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Background: Repetitive transcranial magnetic stimulation (rTMS) has emerged 

as a promising neuromodulatory approach for alleviating sleep disturbances 

and depressive symptoms in Parkinson’s disease (PD), yet direct comparisons 

of different stimulation frequencies remain scarce. 

Objective: To evaluate and rank the efficacy of three rTMS frequencies (1 Hz, 

5 Hz, and 10 Hz), each combined with conventional therapy, on sleep disorders 

and depression in PD patients, thereby informing clinical decision-making. 

Methods: We conducted a systematic search for randomized controlled trials 

(RCTs) in PubMed, Embase, the Cochrane Library, Web of Science, ProQuest, 

China National Knowledge Infrastructure, Wanfang, and the Chinese Scientific 

and Journal Database. A network meta-analysis was performed to compare the 

effects of different frequencies of rTMS (1 Hz, 5 Hz, and 10 Hz) on sleep disorders 

and depression in PD patients. 

Results: Thirty-one RCTs involving 1,977 PD patients met inclusion criteria. 

Compared with conventional treatment alone, adjunctive 5 Hz and 10 Hz 

rTMS produced significant improvements in both Pittsburgh Sleep Quality Index 

(PSQI) and Parkinson’s Disease Sleep Scale (PDSS). Although 1 Hz rTMS yielded 

numerically greater PSQI and PDSS improvements than conventional therapy, 

these differences did not reach statistical significance, nor did differences 

between the three stimulation frequencies. In terms of depressive symptoms, 

all three frequencies (1 Hz, 5 Hz, and 10 Hz) significantly reduced HAMD 

scores versus standard care, with head-to-head comparisons indicating superior 

efficacy of 10 Hz over 1 Hz and 5 Hz. The Surface Under the Cumulative Ranking 

area (SUCRA) consistently identified 10 Hz rTMS as the most effective frequency 

for PSQI, PDSS, and HAMD outcomes. 

Conclusion: Adjunctive rTMS at 1 Hz, 5 Hz, and 10 Hz each confer benefits 

for sleep and mood in PD patients, but 10 Hz stimulation appears to offer the 
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greatest overall improvement. These findings support the preferential use of 

10 Hz rTMS when targeting non-motor symptoms in Parkinson’s disease. 

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/ 

recorddashboard, identifier CRD42024614337. 

KEYWORDS 

Parkinson, sleep disorder, depression, repetitive transcranial magnetic stimulation, 
meta-analysis 

1 Introduction 

Parkinson’s disease (PD), which primarily aects middle-
aged and older adults, is the world’s second most common 
neurodegenerative disorder (Rocca, 2018; GBD 2016 Neurology 
Collaborators., 2019). In addition to its hallmark motor symptoms 
such as tremor, rigidity and bradykinesia, PD is also characterized 
by a wide range of non-motor impairments, including mood 
disturbances, cognitive decline and sleep disorders (Hendricks and 
Khasawneh, 2021; Kirmani et al., 2021). The exact pathogenesis 
of PD remains unclear; current evidence suggests that non-motor 
symptoms predominantly arise from diminished dopaminergic 
transmission within the midbrain–limbic and midbrain–cortical 
systems (Moore et al., 2008). Most individuals with PD experience 
sleep problems early in the disease course or even before 
overt motor signs appear (Barone et al., 2009). Common sleep 
disorders in PD include rapid eye movement sleep behavior 
disorder (RBD), insomnia, restless legs syndrome, sleep-related 
breathing disturbances and excessive daytime sleepiness (Chahine 
et al., 2017). These disturbances may result from side eects of 
dopaminergic medications, neurodegenerative changes in brain 
structures that regulate sleep and nocturnal motor symptoms 
(French and Muthusamy, 2016). The regulation of sleep relies 
on the comprehensive function of multiple brain regions 
and various neurotransmitters, including dopamine, serotonin, 
norepinephrine, and other PD-related neurotransmitters (Stefani 
and Högl, 2020). These neurotransmitters not only regulate sleep 
disorders but may also be associated with cognitive dysfunction 
in PD (Yeung and Cavanna, 2014; Maggi et al., 2021; Malhotra, 
2022). Emotional disorders involve depression, anxiety, etc. Recent 
studies have shown that there is a strong correlation between sleep 
quality and depressive and anxious emotions in PD patients, and 
the severity of sleep disorders is related to the degree of depression 
(Kay et al., 2018; Rana et al., 2018). Depression is another prevalent 
non-motor feature of PD and often has an insidious onset that 
precedes typical motor manifestations (Langston, 2006; Simonetta-
Moreau, 2014). In patients with PD, depressive episodes frequently 
co-occur with anxiety, irritability, sadness and pessimism about 
the future, all of which can worsen sleep disturbances (van der 
Hoek et al., 2011). Depression and sleep disorders frequently co-
occur in PD, each exacerbating the other in a self-perpetuating 
cycle. The close link between sleep dysfunction and depression 
leads to loss of mobility, reduced functional independence and 
severe impairments in mood and daily quality of life (Hariz and 
Forsgren, 2011; Zhao et al., 2021). These challenges also place a 
heavy burden on families and healthcare systems, since the global 

economic cost of PD reached an estimated $52 billion in 2017 and 
is projected to exceed $80 billion by 2040 as populations continue 
to age (Dorsey et al., 2018). Current management of PD relies 
mainly on dopaminergic pharmacotherapy, but long-term use of 
these agents carries risks of adverse eects and may even accelerate 
neurodegeneration (Jiménez-Urbieta et al., 2015; Seppi et al., 2019). 
It is therefore critical to explore non-pharmacological interventions 
that carry fewer risks and can help alleviate both sleep disturbances 
and depression in PD patients. 

Repetitive transcranial magnetic stimulation (rTMS) is a non-
invasive neuromodulation technique grounded in electromagnetic 
induction; a pulsed magnetic field is applied to the skull surface 
to induce weak electrical currents in targeted brain regions (Chail 
et al., 2018). Depending on the frequency of the stimulation pulses, 
rTMS is classified as either low-frequency (≤1 Hz, low frequency 
rTMS, LF-rTMS) or high-frequency (>1 Hz, high frequency rTMS, 
HF-rTMS) stimulation (Xia et al., 2022). Previous studies have 
demonstrated that its therapeutic eects arise from bidirectional 
modulation of cortical excitability: low-frequency rTMS reduces 
excitability, while high-frequency rTMS enhances it (Cirillo et al., 
2017). However, direct comparisons across frequencies are scarce, 
so this study employed a network meta-analysis (NMA) to 
evaluate how dierent rTMS frequencies aect sleep disorders and 
depression in PD patients and to identify the optimal stimulation 
frequency for clinical use. 

2 Materials and methods 

This systematic review was conducted in accordance with 
Preferred Reporting Items for Systematic Evaluation and Meta-
Analysis statement (PRISMA) guidelines (Hutton et al., 2015) and 
the Cochrane Handbook for Systematic Reviews of Interventions 
to ensure methodological rigor. The protocol was registered with 
PROSPERO under registration number CRD42024614337. 

2.1 Search strategy 

Systematic searches were conducted on PubMed, EMBASE, 
Cochrane Library, Web of Science, ProQuest, China National 
Knowledge Infrastructure, Wanfang Database and Chinese 
Scientific and Journal Database (VIP) before February 2025 
for randomized controlled trials (RCTs) on the eects of rTMS 
stimulation on sleep disorders and depression in PD patients. Using 
a combination of logical connective, medical MeSH, and free-text 
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terms, search terms included: “Parkinson’s Disease,” “Parkinson,” 
“Parkinson’s,” “Parkinsonism,” “Repetitive Transcranial Magnetic 
Stimulation,” “Transcranial Magnetic Stimulation,” “rTMS,” 
“Sleep,” “Sleep disorders,” “Depression.” See Supplementary Table 1 
for detailed search strategies for PubMed. 

2.2 Inclusion criteria 

Inclusion criteria were defined according to the PICOS 
framework (Population, Interventions, Comparators, Outcomes, 
and Study Design). 

1. Population: Participants diagnosed with PD who reported 
sleep disorders, were over 18 years of age, of any gender, and 
provided informed consent. 

2. Interventions: Experimental groups received low-frequency 
rTMS (LF-rTMS) or high-frequency rTMS (HF-rTMS); all 
interventions were given in addition to standard care, which 
encompassed conventional antiparkinsonian medications or 
routine rehabilitation. 

3. Comparators: Dierent frequencies of rTMS, no stimulation, 
or sham stimulation (the latter referring to the absence of 
eective magnetic stimulation with only the sound simulated); 
all comparators were given in addition to standard care, which 
encompassed conventional antiparkinsonian medications or 
routine rehabilitation. 

4. Outcomes: Primary outcomes included the Pittsburgh Sleep 
Quality Index (PSQI), Parkinson’s Disease Sleep Scale 
(PDSS), and Hamilton Rating Scale for Depression (HAMD); 
secondary outcomes comprised adverse events. 

5. Study design: Only randomized controlled trials (RCTs) in 
human participants were eligible. 

2.3 Exclusion criteria 

1. Sleep disorders were not attributable to PD; (2) data on 
any primary or secondary outcomes were unavailable; (3) 
the full text could not be retrieved; (4) the study was a 
duplicate publication. 

2.4 Study selection 

All retrieved records were first imported into EndNoteX9 for 
duplicate removal. Two independent reviewers then screened titles 
and abstracts to exclude studies that did not meet the inclusion 
criteria. The full text of all remaining articles was read and assessed 
for eligibility, and any disagreements were resolved by a third 
reviewer (S.W.H). 

2.5 Data extraction 

Data extraction was performed independently by two 
investigators (X.Y and L.Y.J). For each included study, we 

recorded the first author, year and country of publication, sample 
size, participant age, intervention type, stimulation parameters, 
stimulation site and outcome measures. All data were entered into 
an Excel spreadsheet and cross-checked by both investigators; any 
discrepancies were adjudicated by a third investigator (S.W.H). 
When multiple reports used the same data set, we selected the 
publication with the higher quality score or, if scores were equal, 
the larger sample size. 

2.6 Quality assessment 

The quality of the included studies was assessed by two 
independent reviewers (W.H.L and H.X) using the Cochrane 
Risk of Bias Tool 2.0 (RoB 2.0) (Sterne et al., 2019) and the 
Physiotherapy Evidence Database (PEDro) scale. The evaluation 
of RoB 2.0 encompasses the randomization process, deviations 
from intended interventions, missing outcome data, measurement 
of outcomes, and selection of reported results. The risk of bias 
in each domain can be categorized into three levels: “low risk,” 
“some concerns,” and “high risk.” If the assessment results in all 
domains are “low risk,” then the overall risk of bias is considered 
“low risk”; if some domains have “some concerns” and none have 
“high risk,” then the overall risk of bias is “some concerns”; if even 
one domain is rated “high risk,” the overall risk of bias is considered 
“high risk.” The PEDro scale consists of 11 items, with the first item 
not contributing to the total score, which totals 10 points. Studies 
with a score of ≥6 (6/10) are considered “good” quality, 4–5 are 
“fair” quality, and <4 are “poor” quality. Any disagreements in the 
assessment process were decided by a third investigator (S.W.H). 

2.7 Statistical analysis 

Network meta-analysis was conducted in Stata 16.0. Because 
all outcomes were continuous variables measured on the same 
scale, we used weighted mean dierences (WMD) and 95 percent 
confidence intervals as eect sizes. We visualized comparisons 
in a network evidence diagram in which each node represents 
an intervention (node size proportional to total sample size) and 
each connecting line represents a direct comparison (line thickness 
proportional to number of studies). Consistency between direct 
and indirect evidence was assessed via ring inconsistency testing; 
a 95% CI for the inconsistency factor that included zero indicated 
good agreement. Pairwise comparative forest plots were generated 
to display intervention eects; eect sizes lying on one side of 
the null line with confidence intervals that did not cross 0 were 
considered statistically significant. We calculated Surface Under 
the Cumulative Ranking area (SUCRA) to rank interventions. 
The SUCRA value ranges from 0 to 100, where higher values 
indicate superior intervention eÿcacy and lower values correspond 
to diminished eectiveness. Finally, used funnel plots to evaluate 
publication bias and other small-study eects. Subgroup and 
sensitivity analyses were conducted to assess the robustness of 
our findings. Studies were stratified into two subgroups based 
on total pulse count (≤600 pulses and >600 pulses); Sensitivity 
analyses were conducted after excluding studies with sample sizes 
<10, PEDro scores < 6, and Hoehn & Yahr stages (H&Y) > 3. 

Frontiers in Aging Neuroscience 03 frontiersin.org 

https://doi.org/10.3389/fnagi.2025.1623917
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1623917 September 3, 2025 Time: 16:6 # 4

Xia et al. 10.3389/fnagi.2025.1623917 

Publication bias and small-study eects were evaluated using 
funnel plots in Stata 16.0. 

3 Results 

3.1 Study selection 

The initial search yielded 5303 records. After removing 1332 
duplicates, 3 971 records remained. Title and abstract screening 
excluded 3862 records, leaving 109 articles for full-text review; 
78 of these were excluded and 31 trials were included in the 
network meta-analysis. 

Figure 1 depicts the screening and selection process of the 
articles. 

3.2 Characteristics of the included 
studies 

In total, 1977 Parkinson’s disease patients were enrolled. 
Twenty-four trials were published in Chinese and seven in 
English, with publication dates ranging from 2013 to 2024. In 
the control arms, one trial combined rehabilitation training with 

sham stimulation and the remainder combined medication with 
sham stimulation. In the experimental arms, 12 trials applied low-
frequency rTMS at 1 Hz; 10 trials applied high-frequency rTMS 
at 5 Hz; and 12 trials applied high-frequency rTMS at 10 Hz. 14 
studies reported PSQI, 8 studies reported PDSS only, and 19 studies 
reported HAMD. Detailed characteristics of the included studies 
are shown in Table 1. (Moore et al., 2008; Zhuohua et al., 2013; 
Wenjing et al., 2014; Brys et al., 2016; Shin et al., 2016; Fengju 
et al., 2017; Yu Wen-wen and Hai-rong, 2017; Ding and Xu, 2018; 
Hua et al., 2019; Chao, 2020; Lai Jinghui et al., 2020; Zhuang et al., 
2020; Chinese Journal of Practical Nervous Diseases, 2021; Dai 
Wei-zheng et al., 2021; Jia-Jin, 2021; Wang Dong and Yuanyu, 
2021; Wang Yajun, 2021; Chen et al., 2022; Ouyang Gui-lan, 2022; 
Qingping et al., 2022; Yu Xiaolan, 2022; Zhang and Sha, 2022; Hu 
Xiaoying et al., 2023; Jiang et al., 2023; Li, 2023; Shaheen et al., 2023; 
Xue et al., 2023; Zhao Rong, 2023; Lei Meng and Jichao, 2024; Qin 
Xi-xiang et al., 2024; Wu et al., 2024; Zhang et al., 2025). 

3.3 Quality evaluation 

Risk of bias was assessed using the Cochrane Risk of Bias 
2.0 tool. Eighteen trials (58.1%) described their randomization 
process; four (12.9%) reported allocation concealment; eight 
(25.8%) reported blinding of participants and personnel; and 

FIGURE 1 

Flow diagram of the eligible studies selection process. 
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TABLE 1 Characteristics of the included studies. 

References Country Sample 
size (E/C) 

Mean age (E/C, 
year) 

Duration of illness 
(E/C, year) 

Interventions (E/C, 
year) 

rTMS target rTMS 
frequency 

(Hz) 

No. of 
pulses 

Outcomes 

Chinese Journal of 
Practical Nervous 
Diseases, 2021 

China 34/42 62.06 ± 9.02/65.19 ± 10.34 6.09 ± 3.32/7.71 ± 5.57 HF-rTMS + CT/CT + Sham Left DLPFC 10 Hz 1200 

Ding and Xu, 2018 China 42/42 66.30 ± 7.50/67.60 ± 8.60 3.24 ± 1.23/3.16 ± 1.42 HF-rTMS + CT/CT + Sham Bilateral dorsolateral 
frontal lobes 

5 Hz – 

Hu Xiaoying et al., 
2023 

China 47/47 67.93 ± 5.39/68.13 ± 5.41 4.30 ± 0.71/4.21 ± 0.69 HF-rTMS + CT/CT + Sham Bilateral dorsolateral 
prefrontal cortex 

5 Hz 600 

Lai Jinghui et al., 
2020 

China 20/20 69.55 ± 1.64/71.20 ± 1.67 4.23 ± 0.61/5.50 ± 1.28 HF-rTMS + CT/CT + Sham SMA 10 Hz 1200 

Lei Meng and Jichao, 
2024 

China 48/48 61.48 ± 4.82/60.91 ± 5.33 5.37 ± 1.09/5.63 ± 1.18 HF-rTMS + CT/CT + Sham F3 10 Hz 2400 

Xue et al., 2023 China 51/51 64.17 ± 5.42/64.02 ± 5.67 6.17 ± 2.24/6.12 ± 2.13 HF-rTMS + CT/CT + Sham Left DLPFC 5 Hz 600 

Ouyang Gui-lan, 
2022 

China 48/48 61.00 ± 9.00/60.00 ± 8. 80 6.10 ± 4.40/5.50 ± 4.50 LF-rTMS + CT/CT + Sham M1 1 Hz 2800 

Qin Xi-xiang et al., 
2024 

China 46/46 63.90 ± 7.20/64.50 ± 6.70 7.70 ± 1.90/7.40 ± 1.70 HF-rTMS + CT/CT + Sham Bilateral dorsolateral 
prefrontal cortex 

5 Hz 1600 

Wang Yajun, 2021 China 25/25 67.55 ± 6.89/68.00 ± 5.65 4.56 ± 2.92/3.00 ± 1.92 LF-rTMS + CT/CT + Sham Dorsolateral prefrontal 
cortex and occipital 

region 

1 Hz 600 

Jia-Jin, 2021 China 10/10 63.90 ± 8.66/65.20 ± 4.24 6.35 ± 3.64/5.60 ± 3.02 LF-rTMS + CT/CT + Sham Right DLPFC 1 Hz 1200 

Zhuohua et al., 2013 China 29/29 62.12 ± 7.51/63.94 ± 7.39 6.75 ± 3.12/6.68 ± 3.28 LF-rTMS + CT/CT + Sham Right frontal lobe 1 Hz – 

Yu Wen-wen and 

Hai-rong, 2017 

China 31/33 67.25 ± 6.71/68.00 ± 7.56 2.76 ± 1.56/2.64 ± 1.49 HF-rTMS + CT/CT + Sham Left DLPFC 5 Hz 1600 

Fengju et al., 2017 China 34/33 62.37 ± 7.90/63.50 ± 6.40 6.10 ± 1.70/6.30 ± 1.40 HF-rTMS + CT/CT + Sham Lateral left frontal lobe 10 Hz 800 

Zhao Rong, 2023 China 32/32/32 62.30 ± 10.51/60.39 ± 8.64/ 
62.10 ± 10.62 

– HF-rTMS + CT/LF-
rTMS + CT/CT 

Bilateral M1 region 

and cerebellum 

10 Hz/1 Hz 1750/1050 

Wu et al., 2024 China 34/29 63.00 ± 11.33/65.00 ± 7.03 5.0 ± 3.70/5.0 ± 4.59 LF-rTMS + CT/CT + Sham Right DLPFC 1 Hz 1200 

Zhuang et al., 2020 China 19/14 60.58 ± 9.21/61.57 ± 13.25 5.86 ± 4.35/5.71 ± 3.77 LF-rTMS + CT/CT + Sham Right DLPFC 1 Hz 1200 

Li, 2023 China 15/15 58.94 ± 2.14/58.28 ± 2.31 – HF-rTMS + CT/LF-
rTMS + CT 

Right DLPFC 10 Hz/1 Hz 1200 

Shaheen et al., 2023 Egypt 20/20 61.60 ± 7.30/61.10 ± 6.30 3.60 ± 2.30/3.40 ± 2.20 HF-rTMS + CT/CT + Sham Bilateral parietal cortex 10 Hz 1000 

Zhang et al., 2025 China 38/40 65.38 ± 8.34/63.90 ± 7.75 4.40 ± 1.45/4.25 ± 1.69 HF-rTMS + CT/CT + Sham Left DLPFC 5 Hz 1600 

Dai Wei-zheng et al., 
2021 

China 40/40 60.78 ± 7.02/61.10 ± 6.44 2.34 ± 0.87/2.25 ± 0.66 HF-rTMS + CT/CT Left DLPFC 5 Hz 1600 

Wang Dong and 

Yuanyu, 2021 

China 44/44 60.60 ± 9.50/60.20 ± 10.12 1.57 ± 0.34/1.45 ± 0.31 HF-rTMS + CT/CT Left DLPFC 10 Hz – 
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17 (54.8%) reported blinding of outcome assessment. All research 
data were complete. Detailed results of the risk-of-bias assessment 
are provided in Figure 2. Regarding PEDro scores, all studies scored 
>4 (median 6; range 4–9). See Supplementary Table 2 for details. 

3.4 Network of evidence 

Network geometry for each outcome is shown in Figures 3– 
5. Figure 3A illustrates the four interventions compared on PSQI 
(with the largest sample in the conventional treatment node); 
Figure 4A shows the PDSS network of four interventions; and 
Figure 5A depicts the HAMD network. 

3.4.1 rTMS for PSQI 
A total of 14 RCTs evaluated the eects of rTMS on PSQI, 

encompassing four interventions-1 Hz rTMS, 5 Hz rTMS, 10 Hz 
rTMS, and conventional treatment (CT)-and forming a closed 
intervention loop. Loop inconsistency testing demonstrated good 
agreement across studies (IF = 1.03, 95% CI = 0.00 to 2.40) 
(Figure 3B), permitting use of a consistency model. Compared 
with CT, both 5 Hz (WMD = −1.88, 95% CI = −3.30 to 
−0.45) and 10 Hz rTMS (WMD = −2.03, 95% CI = −3.24 
to −0.83) significantly improved PSQI, whereas 1 Hz rTMS 
(WMD = −0.88, 95% CI = −2.02 to 0.25) produced a non-
significant reduction (Figure 3C); no pairwise dierences among 
frequencies reached significance. SUCRA ranking indicated that 
10 Hz rTMS had the highest probability of being the optimal 
intervention (SUCRA = 83.2%), followed by 5 Hz (76.6%), 1 Hz 
(38.0%) and CT (2.2%) (Figure 3D). Sensitivity analysis-excluding 
studies with sample sizes <10-yielded identical SUCRA orderings, 
reaÿrming 10 Hz rTMS as the most eective. Pairwise comparisons 
displayed in forest plots likewise mirrored the overall findings 
(Supplementary Figure 5). 

3.4.2 rTMS for PDSS 
A total of eight RCTs evaluated the eect of rTMS on PDSS, 

comprising four interventions, 1 Hz rTMS, 5 Hz rTMS, 10 Hz 
rTMS, and conventional treatment (CT), which together formed a 
closed intervention loop. Loop inconsistency testing demonstrated 
good agreement (IF = 1.91, 95% CI = 0.00 to −5.39) (Figure 4B), 
permitting analysis via a consistency model. Compared with 
CT, both 5 Hz (WMD = 6.12, 95% CI = 2.42 to 9.83) and 
10 Hz rTMS (WMD = 8.44, 95% CI = 4.84 to 12.04) produced 
significant improvements in PDSS scores, whereas 1 Hz rTMS 
(WMD = 2.20, 95% CI = −2.28 to 6.68) yielded a non-significant 
reduction. In head-to-head comparisons, 10 Hz outperformed 
1 Hz (WMD = 6.24, 95% CI = 1.75 to 10.73), with no other 
pairwise dierences reaching significance (Figure 4C). SUCRA 
ranking indicated that 10 Hz rTMS was the most likely optimal 
intervention (93.6%), followed by 5 Hz (69.7%), 1 Hz (31.2%), and 
CT (5.5%) (Figure 4D). No sensitivity analysis was performed for 
this outcome, as all included studies had sample sizes ≥10. 

3.4.3 rTMS for HAMD 
A total of 18 RCTs assessed rTMS eects on HAMD, using the 

same four interventions–1 Hz rTMS, 5 Hz rTMS, 10 Hz rTMS, 
and CT–which also formed a closed network. Loop inconsistency 
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FIGURE 2 

Risk bias assessment plot (green, yellow, and red indicate low, moderate, and high risk levels). 

FIGURE 3 

Network meta-analysis results for Pittsburgh Sleep Quality Index (PSQI). (A) Network plot; (B) ring inconsistencies (X-axis, effect size, 0 represents no 
effect; Y-axis, closed loop between interventions, the horizontal line range represents the 95% confidence interval; diamond represents point 
estimate); (C) forest plot (X-axis, effect size, with 0 representing no effect; Y-axis, comparison between interventions, with the red line range 
indicating the 95% confidence interval; diamonds representing pooled effect sizes); (D) the figure of ranking probability (X-axis, ranking position 
(Rank), Y-axis, representing Cumulative Probability); (E) funnel plot (X-axis, effect size, Y-axis, standard error of effect size, and black dots represent 
the results of each study). 

testing again showed good agreement (IF = 0.46, 95 CI = 0.00 to 

1.86) (Figure 5B), justifying use of a consistency model. Versus 
CT, each rTMS frequency 1 Hz (WMD = −2.70, 95% CI = −4.67 

to −0.74), 5 Hz (WMD = −2.60, 95% CI = −4.10 to −1.11) and 

10 Hz (WMD = −4.28, 95% CI = −5.99 to −2.56) significantly 

reduced HAMD scores, with no significant dierences in pairwise 

frequency comparisons (Figure 5C). SUCRA ranking identified 

10 Hz as the best intervention (97.2%), followed by 5 Hz (58.5%), 
1 Hz (44.3%), and CT (0.0%) (Figure 5D). Sensitivity analysis– 

excluding studies with sample sizes <10–yielded the same SUCRA 

order and mirrored the overall forest-plot results (Supplementary 
Figure 6). 

3.5 Subgroup 

Previous studies have demonstrated that varying the number 
of rTMS pulses may elicit dose-dependent remodeling of neuronal 
networks in PD patients (Anil et al., 2023). Accordingly, we 
stratified analyses into two subgroups based on total pulse count: 
600-pulse and >600-pulse. 
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FIGURE 4 

Network meta-analysis results for Parkinson’s Disease Sleep Scale (PDSS). (A) Network plot; (B) ring inconsistencies (X-axis, effect size, 0 represents 
no effect; Y-axis, closed loop between interventions, the horizontal line range represents the 95% confidence interval; diamond represents point 
estimate); (C) forest plot (X-axis, effect size, with 0 representing no effect; Y-axis, comparison between interventions, with the red line range 
indicating the 95% confidence interval; diamonds representing pooled effect sizes); (D) the figure of Ranking probability (X-axis, ranking position 
(Rank), Y-axis, representing Cumulative Probability); (E) funnel plot (X-axis, effect size, Y-axis, standard error of effect size, and black dots represent 
the results of each study). 

3.5.1 600 pulse subgroup 
In the 600-pulse PSQI subgroup, three RCTs comparing 1 Hz 

and 5 Hz rTMS were pooled using a consistency model. Relative 
to conventional treatment (CT), 5 Hz rTMS significantly reduced 
PSQI scores (WMD = −1.72, 95% CI = −2.18 to −1.27), whereas 
1 Hz rTMS was inferior to CT (WMD = 1.12, 95% CI = 0.39 to 
1.85), likely reflecting the subgroup’s small sample size. A direct 
comparison confirmed superior PSQI improvement with 5 Hz 
versus 1 Hz (WMD = −2.84, 95% CI = −3.71 to −1.98). 
SUCRA ranking designated 5 Hz as the optimal intervention 
(SUCRA = 100.0%), followed by CT (49.9%) and 1 Hz (0.1%) 
(Supplementary Figure 1). Only one RCT has examined 600-
pulse rTMS for PDSS, and literature on 600-pulse rTMS eects 
on HAMD is similarly limited; thus, subgroup analyses for these 
outcomes were not performed. 

3.5.2 Subgroup with >600 pulses 
In the >600-pulse PSQI subgroup, ten RCTs comparing 1 Hz 

and 10 Hz rTMS in PD patients were pooled using a consistency 
model after demonstrating good network agreement (p > 0.05). 
Both 1 Hz (WMD = −1.72, 95% CI = −2.87 to −0.58) and 
10 Hz rTMS (WMD = −2.09, 95% CI = −3.51 to −0.68) yielded 
significant PSQI improvements versus conventional treatment 
(CT), with no significant dierence observed between the two 
frequencies (WMD = −0.37, 95% CI = −2.00 to 1.26). SUCRA 
ranking placed 10 Hz first (83.3%), followed by 1 Hz (66.5%) and 
CT (0.2%) (Supplementary Figure 2). 

In the >600-pulse PDSS subgroup, seven RCTs involving 1 Hz, 
5 Hz and 10 Hz rTMS were analyzed under a consistency model 
(loop inconsistency p > 0.05). Both 5 Hz (WMD = 6.12, 95% 
CI = 1.79 to 10.44) and 10 Hz rTMS (WMD = 9.25, 95% CI = 5.43 to 
13.8) significantly enhanced PDSS scores compared to CT, whereas 

1 Hz (WMD = 0.55, 95% CI = −4.69 to 5.79) did not. Head-to-head 
comparisons showed 10 Hz to be superior to 1 Hz (WMD = 8.70, 
95% CI = 2.61 to 14.79), with no other pairwise dierences reaching 
significance. SUCRA ranked 10 Hz highest (95.1%), then 5 Hz 
(69.6%), 1 Hz (21.3%) and CT (14.1%) (Supplementary Figure 3). 

In the >600-pulse HAMD subgroup, eleven RCTs assessing 
1 Hz, 5 Hz and 10 Hz rTMS formed a closed network with 
good consistency (P > 0.05). All three frequencies significantly 
reduced HAMD scores versus CT (1 Hz WMD = −2.14, 95% 
CI = −2.88 to −1.40, 5 Hz WMD = −2.40, 95% CI = −2.95 to 
−1.85 and 10 Hz WMD = −3.97, 95% CI = −4.54 to −3.40). 
Pairwise analyses revealed that 10 Hz outperformed both 1 Hz 
(WMD = −1.83, 95% CI = −2.46 to −1.19) and 5 Hz (WMD = 1.57, 
95% CI = −2.37 to −0.77), while the latter two did not dier 
significantly. SUCRA indicated 10 Hz as the optimal intervention 
(100.0%), followed by 5 Hz (56.9%), 1 Hz (43.1%) and CT (0.0%) 
(Supplementary Figure 4). 

3.6 Publication bias 

Publication bias, evaluated via funnel plots for all outcomes, 
was broadly symmetrical, with only a few studies lying outside the 
funnel and suggesting minimal bias (Figures 3E–5E). 

3.7 Sensitivity analyses 

After excluding studies with a PEDro score of less than 6, the 
research results remained unchanged (Supplementary Figures 7– 
9). There was only one study with an H-Y stage >3, and 
even after excluding it, the research results remained unchanged 
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FIGURE 5 

Network meta-analysis results for Hamilton Depression Scale (HAMD). (A) Network plot; (B) ring inconsistencies (X-axis, effect size, 0 represents no 
effect; Y-axis, closed loop between interventions, the horizontal line range represents the 95% confidence interval; diamond represents point 
estimate); (C) forest plot (X-axis, effect size, with 0 representing no effect; Y-axis, comparison between interventions, with the red line range 
indicating the 95% confidence interval; diamonds representing pooled effect sizes); (D) the figure of Ranking probability (X-axis, ranking position 
(Rank), Y-axis, representing Cumulative Probability); (E) funnel plot (X-axis, effect size, Y-axis, standard error of effect size, and black dots represent 
the results of each study). 

(Supplementary Figures 10, 11). This indicates that the results of 
this study are relatively stable and reliable. 

3.8 Adverse reactions 

Eight studies provided detailed accounts of adverse eects: 
13 patients experienced transient headaches that resolved with 
rest and were able to complete the protocol, and six patients 
reported transient dizziness, which likewise subsided after resting 
(Supplementary Table 3). 

4 Discussion 

This study employed a NMA to evaluate and compare the 
eects of rTMS at various frequencies, combined with conventional 
therapy, on sleep disorders and depressive symptoms in patients 
with Parkinson’s disease. Compared with conventional therapy 
alone, all rTMS frequencies significantly improved PSQI, PDSS, 
and HAMD scores, with 10 Hz rTMS appearing to be the most 
eective for both sleep and mood. We then stratified stimulation by 
pulse count (600 pulses vs. >600 pulses). In the 600-pulse group, 
which did not include 10 Hz stimulation, 5 Hz rTMS yielded the 
greatest benefit; in the >600-pulse subgroup, 10 Hz rTMS produced 
the most pronounced improvements. 

This study employed a NMA to assess and compare the 
eects of dierent rTMS frequencies, each combined with 
conventional therapy, on sleep disorders in PD patients. The 

findings demonstrated that, relative to conventional treatment 
alone, all rTMS frequencies significantly improved PSQI, PDSS and 
HAMD scores, with 10 Hz rTMS plus standard therapy emerging as 
the most eective intervention for each outcome. There are certain 
dierences in the findings regarding the impact on sleep between 
this study and that of Cristini et al. (2025). Cristini’s research 
revealed that LF-rTMS can enhance subjective sleep quality in PD 
patients, yet the evidence for HF-rTMS improving sleep quality 
is insuÿcient. This discrepancy may stem from Cristini’s study 
not precisely categorizing HF-rTMS by frequency, potentially 
leading to interference from mixing dierent frequency groups. 
Additionally, the patients in the HF-rTMS group in that study 
had relatively mild sleep issues, which could have contributed to 
a ceiling eect. Regarding depression, a previous meta-analysis 
(Zhou et al., 2018) indicated that 5 Hz rTMS is most eective 
in alleviating depressive symptoms. Upon comparison, we found 
that the studies included in that meta-analysis were self-controlled 
before-and-after designs, and the number of included studies was 
limited. Currently, it is believed that abnormal discharges in the 
subthalamic nucleus (STN) of PD patients are transmitted through 
the cortical–striatal–thalamic circuit, leading to disruptions in 
the sleep–wake cycle. Repetitive TMS is one of the most widely 
applied neurostimulation modalities: high-frequency rTMS (HF-
rTMS), defined as stimulation above 1 Hz has been shown to 
induce long-term excitatory eects (Valero-Cabré et al., 2017), 
whereas low-frequency rTMS (LF-rTMS), defined as 1 Hz or 
below, is expected to produce inhibitory eects and elicit long-term 
depression (Romero et al., 2002). 

Low frequency rTMS reduces sleep fragmentation by 
attenuating abnormal beta oscillations (20–30 Hz) in the thalamus, 
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subthalamic nucleus (STN) and motor cortex via long-term 
depression (LTD) (Chen et al., 1997). Simultaneous stimulation 
of the prefrontal cortex (PFC) increases δ-wave (1–4 Hz) power 
and prolongs slow-wave sleep. LF-rTMS also upregulates striatal 
dopamine D2-receptor expression, enhances dopaminergic 
signaling, and alleviates Parkinson’s disease-associated REM sleep 
behavior disorder (RBD) (Ahmed et al., 2012). Moreover, cortical 
rTMS promotes the release of dopamine and pineal melatonin, 
increases brain serotonin and norepinephrine levels, and elevates 
serum GABA–neurotransmitters critical to the sleep–wake cycle– 
thereby improving sleep quality and reducing daytime somnolence 
(Strafella et al., 2003; Feng et al., 2019). High-frequency (HF) 
rTMS activates the dorsolateral prefrontal cortex (DLPFC) and 
anterior cingulate cortex (ACC) via long-term potentiation (LTP), 
inhibits the noradrenergic arousal system in the locus coeruleus 
(LC), and ameliorates excessive daytime sleepiness (Lefaucheur 
et al., 2020). Prior studies have shown that HF-rTMS over the 
parietal lobe enhances deep sleep and sleep eÿciency while 
reducing nocturnal awakenings in PD patients, suggesting the 
parietal cortex as a key target for deepening subsequent sleep by 
decreasing Stage I and increasing Stage IV sleep (van Dijk et al., 
2009). HF-rTMS also augments cortical excitability, improves 
cerebral blood flow, and promotes endogenous dopamine release, 
thereby modulating excitation within the direct and indirect 
striatal–pallidal pathways, which may further alleviate sleep 
disturbances (Chou et al., 2015; Qin et al., 2018). The superior 
eÿcacy of 10 Hz rTMS observed here may reflect dose-dependent 
neuroplastic changes: higher pulse counts strengthen neural 
network connectivity and induce sustained synaptic potentiation, 
enhancing neuromodulatory potential (Zhou et al., 2018; Anil 
et al., 2023). This dose dependency is supported by our subgroup 
analysis, which indicates that stimulation dosage dierentially 
aects outcomes in PD patients. 

In our network meta-analysis of depressive symptoms, 
hyporeactivity of the left DLPFC has been implicated in PD-related 
depression (Mottaghy et al., 2002). Clinical protocols therefore aim 
to increase left DLPFC excitability while inhibiting right DLPFC 
activity: LF-rTMS to the right DLPFC reduces cortical excitability, 
diminishing negative aect and trans-synaptically activating the 
hypoactive left DLPFC (Grimm et al., 2008). Conversely, HF-rTMS 
elicits release of dopamine, serotonin (5-HT), glutamate, and brain-
derived neurotrophic factor (BDNF). Because depression in PD 
involves deficits in dopaminergic and serotonergic systems, rTMS 
may improve mood through dual-transmitter regulation (Strafella 
et al., 2001). HF-rTMS targeting the DLPFC also modulates 
prefrontal–limbic functional connectivity (e.g., amygdala, ACC) 
by enhancing local neuronal excitability, inhibiting aberrant 
default mode network (DMN) activity, and strengthening frontal 
regulation of limbic regions (Lefaucheur et al., 2020). Furthermore, 
the observed correlation between sleep quality and mood, namely, 
PD patients with poor sleep exhibit more severe depression 
than those with normal sleep, suggests that amelioration of 
sleep disturbances may contribute to improvements in depressive 
symptoms. Patients with neurodegenerative diseases often exhibit 
higher rates of depression than the general population (Tandberg 
et al., 1998). Dopaminergic dysfunction is hypothesized to underlie 
the strong association between poor sleep quality and depression 
severity in Parkinson’s disease (PD). In healthy individuals, sleep 
deprivation elicits a compensatory increase in central dopamine 

levels; however, PD-related dopamine deficits may impair this 
adaptive response, thereby exacerbating depressive symptoms 
(Kay et al., 2018). Moreover, improvements in HAMD anxiety 
scores have been positively correlated with PSQI improvements, 
suggesting that enhanced sleep quality is associated with reduced 
anxiety (Huang et al., 2018). 

The use of dopaminergic drugs may also aect the eÿcacy of 
rTMS. Previous studies (Fierro et al., 2008) found that 10 Hz rTMS 
only enhances cortical inhibition during drug withdrawal in PD 
patients, whereas the improvement in cortical inhibition during 
medication use is comparable to that of the drugs themselves. 
All subjects included in this study were on dopaminergic drugs 
during the trial period. The reason for the divergence may be 
related to the large number of subjects included in this study–all 
of whom were randomized controlled trials–as well as dierences 
in intervention methods and targets. Fierro et al. (2008) used 
10 Hz, 500-pulse stimulation over the M1 region, while most 
studies in this review used 10 Hz, 1200-pulse stimulation, with 
the stimulation targets mostly being the DLPFC, which may also 
account for the dierences in results. The stage of PD is another 
factor aecting the eÿcacy of rTMS. Flamez et al. (2016) found 
that LF-rTMS did not significantly improve motor function in 
PD patients, possibly because all subjects in their study were late-
stage PD patients (H&Y ≥ 3). In this study, most subjects in 
the included literature were in H&Y stages 1–3 (only one was a 
late-stage patient; after sensitivity analysis, the results remained 
unchanged; see Supplementary Figures 10, 11), which also explains 
the dierences between this study’s results and those of previous 
studies. Meanwhile, previous studies (Cong et al., 2022) have 
also shown that the degree of sleep disturbance and depression 
in PD patients is positively correlated with H&Y stage. Late-
stage PD patients have extensive neurodegenerative lesions, and 
local stimulation may not be able to regulate distant pathological 
networks. 

Regarding adverse events reported in this study, only a small 
number of subjects experienced transient dizziness, headache, or 
scalp numbness, which resolved after rest and allowed them to 
complete the trial. This indicates the safety of rTMS treatment 
for PD patients and supports its clinical application. The funnel 
plot results showed overall symmetry but with a small number 
of scatter points outside the funnel, so the findings should be 
interpreted with caution, and more high-quality studies are needed 
for future verification. 

5 Limitation 

Several limitations should be acknowledged. First, rTMS target 
regions and pulse counts varied across the included studies, 
limiting the generalizability of our findings. Second, previous 
studies (Chung et al., 2019) have indicated that high-level 
estrogen exposure during HF-rTMS stimulation can enhance 
the neuroplasticity eect of the prefrontal cortex, suggesting 
that gender may also influence stimulation outcomes. This 
study includes a mixed-gender sample from the literature, 
making subgroup analysis impossible. Third, the severity of sleep 
disturbance correlates positively with age in PD, yet all participants 
in the analyzed studies were over 60 years old, precluding age-
stratified subgroup analyses. Therefore, future research can focus 
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on more personalized designs for rTMS stimulation targets, 
pulse counts, gender, and age to provide references for clinical 
applications. 

6 Conclusion 

In summary, this analysis demonstrates the potential of 
dierent rTMS frequencies to ameliorate sleep disturbances and 
depressive symptoms in PD patients. Notably, 10 Hz rTMS 
emerged as the most eective intervention for both outcomes. 
These results provide clinicians and researchers with valuable 
guidance for managing non-motor symptoms in PD. 
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