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Objective: To characterize abnormal functional connectivity in dementia with

Lewy bodies (DLB) and its association with cognitive impairment using resting-

state functional magnetic resonance imaging (rs-fMRI).

Methods: Sixty-eight DLB patients and 38 age-, sex-, and education-matched

healthy controls underwent neuropsychological assessments (MoCA, MMSE)

and rs-fMRI. Imaging analyses included seed-based functional connectivity

(sFC), independent component analysis (ICA), regional homogeneity (ReHo),

fractional amplitude of low-frequency fluctuations (fALFF), and graph-

theoretical network metrics (small-worldness, global/local efficiency).

Results: DLB patients exhibited significantly reduced FC in the default mode

network (DMN) and visual network, including PCC–AG (P < 0.001) and

PCC–mPFC (P < 0.001). ReHo and fALFF indicated decreased local neural

synchronization and low-frequency activity in the posterior occipital lobe

(fALFF: P = 0.004), angular gyrus (fALFF: P = 0.001), left temporal pole (fALFF:

P < 0.001), left parietal (ReHo: P < 0.001), and posterior cerebellar lobe (ReHo:

P < 0.001). Graph theory revealed impaired global network topology in DLB,

with decreased small-worldness (P < 0.001) and global efficiency (P < 0.001).

PCC–AG connectivity positively correlated with the MoCA total score (r = 0.53,

P < 0.001), attention (r = 0.46, P < 0.001), executive (r = 0.41, P < 0.001), and

language function (r = 0.34, P < 0.001). Posterior occipital fALFF and left parietal

ReHo showed significant positive correlations with multiple cognitive domains,

including visuospatial ability (r = 0.34, P < 0.001 for fALFF; r = 0.42, P < 0.001

for ReHo) and memory (r = 0.45, P < 0.001 for fALFF; r = 0.27, P = 0.006 for

ReHo). A combined model of PCC–AG connectivity, fALFF, and small-worldness

predicted 42% of MoCA variance (R2 = 0.42, P < 0.001).

Conclusion: DLB is characterized by DMN and visual network dysfunction,

disrupted local neural activity, and impaired global network integration. These

rs-fMRI metrics may serve as potential biomarkers for cognitive deficits in DLB.

KEYWORDS

resting-state fMRI, dementia with Lewy bodies, functional connectivity, cognitive
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1 Introduction 

Dementia with Lewy bodies (DLB), the second most prevalent 
neurodegenerative dementia after Alzheimer’s disease (AD) (Vann 
Jones and O’Brien, 2014), is characterized by heterogeneous clinical 
features encompassing cognitive decline, motor disturbances, 
and neuropsychiatric symptoms (McKeith et al., 2017). Despite 
its distinct clinical profile but with comorbid symptoms, DLB 
could be misdiagnosed as AD (Bousiges and Blanc, 2022; 
Yamada et al., 2022). In contrast, misdiagnosis between DLB 
and Parkinson’s disease dementia (PDD) is less common in 
clinical practice since their dierentiation relies on the clear “1-
year rule” regarding the onset sequence of motor vs. cognitive 
symptoms. Nevertheless, ongoing debate exists about whether 
DLB and PDD represent distinct entities within Lewy body 
disorders, given shared α-synuclein pathology (Walker et al., 
2015; Fu and Halliday, 2025). Elucidating the neural mechanisms 
underlying cognitive impairment in DLB and identifying reliable 
neuroimaging biomarkers are therefore critical for improving 
clinical outcomes. 

Resting-state functional magnetic resonance imaging (rs-
fMRI), a non-invasive and reproducible neuroimaging technique 
(Lowther et al., 2014), has emerged as a powerful tool for 
investigating brain functional connectivity (FC) by capturing 
spontaneous low-frequency fluctuations in blood oxygen level-
dependent signals (Geng et al., 2024; Cieri et al., 2024). Previous 
rs-fMRI studies have revealed disease-specific network alterations: 
AD is associated with FC disruptions in the default mode 
network (DMN), executive control network, and limbic system 
(Grieder et al., 2018; Yu et al., 2017). Similarly, PDD and DLB 
exhibit DMN dysfunction, with additional involvement of the 
basal ganglia network, reflecting shared and distinct network 
alterations compared to AD (Piramide et al., 2024; Caminiti 
et al., 2024). However, systematic investigations into whole-brain 
network abnormalities in DLB remain limited, particularly those 
integrating multimodal connectivity metrics, such as seed-based 
FC, regional homogeneity (ReHo), and fractional amplitude of 
low-frequency fluctuations (fALFF) with graph-theoretical analysis 
to dissect domain-specific cognitive deficits (Peraza et al., 2014; 
Matar et al., 2022). 

Cognitive impairment in DLB manifests as multidimensional 
dysfunction, prominently aecting attention, executive function, 
and visuospatial abilities, which rely on the coordinated integration 
of distributed functional networks (McKeith et al., 2017; 
Schumacher et al., 2019). To address this gap, we conducted a 
comprehensive rs-fMRI study combining whole-brain FC analysis 
and graph theory to quantify topological network properties (e.g., 
small-worldness, global/local eÿciency). Our objectives were 
threefold: (1) to characterize key patterns of disrupted functional 
connectivity in DLB, (2) to explore associations between these 
imaging markers and multidimensional cognitive deficits, and 
(3) to unravel the neurophysiological mechanisms underlying 
network-level dysfunction. This multimodal approach aims 
to provide novel insights into early diagnosis and cognitive 
evaluation in DLB, oering a robust framework for future 
biomarker development. 

2 Materials and methods 

2.1 Subject characteristics 

This cross-sectional observational study enrolled 68 patients 
with DLB diagnosed at the Department of Neurology outpatient 
and inpatient units of our hospital between January 2021 and 
December 2024. A control group of 38 age-, sex-, and education-
matched healthy older adults was recruited during the same period. 
For DLB patients, age at assessment was defined as the time of 
initial diagnosis; for controls, as the date of study enrollment. 
DLB patients were diagnosed according to the fourth criteria for 
the diagnosis and management of dementia with Lewy bodies 
(McKeith et al., 2017). These patients were initially present with 
at least two core clinical features of DLB (fluctuating cognition, 
visual hallucinations, parkinsonism, and/or rapid eye movement 
sleep behavior disorder) or one core clinical feature with at least 
one indicative biomarker including reduced dopamine transporter 
uptake in the basal ganglia demonstrated by single-photon 
emission computed tomography (SPECT) or positron emission 
tomography-computed tomography (PET), abnormal (low uptake) 
123-Iodine-MIBG myocardial scintigraphy, and RBD screening 
questionnaire (RBD-SQ) and/or polysomnographic confirmation 
of RBD. The enrolled patients showed relative preservation of 
medial temporal lobe structures on MRI. All clinical diagnoses of 
dementia were confirmed by consensus agreement of at least two 
experienced neurologists, following a case review according to the 
protocol. Patients meeting any of the following exclusion criteria 
were excluded from this study: (1) Presence of severe neurological 
or psychiatric conditions that would impede compliance with study 
protocols, including severe visual/auditory impairment, aphasia, 
limb paralysis, or severe mental disorders; (2) Inability to complete 
required clinical evaluations including neuropsychological 
assessments, neuroimaging examinations, polysomnography, or 
other procedures due to aforementioned conditions; (3) Lack of 
reliable caregivers to provide necessary clinical information 
or assist with study participation; (4) Patients with acute 
cardiovascular or cerebrovascular events (e.g., (a) myocardial 
infarction; (b) disabling stroke (mRS ≥ 3); (c) acute stroke 
within 6 months); (5) Those diagnosed with neurodegenerative 
disorders potentially associated with dementia, including PD, 
AD, Frontotemporal dementia, Multiple system atrophy, 
Progressive supranuclear palsy, or Corticobasal degeneration. 
Informed consent was obtained from all participants or their legal 
guardians in accordance with the ethical principles of the Helsinki 
Declaration. 

This present study collected demographic data, clinical 
symptoms. Cognitive function was assessed by trained 
neuropsychological assessors using the Montreal Cognitive 
Assessment (MoCA) (Nasreddine et al., 2005) and Mini-Mental 
State Examination (MMSE) (Folstein et al., 1975). 

2.2 Image data acquisition 

All participants underwent rs-fMRI and high-resolution T1-
weighted structural imaging using a Siemens 3.0T MRI scanner 
(Erlangen, Germany). The rs-fMRI data were acquired using an 
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echo-planar imaging (EPI) sequence with the following parameters: 
repetition time (TR) = 2,000 ms, echo time (TE) = 30 ms, 
flip angle = 90◦ , field of view (FOV) = 240 × 240 mm2 , 
matrix size = 64 × 64, slice thickness = 4 mm, no inter-slice 
gap, and 240 volumes. High-resolution T1-weighted images were 
obtained with a 3D magnetization-prepared rapid gradient-echo 
sequence: TR = 1,900 ms, TE = 2.52 ms, 176 sagittal slices, 
and isotropic voxel size = 1 mm 3 . Participants were instructed 
to remain awake with eyes closed during scanning. Data were 
reacquired if motion artifacts or drowsiness (monitored via post-
scan questionnaires) were detected. 

2.3 Data preprocessing 

Functional imaging data were preprocessed using the 
DPABI v5.1 toolkit1 on MATLAB R2018a (MathWorks, Natick, 
MA, United States). The standardized pipeline included the 
following steps: First, the initial 10 volumes were discarded to 
eliminate transient signal instability during scanner equilibrium. 
Subsequently, temporal correction (slice timing adjustment) and 
spatial correction (rigid-body head motion realignment) were 
performed. The functional images were then co-registered to 
individual T1-weighted structural images and spatially normalized 
to the Montreal Neurological Institute 152 template using non-
linear transformation (resampled to 3 mm 3 isotropic voxels). 
Spatial smoothing was applied with a Gaussian kernel [full width at 
half maximum (FWHM) = 6 mm], followed by linear detrending 
and bandpass filtering (0.01–0.08 Hz) to retain low-frequency 
oscillations. Nuisance covariates, including 24 head motion 
parameters (Friston model), cerebrospinal fluid, white matter 
signals, and global mean signal, were regressed out. To control 
for motion artifacts, framewise displacement (FD) was calculated, 
and datasets with > 20% of volumes exceeding an FD threshold of 
0.2 mm were excluded. 

2.4 Functional connectivity and network 
analysis 

This study employed multiple analytical methods to 
evaluate brain functional connectivity and local activity levels, 
following established protocols for multiparametric imaging in 
neurodegenerative diseases (Zhou, 2019). Firstly, seed-based 
functional connectivity (sFC) analysis was conducted using a 
region-to-region correlation approach. Mean timecourses were 
extracted from DMN seed regions [PCC: MNI (−5, −49, 40); AG: 
(−45, −67, 36)] and correlated with timecourses of other regions 
(e.g., mPFC) using Pearson correlation, followed by Fisher’s 
Z-transformation. Pearson correlation coeÿcients for region-to-
region connectivity were Fisher’s Z-transformed to ensure normal 
distribution for subsequent statistical analyses. Seed-based FC 
analysis targeted connectivity from PCC and AG to other DMN 
regions [mPFC: MNI (0, 54, 18); contralateral AG; inferior parietal 
lobule] and visual network regions (posterior occipital cortex), 

1 http://rfmri.org/dpabi 

defined using the AAL atlas. Multiple comparisons were corrected 
using FDR (P < 0.05). Secondly, independent component analysis 
(ICA) was conducted using the Group ICA of fMRI Toolbox (GIFT 
v4.0b),2 decomposing the data into 10–20 intrinsic connectivity 
networks (e.g., DMN, visual network, executive control network), 
with between-group comparisons of spatial Z-score distributions. 
Thirdly, ReHo and fALFF were calculated to quantify local neural 
synchronization and low-frequency oscillation amplitudes. Finally, 
graph-theoretical analysis was implemented via GRETNA v2.0.0.3 

Whole-brain functional connectivity matrices were constructed 
based on the Automated Anatomical Labeling (AAL-116) atlas. 
Connections were defined using weighted correlation matrices, 
retaining connection strength without thresholding, to compute 
topological parameters including small-worldness coeÿcient (σ), 
global eÿciency (Eglob), local eÿciency (Eloc), average path length 
(L), and modularity (Q). Additionally, GICA was performed with 
15 components (range 10–20) using spatial ICA, followed by 
back-reconstruction to individual subject Z-maps, with group 
dierences assessed via two-sample t-tests and FDR correction. 

2.5 Group independent component 
analysis 

GICA was performed using the GIFT toolbox (v 4.0b) 
following established protocols. Data Reduction: Two-stage 
principal component analysis (PCA) retaining 100 individual-
level components and 20 group-level components (determined 
via minimum description length criteria); Algorithm: Infomax 
algorithm with 20 ICASSO iterations for stability (clustering 
similarity threshold > 0.8); Data Reduction: Two-stage principal 
component analysis (PCA) retaining 100 individual-level 
components and 20 group-level components (determined via 
minimum description length criteria); Algorithm: Infomax 
algorithm with 20 ICASSO iterations for stability (clustering 
similarity threshold > 0.8); Component Selection: Identification of 
resting-state networks (e.g., default mode network [DMN], visual, 
executive control, and salience networks) via spatial template 
matching (r > 0.4). 

2.6 Statistical analyses 

All statistical analyses and data management were performed 
using SPSS 26.0 for Mac (IBM Corporation, Armonk, NY, 
United States). Continuous variables were expressed as 
mean ± standard deviation (SD) when normally distributed 
or as median (interquartile range) for non-normally distributed 
data. Between-group comparisons were performed using Student’s 
t-test for parametric data and the Mann-Whitney U test for 
non-parametric data. Categorical variables were summarized 
as frequencies (n) with percentages (%) and analyzed using 
χ2 test as appropriate. Ordinal data were presented as median 
(quartiles) and analyzed with the Mann-Whitney U test. Spearman 

2 http://mialab.mrn.org/software/gift 

3 https://www.nitrc.org/projects/gretna 
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correlation analysis was performed to examine the relationships 
between functional connectivity strength, fALFF, ReHo, and 
both the total MoCA score and its domain-specific cognitive 
subscales. Subsequently, multiple linear regression model was 
constructed with the total MoCA score as the dependent variable, 
incorporating multiple neuroimaging parameters (e.g., PCC-AG 
connectivity strength, posterior occipital fALFF, and small-
worldness coeÿcient) as independent variables and adjusting for 
potential confounders including age, sex, and education years. 
Multiple comparisons in functional connectivity analyses were 
corrected using the false discovery rate (FDR) or Gaussian random 
field (GRF) methods. For GICA analysis, group comparisons 
of component spatial Z-scores using two-sample t-tests with 
family-wise error (FWE) correction based on permutation testing. 
All P-values reported are two-tailed, and P < 0.05 was considered 
statistically significant. 

3 Results 

The study enrolled 68 patients with DLB and 38 age-
and education-matched healthy controls. The demographic and 
cognitive assessment are summarized in Table 1, which shows 
that DLB patients and healthy controls were well-matched for 
demographic variables, with no significant dierences in age 
at assessment, sex, education level, marriage, smoking, alcohol 
consumption, diabetes mellitus, hypertension, heart disease, and 
asymptomatic brain infarcts between the two groups (P > 0.05). 
However, compared to the control group, the DLB group exhibited 
significantly lower total scores on the MoCA (18.26 ± 3.45 vs. 
26.84 ± 2.57, P < 0.001) and MMSE (21.37 ± 4.18 vs. 27.93 ± 1.96, 
P < 0.001). 

TABLE 1 Demographic and cognitive assessment between the two 
groups. 

Characteristics DLB 
(n = 68) 

NC (n = 38) P-value 

Sex (male n,%) 37 (54.4%) 18 (55.3%) 0.427 

Age at assessment (years) 67.29 ± 7.48 67.17 ± 8.97 0.926 

Education (years) 9.96 ± 4.35 9.83 ± 4.30 0.818 

Marriage (n,%) 0.861 

Married 56 (82.4%) 31 (81.6%) 

Divorced and widow 12 (17.6%) 7 (18.4%) 

Smoking, yes (n,%) 21 (30.9%) 14 (36.8%) 0.562 

Alcohol consumption, yes 
(n,%) 

24 (35.3%) 13 (34.2%) 0.894 

Diabetes mellitus, yes (n,%) 16 (23.5%) 9 (23.7%) 0.898 

Hypertension, yes (n,%) 19 (42.6%) 13 (34.2%) 0.205 

Heart disease, yes (n,%) 8 (11.8%) 4 (10.5%) 0.872 

Asymptomatic brain infarcts, 
yes (n,%) 

11 (16.2%) 6 (15.8%) 0.831 

MMSE 21.37 ± 4.18 27.93 ± 1.96 < 0.001 

MoCA 18.26 ± 3.45 26.84 ± 2.57 < 0.001 

DLB, Dementia with Lewy bodies; MMSE, Mini-Mental State Examination; MoCA, 
Montreal Cognitive Assessment; P < 0.05 significant dierence. 

Seed-based functional connectivity analysis revealed significant 
reductions in the integrity of DMN in the DLB group compared to 
healthy controls. Specifically, functional connectivity was markedly 
decreased between the posterior cingulate cortex and the angular 
gyrus (PCC–AG: 0.25 ± 0.06 vs. 0.41 ± 0.07, P < 0.001) and 
between the PCC and the medial prefrontal cortex (PCC–mPFC: 
0.27 ± 0.08 vs. 0.44 ± 0.06, P < 0.001), representing reductions 
of 38.19 and 38.64%, respectively (Table 2; Figure 1). In parallel, 
analyses of local neural activity showed significantly lower fALFF in 
DLB patients within key regions, including the posterior occipital 
lobe (P = 0.004), angular gyrus (P = 0.001), and left temporal 
pole (P < 0.001). ReHo was also significantly reduced in the 
left parietal lobe and posterior cerebellar lobe (both P < 0.001) 
(Table 2; Figure 2). These findings collectively indicate widespread 
impairments in both long-range network synchronization and local 
neural activity in DLB patients. 

Graph theory analysis demonstrated significant disruptions 
in the global architecture of functional brain networks in DLB 
(Table 3; Figure 3). Compared to controls, the DLB group exhibited 
a significantly lower small-worldness coeÿcient (1.29 ± 0.12 
vs. 1.46 ± 0.11, P < 0.001), global eÿciency (0.19 ± 0.03 vs. 
0.24 ± 0.04, P < 0.001), and local eÿciency (0.34 ± 0.05 vs. 
0.41 ± 0.06, P < 0.001). Conversely, the average path length was 
significantly prolonged (2.44 ± 0.36 vs. 2.78 ± 0.41, P < 0.001). 
These results indicate a shift toward a less integrated and less 
eÿcient functional network organization in DLB patients. 

Spearman correlation analyses revealed robust associations 
between key neuroimaging markers and cognitive deficits 
(Figures 4A–F). PCC–AG connectivity strength exhibited 
moderate-to-strong positive correlations with the MoCA total 
score (r = 0.53, P < 0.001), attention (r = 0.46, P < 0.001), 
executive function (r = 0.41, P < 0.001), and language function 
(r = 0.34, P < 0.001). Furthermore, posterior occipital fALFF and 
left parietal ReHo were significantly correlated with visuospatial 
ability (r = 0.34, P < 0.001 for fALFF; r = 0.42, P < 0.001 for ReHo) 
and memory function (r = 0.45, P < 0.001 for fALFF; r = 0.27, 
P = 0.006 for ReHo). 

TABLE 2 Comparison of functional connectivity and local neural activity 
metrics between DLB and control groups. 

Metric DLB 
(n = 68) 

NC (n = 38) P-value 

PCC–AG connectivity 

strength 

0.25 ± 0.06 0.41 ± 0.07 <0.001 

PCC–mPFC connectivity 

strength 

0.27 ± 0.08 0.44 ± 0.06 <0.001 

Left parietal ReHo value 0.31 ± 0.05 0.38 ± 0.06 <0.001 

Posterior cerebellar ReHo 

value 

0.29 ± 0.04 0.36 ± 0.06 <0.001 

Posterior occipital fALFF 

value 

0.39 ± 0.09 0.48 ± 0.08 0.004 

Angular gyrus fALFF value 0.44 ± 0.08 0.51 ± 0.07 0.001 

Left temporal pole fALFF 

value 

0.37 ± 0.06 0.43 ± 0.06 <0.001 

DLB, Dementia with Lewy bodies; PCC, Posterior Cingulate Cortex; AG, Angular 
Gyrus; mPFC, medial Prefrontal Cortex; ReHo, Regional Homogeneity; fALFF, Fractional 
Amplitude of Low-frequency Fluctuations; P < 0.05 significant dierence. 
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FIGURE 1 

Functional connectivity (fcMRI) for DLB and control groups. (A) Default mode network (DMN) FC with PCC seed, showing group mean FC maps for 
DLB and Control, and a t-value map of group differences (t-statistics from two-sample t-tests) for PCC-AG and PCC-mPFC connectivity. (B) Visual 
network FC with occipital seed, showing group mean FC maps and t-value map for occipital-parietal connectivity. Color scale: t-values from –6 to 
6 (magma colormap). 

FIGURE 2 

Local activity metrics for DLB and control groups. (A) Fractional ALFF (fALFF) group mean maps and t-value map of group differences in occipital, 
angular gyrus, and temporal pole. (B) Regional homogeneity (ReHo) group mean maps and t-value map of group differences in parietal and 
cerebellum. Color scale: t-values from –6 to 6 (magma colormap). 

As shown in Table 4, multiple linear regression analysis with 

the MoCA score as the dependent variable identified PCC–AG 

connectivity strength (β = 0.58, P = 0.001) as the strongest 
predictor. The fALFF of the posterior occipital lobe (β = 0.31, 
P = 0.020), small-worldness coeÿcient (β = 0.27, P = 0.031), 
and education level (β = 0.22, P = 0.037) also emerged as 
significant predictors. The model explained 42% of the variance 

in MoCA total scores (R2 = 0.42, P < 0.001), with no severe 

multicollinearity detected [variance inflation factor (VIF) < 1.2 for 
all variables]. 

GICA identified 20 independent components, of which four 
core resting-state networks showed significant between-group 
dierences (Figure 5). In the DMN, reduced activity in the posterior 
cingulate cortex/precuneus was shown in the DLB group [peak: 
(–5, –49, 40), t = 4.32, P < 0.001 FWE]. In the visual network, 
activity in the occipital pole (BA17/18) was decreased [peak: (– 
15, –93, 5), t = 3.87, P = 0.002 FWE]. In the executive control 
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TABLE 3 Comparison of graph theoretical network metrics between 
DLB and control groups. 

Metric DLB 
(n = 68) 

NC (n = 38) P-value 

Small-worldness coeÿcient 1.29 ± 0.12 1.46 ± 0.11 <0.001 

Global eÿciency 0.19 ± 0.03 0.24 ± 0.04 <0.001 

Local eÿciency 0.34 ± 0.05 0.41 ± 0.06 <0.001 

Average path length 2.78 ± 0.41 2.44 ± 0.36 <0.001 

DLB, Dementia with Lewy bodies; NC, normal control; P < 0.05 significant dierence. 

network, reduced dorsolateral prefrontal cortex activation was 
demonstrated in DLB [peak: (–46, 36, 28), t = 3.12, P = 0.008 FWE]. 
In contrast, the salience network exhibited enhanced activity in 
the anterior insula in DLB patients [peak: (34, 24, –2), t = 3.45, 
P = 0.003 FWE], potentially linked to attentional fluctuations. 
Spatial correlation analysis further confirmed reduced network 
specificity in the DLB group compared to controls, supporting these 
network-specific alterations. 

4 Discussion 

Our study demonstrates widespread FC disruptions in DLB, 
particularly within the DMN and visual network, characterized 
by pronounced decoupling between the PCC and key nodes 
such as PCC–AG and PCC–mPFC. These network-specific 
alterations not only distinguish DLB neuroimaging profiles but also 
mechanistically underpin its hallmark cognitive deficits, including 
fluctuating attention and visuospatial dysfunction. 

The PCC–AG and PCC–mPFC, as core hubs of the 
DMN, play pivotal roles in maintaining self-awareness, episodic 
memory, and attentional modulation (Andrews-Hanna et al., 
2010). Disruption of DMN connectivity likely impairs attention 
maintenance and information integration in DLB, contributing 
to clinical manifestations such as fluctuating attention and 
short-term memory deficits (Onofrj et al., 2019). Furthermore, 
diminished FC in the visual network may mechanistically explain 
the highly characteristic visual hallucinations in DLB. Supporting 
this, previous research (Lowther et al., 2014) reported reduced 
DMN activation and its correlation with cognitive fluctuations 

FIGURE 3 

Functional neuroimaging differences between groups. Comparisons of functional neuroimaging metrics between DLB patients (n = 68) and healthy 
controls (n = 38). Metrics include functional connectivity (PCC–AG, PCC–mPFC), fALFF (posterior occipital, parietal), ReHo (parietal, cerebellar), and 
graph-theoretical measures (small-worldness, global efficiency). Bars represent mean ± SD, with significant differences (P < 0.001) marked by ***. 

Frontiers in Aging Neuroscience 06 frontiersin.org 

https://doi.org/10.3389/fnagi.2025.1630826
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1630826 November 14, 2025 Time: 16:42 # 7

Su et al. 10.3389/fnagi.2025.1630826 

FIGURE 4 

Continued 

Frontiers in Aging Neuroscience 07 frontiersin.org 

https://doi.org/10.3389/fnagi.2025.1630826
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1630826 November 14, 2025 Time: 16:42 # 8

Su et al. 10.3389/fnagi.2025.1630826 

FIGURE 4 

Continued 

Frontiers in Aging Neuroscience 08 frontiersin.org 

https://doi.org/10.3389/fnagi.2025.1630826
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1630826 November 14, 2025 Time: 16:42 # 9

Su et al. 10.3389/fnagi.2025.1630826 

FIGURE 4 

(A–F) Correlations between imaging metrics and clinical scales. Scatterplot matrix showing Spearman correlations between imaging metrics and 
clinical scales (MoCA total score, attention, executive function, language function, visuospatial ability and memory), n = 106. Each plot includes 
regression lines and correlation coefficients. Significant correlations (P < 0.05) are indicated. 
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TABLE 4 Multiple linear regression analysis of MoCA scores. 

Predator β SE t P VIF 

PCC–AG connectivity strength 0.58 0.17 3.37 0.001 1.21 

Posterior occipital fALFF value 0.31 0.13 2.41 0.020 1.14 

Small-worldness coeÿcient 0.27 0.12 2.22 0.031 1.19 

Education level 0.22 0.10 2.14 0.037 1.05 

Age –0.15 0.08 –1.87 0.066 1.07 

PCC, Posterior Cingulate Cortex; AG, Angular Gyrus; fALFF, Fractional Amplitude of Low-frequency Fluctuations; P < 0.05 significant dierence. 

FIGURE 5 

GICA network spatial correlation differences. The spatial correlation (Spatial Correlation, r) comparisons between the default mode network (DMN), 
visual network, executive network, and salience network in the Control (NC) group and the Lewy Body Dementia (DLB) group. *** and **indicates 
P < 0.001 and P < 0.01 respectively. 

in DLB using rs-fMRI, while Kenny et al. (2012) identified 
PCC–AG connectivity loss as a key dierentiator between DLB 
and Alzheimer’s disease (AD). Our findings extend prior work 
by quantifying the magnitude of connectivity decline, providing 
concrete parameters for DLB-specific neuroimaging biomarkers. 

The integration of multimodal rs-fMRI metrics further revealed 
localized neural dysregulation. In this study, DLB patients 
exhibited significantly decreased fALFF and ReHo in the posterior 
occipital lobe, posterior cerebellum, and parietal regions, indicating 
both localized hypoactivity and desynchronized neural dynamics. 
Reduced fALFF and ReHo in posterior occipital and cerebellar 
regions imply diminished local neuronal synchronization and 
metabolic activity, potentially contributing to visuospatial deficits 
in DLB (Franciotti et al., 2015; Onofrj et al., 2019). 

Our research findings in graph theory provide a system-
level framework for understanding cognitive deficits in DLB. 
The reduction in small-world properties—evidenced by decreased 
global and local eÿciency alongside increased path length— 
reflects a breakdown in the brain’s optimal network organization. 
This ineÿcient neural architecture impairs global information 

integration, contributing to deficits in attention and executive 
function, while also disrupting localized processing, thereby leading 
to impairments in memory and visuospatial abilities. 

The graph-theoretical analysis further revealed compromised 
global network integration, characterized by reduced small-
worldness, diminished global eÿciency, and increased path length, 
collectively reflecting a systemic decline in functional network 
organization. Impaired whole-brain small-world properties— 
evidenced by decreased small-worldness coeÿcient, reduced 
global and local eÿciency, and prolonged average path length— 
indicate a transition from an “eÿciently integrated” network 
architecture to a “fragmented and ineÿcient” state, potentially 
driving multidimensional cognitive dysfunction. Some studies 
(Lowther et al., 2014; Sala et al., 2019) reported widespread 
functional connectivity reductions across resting-state networks in 
DLB, their studies did not systematically investigate topological 
properties. Complementarily, Chabran et al. (2020) identified 
co-occurring structural (gray matter atrophy) and functional 
connectivity abnormalities in DLB, suggesting structure-function 
covariation. Our findings extend these insights by employing a 
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multidimensional analytical framework—integrating local activity 
metrics, functional connectivity, and graph theory—to validate a 
“network disintegration” phenotype in DLB, bridging microscale 
neuronal dysregulation and macroscale network collapse. By 
quantifying hierarchical topological degradation and linking it 
to clinical manifestations, this study provides a more granular 
understanding of DLB pathophysiology, oering a methodological 
advance over prior works focused solely on connectivity strength. 

Notably, PCC–AG connectivity emerged as a robust 
independent predictor of cognitive impairment, correlating 
strongly with MoCA total scores and domain-specific deficits in 
attention and executive function. This pathway’s role in gating 
attention and integrating internal/external stimuli may explain 
DLB’s fluctuating cognition. Moreover, the synergistic predictive 
power of PCC–AG FC, occipital fALFF, and small-worldness 
highlights the complementary value of multimodal imaging in 
capturing DLB’s neurophysiological complexity (Zhou et al., 2008; 
Kucikova et al., 2024). While Babiloni et al. (2018) identified low-
frequency EEG abnormalities in DMN and attention networks, 
and Chatzikonstantinou et al. (2021) linked FC deficits to attention 
deficits in DLB, our rs-fMRI-based multimodal analysis provides 
spatially precise, quantifiable biomarkers, a methodological 
advance with direct clinical applicability, to dissect cognitive 
predictors. 

A vital next step is to determine whether the multimodal 
network disruptions we describe extend to the prodromal phase of 
DLB, such as in mild cognitive impairment with Lewy bodies or 
idiopathic REM sleep behavior disorder. Future research applying 
this integrated analytical approach to at-risk populations will be 
crucial to establish the predictive power of these biomarkers for 
conversion to overt dementia, a key translational objective for 
enabling early diagnosis and intervention. 

This study has several limitations that should be acknowledged. 
First, the cross-sectional design precludes causal inferences 
about FC changes and disease progression, and the lack of 
longitudinal follow-up limits our ability to track how these network 
alterations evolve with clinical decline. Second, our findings are 
derived from a cohort of patients with established DLB, and 
they cannot speak to whether these specific multimodal fMRI 
alterations are present in the prodromal or preclinical stages 
of the disease. Third, the absence of AD or PDD control 
groups limits diagnostic specificity. Fourth, while our sample 
size (68 DLB patients) exceeds prior rs-fMRI studies, multicenter 
cohorts are needed to validate generalizability. Fifth, unaccounted 
confounders (e.g., neuropsychiatric comorbidities, medication 
eects) may also influence results. Finally, the use of MoCA and 
MMSE, while reliable for global cognitive assessment, limits the 
granularity of domain-specific cognitive evaluation. Future studies 
should integrate multicenter longitudinal designs to validate these 
biomarkers, explore FC-cognition causality, and develop predictive 
models for early DLB detection and personalized intervention. 

5 Conclusion 

This study integrated multimodal rs-fMRI metrics to reveal 
multilevel functional abnormalities in DLB, including disrupted 
connectivity in the DMN and visual network, altered local neural 

activity (e.g., posterior occipital and cerebellar regions), and 
impaired global network topology. Key imaging markers, such as 
PCC–AG connectivity strength, small-worldness coeÿcient, and 
posterior occipital fALFF, showed strong correlations with specific 
cognitive deficits, emerging as significant predictors of cognitive 
impairment in multivariate regression models. These metrics, 
characterized by high reproducibility and neurophysiological 
plausibility, establish a novel neuroimaging framework for DLB, 
oering actionable biomarkers to enhance early diagnosis and 
cognitive evaluation. 
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