provide types of 
information dierent from those oered by neuropsychological 
scales, particularly in patients who cannot be adequately 
assessed using standard cognitive screening tools such as 
the MoCA or more comprehensive batteries. This includes 
individuals with stroke-related symptoms–such as apraxia, 
hemiplegia, or reduced alertness–as well as those non-fluent 
in the primary language of assessment. Even EEG setups 
with a limited number of electrodes can yield valuable 
physiological insights that complement behavioral measures, 
oering an alternative source of functional data where traditional 
testing is infeasible. 

Conclusion 

In conclusion, the present findings reveal a clear association 
between PAF in EEG and cognitive function. These results strongly 
imply that α peak activity could be a key factor in evaluating 
cognitive abilities. 
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