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Background: Repetitive transcranial magnetic stimulation (rTMS) has emerged
as a promising neuromodulatory approach for alleviating sleep disturbances
and depressive symptoms in Parkinson’s disease (PD), yet direct comparisons
of different stimulation frequencies remain scarce.

Objective: To evaluate and rank the efficacy of three rTMS frequencies (1 Hz,
5 Hz, and 10 Hz), each combined with conventional therapy, on sleep disorders
and depression in PD patients, thereby informing clinical decision-making.

Methods: We conducted a systematic search for randomized controlled trials
(RCTs) in PubMed, Embase, the Cochrane Library, Web of Science, ProQuest,
China National Knowledge Infrastructure, Wanfang, and the Chinese Scientific
and Journal Database. A network meta-analysis was performed to compare the
effects of different frequencies of rTMS (1 Hz, 5 Hz, and 10 Hz) on sleep disorders
and depression in PD patients.

Results: Thirty-one RCTs involving 1,977 PD patients met inclusion criteria.
Compared with conventional treatment alone, adjunctive 5 Hz and 10 Hz
rTMS produced significant improvements in both Pittsburgh Sleep Quality Index
(PSQI) and Parkinson’s Disease Sleep Scale (PDSS). Although 1 Hz rTMS yielded
numerically greater PSQI and PDSS improvements than conventional therapy,
these differences did not reach statistical significance, nor did differences
between the three stimulation frequencies. In terms of depressive symptoms,
all three frequencies (1 Hz, 5 Hz, and 10 Hz) significantly reduced HAMD
scores versus standard care, with head-to-head comparisons indicating superior
efficacy of 10 Hz over 1 Hz and 5 Hz. The Surface Under the Cumulative Ranking
area (SUCRA) consistently identified 10 Hz rTMS as the most effective frequency
for PSQI, PDSS, and HAMD outcomes.

Conclusion: Adjunctive rTMS at 1 Hz, 5 Hz, and 10 Hz each confer benefits
for sleep and mood in PD patients, but 10 Hz stimulation appears to offer the
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greatest overall improvement. These findings support the preferential use of
10 Hz rTMS when targeting non-motor symptoms in Parkinson'’s disease.

Systematic

review

registration:  https://www.crd.york.ac.uk/PROSPERO/

recorddashboard, identifier CRD42024614337.

KEYWORDS

Parkinson, sleep disorder, depression, repetitive transcranial magnetic stimulation,

meta-analysis

1 Introduction

Parkinson’s disease (PD), which primarily affects middle-
aged and older adults, is the worlds second most common
neurodegenerative disorder (Rocca, 2018; GBD 2016 Neurology
Collaborators., 2019). In addition to its hallmark motor symptoms
such as tremor, rigidity and bradykinesia, PD is also characterized
by a wide range of non-motor impairments, including mood
disturbances, cognitive decline and sleep disorders (Hendricks and
Khasawneh, 2021; Kirmani et al., 2021). The exact pathogenesis
of PD remains unclear; current evidence suggests that non-motor
symptoms predominantly arise from diminished dopaminergic
transmission within the midbrain-limbic and midbrain-cortical
systems (Moore et al., 2008). Most individuals with PD experience
sleep problems early in the disease course or even before
overt motor signs appear (Barone et al, 2009). Common sleep
disorders in PD include rapid eye movement sleep behavior
disorder (RBD), insomnia, restless legs syndrome, sleep-related
breathing disturbances and excessive daytime sleepiness (Chahine
et al,, 2017). These disturbances may result from side effects of
dopaminergic medications, neurodegenerative changes in brain
structures that regulate sleep and nocturnal motor symptoms
(French and Muthusamy, 2016). The regulation of sleep relies
on the comprehensive function of multiple brain regions
and various neurotransmitters, including dopamine, serotonin,
norepinephrine, and other PD-related neurotransmitters (Stefani
and Hogl, 2020). These neurotransmitters not only regulate sleep
disorders but may also be associated with cognitive dysfunction
in PD (Yeung and Cavanna, 2014; Maggi et al., 2021; Malhotra,
2022). Emotional disorders involve depression, anxiety, etc. Recent
studies have shown that there is a strong correlation between sleep
quality and depressive and anxious emotions in PD patients, and
the severity of sleep disorders is related to the degree of depression
(Kay et al,, 2018; Rana et al., 2018). Depression is another prevalent
non-motor feature of PD and often has an insidious onset that
precedes typical motor manifestations (Langston, 2006; Simonetta-
Moreau, 2014). In patients with PD, depressive episodes frequently
co-occur with anxiety, irritability, sadness and pessimism about
the future, all of which can worsen sleep disturbances (van der
Hoek et al., 2011). Depression and sleep disorders frequently co-
occur in PD, each exacerbating the other in a self-perpetuating
cycle. The close link between sleep dysfunction and depression
leads to loss of mobility, reduced functional independence and
severe impairments in mood and daily quality of life (Hariz and
Forsgren, 20115 Zhao et al., 2021). These challenges also place a
heavy burden on families and healthcare systems, since the global
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economic cost of PD reached an estimated $52 billion in 2017 and
is projected to exceed $80 billion by 2040 as populations continue
to age (Dorsey et al, 2018). Current management of PD relies
mainly on dopaminergic pharmacotherapy, but long-term use of
these agents carries risks of adverse effects and may even accelerate
neurodegeneration (Jiménez-Urbieta et al., 2015; Seppi et al., 2019).
It is therefore critical to explore non-pharmacological interventions
that carry fewer risks and can help alleviate both sleep disturbances
and depression in PD patients.

Repetitive transcranial magnetic stimulation (rTMS) is a non-
invasive neuromodulation technique grounded in electromagnetic
induction; a pulsed magnetic field is applied to the skull surface
to induce weak electrical currents in targeted brain regions (Chail
etal., 2018). Depending on the frequency of the stimulation pulses,
r'TMS is classified as either low-frequency (<1 Hz, low frequency
r'TMS, LF-r'TMS) or high-frequency (> 1 Hz, high frequency rTMS,
HF-rTMS) stimulation (Xia et al., 2022). Previous studies have
demonstrated that its therapeutic effects arise from bidirectional
modulation of cortical excitability: low-frequency rTMS reduces
excitability, while high-frequency rTMS enhances it (Cirillo et al.,
2017). However, direct comparisons across frequencies are scarce,
so this study employed a network meta-analysis (NMA) to
evaluate how different rTMS frequencies affect sleep disorders and
depression in PD patients and to identify the optimal stimulation
frequency for clinical use.

2 Materials and methods

This systematic review was conducted in accordance with
Preferred Reporting Items for Systematic Evaluation and Meta-
Analysis statement (PRISMA) guidelines (Hutton et al., 2015) and
the Cochrane Handbook for Systematic Reviews of Interventions
to ensure methodological rigor. The protocol was registered with
PROSPERO under registration number CRD42024614337.

2.1 Search strategy

Systematic searches were conducted on PubMed, EMBASE,
Cochrane Library, Web of Science, ProQuest, China National
Knowledge Infrastructure, Wanfang Database and Chinese
Scientific and Journal Database (VIP) before February 2025
for randomized controlled trials (RCTs) on the effects of rTMS
stimulation on sleep disorders and depression in PD patients. Using
a combination of logical connective, medical MeSH, and free-text

frontiersin.org


https://doi.org/10.3389/fnagi.2025.1623917
https://www.crd.york.ac.uk/PROSPERO/recorddashboard
https://www.crd.york.ac.uk/PROSPERO/recorddashboard
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/

Xia et al.

» «

terms, search terms included: “Parkinson’s Disease,” “Parkinson,’

“Parkinson’s,” “Parkinsonism,” “Repetitive Transcranial Magnetic
Stimulation,” “Transcranial Magnetic Stimulation,” “rTMS;
“Sleep,” “Sleep disorders,” “Depression.” See Supplementary Table 1

for detailed search strategies for PubMed.

2.2 Inclusion criteria

Inclusion criteria were defined according to the PICOS
framework (Population, Interventions, Comparators, Outcomes,
and Study Design).

1. Population: Participants diagnosed with PD who reported
sleep disorders, were over 18 years of age, of any gender, and
provided informed consent.

2. Interventions: Experimental groups received low-frequency
rTMS (LF-rTMS) or high-frequency rTMS (HF-rTMS); all
interventions were given in addition to standard care, which
encompassed conventional antiparkinsonian medications or
routine rehabilitation.

3. Comparators: Different frequencies of rTMS, no stimulation,
or sham stimulation (the latter referring to the absence of
effective magnetic stimulation with only the sound simulated);
all comparators were given in addition to standard care, which
encompassed conventional antiparkinsonian medications or
routine rehabilitation.

4. Outcomes: Primary outcomes included the Pittsburgh Sleep
Quality Index (PSQI), Parkinson’s Disease Sleep Scale
(PDSS), and Hamilton Rating Scale for Depression (HAMD);
secondary outcomes comprised adverse events.

5. Study design: Only randomized controlled trials (RCTs) in
human participants were eligible.

2.3 Exclusion criteria

1. Sleep disorders were not attributable to PD; (2) data on
any primary or secondary outcomes were unavailable; (3)
the full text could not be retrieved; (4) the study was a
duplicate publication.

2.4 Study selection

All retrieved records were first imported into EndNoteX9 for
duplicate removal. Two independent reviewers then screened titles
and abstracts to exclude studies that did not meet the inclusion
criteria. The full text of all remaining articles was read and assessed
for eligibility, and any disagreements were resolved by a third
reviewer (S.W.H).

2.5 Data extraction

Data extraction was performed independently by two
investigators (X.Y and L.Y.J). For each included study, we
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recorded the first author, year and country of publication, sample
size, participant age, intervention type, stimulation parameters,
stimulation site and outcome measures. All data were entered into
an Excel spreadsheet and cross-checked by both investigators; any
discrepancies were adjudicated by a third investigator (S.W.H).
When multiple reports used the same data set, we selected the
publication with the higher quality score or, if scores were equal,
the larger sample size.

2.6 Quality assessment

The quality of the included studies was assessed by two
independent reviewers (W.H.L and H.X) using the Cochrane
Risk of Bias Tool 2.0 (RoB 2.0) (Sterne et al., 2019) and the
Physiotherapy Evidence Database (PEDro) scale. The evaluation
of RoB 2.0 encompasses the randomization process, deviations
from intended interventions, missing outcome data, measurement
of outcomes, and selection of reported results. The risk of bias
in each domain can be categorized into three levels: “low risk,
“some concerns,” and “high risk.” If the assessment results in all
domains are “low risk;” then the overall risk of bias is considered
“low risk”; if some domains have “some concerns” and none have
“high risk,” then the overall risk of bias is “some concerns”; if even
one domain is rated “high risk,” the overall risk of bias is considered
“high risk.” The PEDro scale consists of 11 items, with the first item
not contributing to the total score, which totals 10 points. Studies
with a score of >6 (6/10) are considered “good” quality, 4-5 are
“fair” quality, and <4 are “poor” quality. Any disagreements in the
assessment process were decided by a third investigator (S.W.H).

2.7 Statistical analysis

Network meta-analysis was conducted in Stata 16.0. Because
all outcomes were continuous variables measured on the same
scale, we used weighted mean differences (WMD) and 95 percent
confidence intervals as effect sizes. We visualized comparisons
in a network evidence diagram in which each node represents
an intervention (node size proportional to total sample size) and
each connecting line represents a direct comparison (line thickness
proportional to number of studies). Consistency between direct
and indirect evidence was assessed via ring inconsistency testing;
a 95% CI for the inconsistency factor that included zero indicated
good agreement. Pairwise comparative forest plots were generated
to display intervention effects; effect sizes lying on one side of
the null line with confidence intervals that did not cross 0 were
considered statistically significant. We calculated Surface Under
the Cumulative Ranking area (SUCRA) to rank interventions.
The SUCRA value ranges from 0 to 100, where higher values
indicate superior intervention efficacy and lower values correspond
to diminished effectiveness. Finally, used funnel plots to evaluate
publication bias and other small-study effects. Subgroup and
sensitivity analyses were conducted to assess the robustness of
our findings. Studies were stratified into two subgroups based
on total pulse count (<600 pulses and >600 pulses); Sensitivity
analyses were conducted after excluding studies with sample sizes
<10, PEDro scores < 6, and Hoehn & Yahr stages (H&Y) > 3.
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Publication bias and small-study effects were evaluated using
funnel plots in Stata 16.0.

3 Results

3.1 Study selection

The initial search yielded 5303 records. After removing 1332
duplicates, 3 971 records remained. Title and abstract screening
excluded 3862 records, leaving 109 articles for full-text review;
78 of these were excluded and 31 trials were included in the
network meta-analysis.

Figure 1 depicts the screening and selection process of the
articles.

3.2 Characteristics of the included
studies

In total, 1977 Parkinson’s disease patients were enrolled.
Twenty-four trials were published in Chinese and seven in
English, with publication dates ranging from 2013 to 2024. In
the control arms, one trial combined rehabilitation training with

10.3389/fnagi.2025.1623917

sham stimulation and the remainder combined medication with
sham stimulation. In the experimental arms, 12 trials applied low-
frequency rTMS at 1 Hz; 10 trials applied high-frequency rTMS
at 5 Hz; and 12 trials applied high-frequency rTMS at 10 Hz. 14
studies reported PSQI, 8 studies reported PDSS only, and 19 studies
reported HAMD. Detailed characteristics of the included studies
are shown in Table 1. (Moore et al., 2008; Zhuohua et al., 2013;
Wenjing et al., 2014; Brys et al.,, 2016; Shin et al., 2016; Fengju
et al.,, 2017; Yu Wen-wen and Hai-rong, 2017; Ding and Xu, 2018;
Hua et al., 2019; Chao, 2020; Lai Jinghui et al., 2020; Zhuang et al.,
2020; Chinese Journal of Practical Nervous Diseases, 2021; Dai
Wei-zheng et al., 2021; Jia-Jin, 2021; Wang Dong and Yuanyu,
2021; Wang Yajun, 2021; Chen et al., 2022; Ouyang Gui-lan, 2022;
Qingping et al., 2022; Yu Xiaolan, 2022; Zhang and Sha, 2022; Hu
Xiaoying et al., 2023; Jiang et al., 2023; Li, 2023; Shaheen et al., 2023;
Xue et al,, 2023; Zhao Rong, 2023; Lei Meng and Jichao, 2024; Qin
Xi-xiang et al., 2024; Wu et al., 2024; Zhang et al., 2025).

3.3 Quality evaluation

Risk of bias was assessed using the Cochrane Risk of Bias
2.0 tool. Eighteen trials (58.1%) described their randomization
process; four (12.9%) reported allocation concealment; eight
(25.8%) reported blinding of participants and personnel; and

FIGURE 1
Flow diagram of the eligible studies selection process.
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TABLE 1 Characteristics of the included studies.

References Country Sample Mean age (E/C, Duration of illness | Interventions (E/C, rTMS target rTMS Outcomes
size (E/C) year) (E/C, year) year) frequency
(H2)
Chinese Journal of China 34/42 62.06 £ 9.02/65.19 & 10.34 6.09 £ 3.32/7.71 £ 5.57 HF-rTMS + CT/CT + Sham Left DLPFC 10 Hz 1200 @
Practical Nervous
Diseases, 2021
Ding and Xu, 2018 China 42/42 66.30 &= 7.50/67.60 £ 8.60 3.24 £1.23/3.16 & 1.42 HF-rTMS + CT/CT + Sham Bilateral dorsolateral 5Hz - (O]
frontal lobes
Hu Xiaoying et al., China 47/47 67.93 £ 5.39/68.13 & 5.41 4.30 £ 0.71/4.21 £ 0.69 HF-rTMS + CT/CT + Sham Bilateral dorsolateral 5Hz 600 (0]
2023 prefrontal cortex
Lai Jinghui et al., China 20/20 69.55 & 1.64/71.20 £ 1.67 4.23 £0.61/5.50 + 1.28 HF-rTMS + CT/CT + Sham SMA 10 Hz 1200 @
2020
Lei Meng and Jichao, China 48/48 61.48 £ 4.82/60.91 +5.33 5.37 £ 1.09/5.63 + 1.18 HF-rTMS + CT/CT + Sham F3 10 Hz 2400 @
2024
Xue et al., 2023 China 51/51 64.17 £ 5.42/64.02 & 5.67 6.17 £+ 2.24/6.12 £ 2.13 HF-rTMS + CT/CT + Sham Left DLPFC 5Hz 600 0]
Ouyang Gui-lan, China 48/48 61.00 £ 9.00/60.00 + 8. 80 6.10 £ 4.40/5.50 + 4.50 LF-rTMS + CT/CT + Sham M1 1Hz 2800 ®
2022
Qin Xi-xiang et al., China 46/46 63.90 £ 7.20/64.50 £ 6.70 7.70 £ 1.90/7.40 £ 1.70 HF-rTMS + CT/CT + Sham Bilateral dorsolateral 5Hz 1600 2®
2024 prefrontal cortex
Wang Yajun, 2021 China 25/25 67.55 1 6.89/68.00 £ 5.65 4.56 £ 2.92/3.00 + 1.92 LF-rTMS + CT/CT + Sham Dorsolateral prefrontal 1 Hz 600 @
cortex and occipital
region

Jia-Jin, 2021 China 10/10 63.90 £ 8.66/65.20 + 4.24 6.35 £ 3.64/5.60 + 3.02 LF-rTMS + CT/CT + Sham Right DLPFC 1Hz 1200 0]
Zhuohua et al., 2013 China 29/29 62.12 £7.51/63.94 £ 7.39 6.75 +3.12/6.68 £ 3.28 LF-rTMS + CT/CT + Sham Right frontal lobe 1Hz - @
Yu Wen-wen and China 31/33 67.25 £ 6.71/68.00 & 7.56 2.76 £ 1.56/2.64 + 1.49 HEF-rTMS + CT/CT + Sham Left DLPFC 5Hz 1600 [@6)
Hai-rong, 2017
Fengju et al., 2017 China 34/33 62.37 £7.90/63.50 + 6.40 6.10 £ 1.70/6.30 & 1.40 HF-rTMS + CT/CT + Sham | Lateral left frontal lobe 10 Hz 800 O®
Zhao Rong, 2023 China 32/32/32 62.30 £ 10.51/60.39 & 8.64/ - HF-rTMS + CT/LF- Bilateral M1 region 10 Hz/1 Hz 1750/1050 @

62.10 £ 10.62 rTMS + CT/CT and cerebellum
Wu et al,, 2024 China 34/29 63.00 £ 11.33/65.00 £ 7.03 5.0 +3.70/5.0 £ 4.59 LF-rTMS + CT/CT + Sham Right DLPFC 1Hz 1200 @
Zhuang et al., 2020 China 19/14 60.58 £ 9.21/61.57 +13.25 5.86 £ 4.35/5.71 + 3.77 LF-rTMS + CT/CT + Sham Right DLPFC 1Hz 1200 [06)
Li, 2023 China 15/15 58.94 + 2.14/58.28 £ 2.31 - HF-rTMS + CT/LF- Right DLPFC 10 Hz/1 Hz 1200 (0]

rTMS + CT

Shaheen et al., 2023 Egypt 20/20 61.60 & 7.30/61.10 £ 6.30 3.60 +2.30/3.40 & 2.20 HF-rTMS + CT/CT + Sham | Bilateral parietal cortex 10 Hz 1000 ®
Zhang et al., 2025 China 38/40 65.38 £ 8.34/63.90 + 7.75 4.40 4 1.45/4.25 £ 1.69 HF-rTMS + CT/CT + Sham Left DLPFC 5Hz 1600 @0
Dai Wei-zheng et al., China 40/40 60.78 £ 7.02/61.10 + 6.44 2.34 £ 0.87/2.25 + 0.66 HF-rTMS + CT/CT Left DLPFC 5Hz 1600 ®
2021
Wang Dong and China 44/44 60.60 £ 9.50/60.20 + 10.12 1.57 4 0.34/1.45 £ 0.31 HF-rTMS + CT/CT Left DLPFC 10 Hz - ®
Yuanyu, 2021

(Continued)
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testing again showed good agreement (IF = 0.46, 95 CI = 0.00 to
1.86) (Figure 5B), justifying use of a consistency model. Versus
CT, each rTMS frequency 1 Hz (WMD = —2.70, 95% CI = —4.67
to —0.74), 5 Hz (WMD = —2.60, 95% CI = —4.10 to —1.11) and
10 Hz (WMD = —4.28, 95% CI = —5.99 to —2.56) significantly
reduced HAMD scores, with no significant differences in pairwise
frequency comparisons (Figure 5C). SUCRA ranking identified
10 Hz as the best intervention (97.2%), followed by 5 Hz (58.5%),
1 Hz (44.3%), and CT (0.0%) (Figure 5D). Sensitivity analysis—
excluding studies with sample sizes <10-yielded the same SUCRA
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order and mirrored the overall forest-plot results (Supplementary
Figure 6).

3.5 Subgroup

Previous studies have demonstrated that varying the number
of r'TMS pulses may elicit dose-dependent remodeling of neuronal
networks in PD patients (Anil et al, 2023). Accordingly, we
stratified analyses into two subgroups based on total pulse count:
600-pulse and >600-pulse.
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3.5.1 600 pulse subgroup

In the 600-pulse PSQI subgroup, three RCTs comparing 1 Hz
and 5 Hz rTMS were pooled using a consistency model. Relative
to conventional treatment (CT), 5 Hz rTMS significantly reduced
PSQI scores (WMD = —1.72, 95% CI = —2.18 to —1.27), whereas
1 Hz rTMS was inferior to CT (WMD = 1.12, 95% CI = 0.39 to
1.85), likely reflecting the subgroup’s small sample size. A direct
comparison confirmed superior PSQI improvement with 5 Hz
versus 1 Hz (WMD = —2.84, 95% CI = —3.71 to —1.98).
SUCRA ranking designated 5 Hz as the optimal intervention
(SUCRA = 100.0%), followed by CT (49.9%) and 1 Hz (0.1%)
(Supplementary Figure 1). Only one RCT has examined 600-
pulse rTMS for PDSS, and literature on 600-pulse rTMS effects
on HAMD is similarly limited; thus, subgroup analyses for these
outcomes were not performed.

3.5.2 Subgroup with >600 pulses

In the >600-pulse PSQI subgroup, ten RCTs comparing 1 Hz
and 10 Hz rTMS in PD patients were pooled using a consistency
model after demonstrating good network agreement (p > 0.05).
Both 1 Hz (WMD = —1.72, 95% CI = —2.87 to —0.58) and
10 Hz rTMS (WMD = —2.09, 95% CI = —3.51 to —0.68) yielded
significant PSQI improvements versus conventional treatment
(CT), with no significant difference observed between the two
frequencies (WMD = —0.37, 95% CI = —2.00 to 1.26). SUCRA
ranking placed 10 Hz first (83.3%), followed by 1 Hz (66.5%) and
CT (0.2%) (Supplementary Figure 2).

In the >600-pulse PDSS subgroup, seven RCTs involving 1 Hz,
5 Hz and 10 Hz rTMS were analyzed under a consistency model
(loop inconsistency p > 0.05). Both 5 Hz (WMD = 6.12, 95%
CI=1.79t010.44) and 10 Hz rTMS (WMD = 9.25,95% CI = 5.43 to
13.8) significantly enhanced PDSS scores compared to CT, whereas
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1 Hz (WMD = 0.55, 95% CI = —4.69 to 5.79) did not. Head-to-head
comparisons showed 10 Hz to be superior to 1 Hz (WMD = 8.70,
95% CI = 2.61 to 14.79), with no other pairwise differences reaching
significance. SUCRA ranked 10 Hz highest (95.1%), then 5 Hz
(69.6%), 1 Hz (21.3%) and CT (14.1%) (Supplementary Figure 3).

In the >600-pulse HAMD subgroup, eleven RCTs assessing
1 Hz, 5 Hz and 10 Hz rTMS formed a closed network with
good consistency (P > 0.05). All three frequencies significantly
reduced HAMD scores versus CT (1 Hz WMD = —2.14, 95%
Cl = —2.88 to —1.40, 5 Hz WMD = —2.40, 95% CI = —2.95 to
—1.85 and 10 Hz WMD = —3.97, 95% CI = —4.54 to —3.40).
Pairwise analyses revealed that 10 Hz outperformed both 1 Hz
(WMD = —1.83,95% CI = —2.46 to —1.19) and 5 Hz (WMD = 1.57,
95% CI = —2.37 to —0.77), while the latter two did not differ
significantly. SUCRA indicated 10 Hz as the optimal intervention
(100.0%), followed by 5 Hz (56.9%), 1 Hz (43.1%) and CT (0.0%)
(Supplementary Figure 4).

3.6 Publication bias

Publication bias, evaluated via funnel plots for all outcomes,
was broadly symmetrical, with only a few studies lying outside the
funnel and suggesting minimal bias (Figures 3E-5E).

3.7 Sensitivity analyses

After excluding studies with a PEDro score of less than 6, the
research results remained unchanged (Supplementary Figures 7—
9). There was only one study with an H-Y stage >3, and
even after excluding it, the research results remained unchanged
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the results of each study).

(Supplementary Figures 10, 11). This indicates that the results of
this study are relatively stable and reliable.

3.8 Adverse reactions

Eight studies provided detailed accounts of adverse effects:
13 patients experienced transient headaches that resolved with
rest and were able to complete the protocol, and six patients
reported transient dizziness, which likewise subsided after resting
(Supplementary Table 3).

4 Discussion

This study employed a NMA to evaluate and compare the
effects of rTMS at various frequencies, combined with conventional
therapy, on sleep disorders and depressive symptoms in patients
with Parkinson’s disease. Compared with conventional therapy
alone, all rTMS frequencies significantly improved PSQI, PDSS,
and HAMD scores, with 10 Hz rTMS appearing to be the most
effective for both sleep and mood. We then stratified stimulation by
pulse count (600 pulses vs. >600 pulses). In the 600-pulse group,
which did not include 10 Hz stimulation, 5 Hz rTMS yielded the
greatest benefit; in the >600-pulse subgroup, 10 Hz rTMS produced
the most pronounced improvements.

This study employed a NMA to assess and compare the
effects of different rTMS frequencies, each combined with
conventional therapy, on sleep disorders in PD patients. The
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findings demonstrated that, relative to conventional treatment
alone, all rTMS frequencies significantly improved PSQI, PDSS and
HAMD scores, with 10 Hz rTMS plus standard therapy emerging as
the most effective intervention for each outcome. There are certain
differences in the findings regarding the impact on sleep between
this study and that of Cristini et al. (2025). Cristini’s research
revealed that LE-rTMS can enhance subjective sleep quality in PD
patients, yet the evidence for HF-rTMS improving sleep quality
is insufficient. This discrepancy may stem from Cristini’s study
not precisely categorizing HF-rTMS by frequency, potentially
leading to interference from mixing different frequency groups.
Additionally, the patients in the HF-rTMS group in that study
had relatively mild sleep issues, which could have contributed to
a ceiling effect. Regarding depression, a previous meta-analysis
(Zhou et al., 2018) indicated that 5 Hz rTMS is most effective
in alleviating depressive symptoms. Upon comparison, we found
that the studies included in that meta-analysis were self-controlled
before-and-after designs, and the number of included studies was
limited. Currently, it is believed that abnormal discharges in the
subthalamic nucleus (STN) of PD patients are transmitted through
the cortical-striatal-thalamic circuit, leading to disruptions in
the sleep-wake cycle. Repetitive TMS is one of the most widely
applied neurostimulation modalities: high-frequency rTMS (HF-
rTMS), defined as stimulation above 1 Hz has been shown to
induce long-term excitatory effects (Valero-Cabré et al., 2017),
whereas low-frequency rTMS (LF-rTMS), defined as 1 Hz or
below, is expected to produce inhibitory effects and elicit long-term
depression (Romero et al., 2002).

Low frequency rTMS reduces sleep fragmentation by
attenuating abnormal beta oscillations (20-30 Hz) in the thalamus,
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subthalamic nucleus (STN) and motor cortex via long-term
depression (LTD) (Chen et al, 1997). Simultaneous stimulation
of the prefrontal cortex (PFC) increases 8-wave (1-4 Hz) power
and prolongs slow-wave sleep. LE-rTMS also upregulates striatal
dopamine Dj-receptor expression, enhances dopaminergic
signaling, and alleviates Parkinson’s disease-associated REM sleep
behavior disorder (RBD) (Ahmed et al., 2012). Moreover, cortical
r'TMS promotes the release of dopamine and pineal melatonin,
increases brain serotonin and norepinephrine levels, and elevates
serum GABA-neurotransmitters critical to the sleep-wake cycle-
thereby improving sleep quality and reducing daytime somnolence
(Strafella et al., 2003; Feng et al,, 2019). High-frequency (HF)
rTMS activates the dorsolateral prefrontal cortex (DLPFC) and
anterior cingulate cortex (ACC) via long-term potentiation (LTP),
inhibits the noradrenergic arousal system in the locus coeruleus
(LC), and ameliorates excessive daytime sleepiness (Lefaucheur
et al., 2020). Prior studies have shown that HF-rTMS over the
parietal lobe enhances deep sleep and sleep efficiency while
reducing nocturnal awakenings in PD patients, suggesting the
parietal cortex as a key target for deepening subsequent sleep by
decreasing Stage I and increasing Stage IV sleep (van Dijk et al.,
2009). HF-rTMS also augments cortical excitability, improves
cerebral blood flow, and promotes endogenous dopamine release,
thereby modulating excitation within the direct and indirect
striatal-pallidal pathways, which may further alleviate sleep
disturbances (Chou et al., 2015; Qin et al., 2018). The superior
efficacy of 10 Hz rTMS observed here may reflect dose-dependent
neuroplastic changes: higher pulse counts strengthen neural
network connectivity and induce sustained synaptic potentiation,
enhancing neuromodulatory potential (Zhou et al., 2018; Anil
et al., 2023). This dose dependency is supported by our subgroup
analysis, which indicates that stimulation dosage differentially
affects outcomes in PD patients.

In our network meta-analysis of depressive symptoms,
hyporeactivity of the left DLPFC has been implicated in PD-related
depression (Mottaghy et al., 2002). Clinical protocols therefore aim
to increase left DLPFC excitability while inhibiting right DLPFC
activity: LF-rTMS to the right DLPFC reduces cortical excitability,
diminishing negative affect and trans-synaptically activating the
hypoactive left DLPFC (Grimm et al., 2008). Conversely, HF-rTMS
elicits release of dopamine, serotonin (5-HT), glutamate, and brain-
derived neurotrophic factor (BDNF). Because depression in PD
involves deficits in dopaminergic and serotonergic systems, rTMS
may improve mood through dual-transmitter regulation (Strafella
et al, 2001). HE-rTMS targeting the DLPFC also modulates
prefrontal-limbic functional connectivity (e.g., amygdala, ACC)
by enhancing local neuronal excitability, inhibiting aberrant
default mode network (DMN) activity, and strengthening frontal
regulation of limbic regions (Lefaucheur et al., 2020). Furthermore,
the observed correlation between sleep quality and mood, namely,
PD patients with poor sleep exhibit more severe depression
than those with normal sleep, suggests that amelioration of
sleep disturbances may contribute to improvements in depressive
symptoms. Patients with neurodegenerative diseases often exhibit
higher rates of depression than the general population (Tandberg
etal,, 1998). Dopaminergic dysfunction is hypothesized to underlie
the strong association between poor sleep quality and depression
severity in Parkinson’s disease (PD). In healthy individuals, sleep
deprivation elicits a compensatory increase in central dopamine
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levels; however, PD-related dopamine deficits may impair this
adaptive response, thereby exacerbating depressive symptoms
(Kay et al, 2018). Moreover, improvements in HAMD anxiety
scores have been positively correlated with PSQI improvements,
suggesting that enhanced sleep quality is associated with reduced
anxiety (Huang et al,, 2018).

The use of dopaminergic drugs may also affect the efficacy of
rTMS. Previous studies (Fierro et al., 2008) found that 10 Hz rTMS
only enhances cortical inhibition during drug withdrawal in PD
patients, whereas the improvement in cortical inhibition during
medication use is comparable to that of the drugs themselves.
All subjects included in this study were on dopaminergic drugs
during the trial period. The reason for the divergence may be
related to the large number of subjects included in this study-all
of whom were randomized controlled trials—as well as differences
in intervention methods and targets. Fierro et al. (2008) used
10 Hz, 500-pulse stimulation over the MI region, while most
studies in this review used 10 Hz, 1200-pulse stimulation, with
the stimulation targets mostly being the DLPFC, which may also
account for the differences in results. The stage of PD is another
factor affecting the efficacy of rTMS. Flamez et al. (2016) found
that LF-rTMS did not significantly improve motor function in
PD patients, possibly because all subjects in their study were late-
stage PD patients (H&Y > 3). In this study, most subjects in
the included literature were in H&Y stages 1-3 (only one was a
late-stage patient; after sensitivity analysis, the results remained
unchanged; see Supplementary Figures 10, 11), which also explains
the differences between this study’s results and those of previous
studies. Meanwhile, previous studies (Cong et al, 2022) have
also shown that the degree of sleep disturbance and depression
in PD patients is positively correlated with H&Y stage. Late-
stage PD patients have extensive neurodegenerative lesions, and
local stimulation may not be able to regulate distant pathological
networks.

Regarding adverse events reported in this study, only a small
number of subjects experienced transient dizziness, headache, or
scalp numbness, which resolved after rest and allowed them to
complete the trial. This indicates the safety of rTMS treatment
for PD patients and supports its clinical application. The funnel
plot results showed overall symmetry but with a small number
of scatter points outside the funnel, so the findings should be
interpreted with caution, and more high-quality studies are needed
for future verification.

5 Limitation

Several limitations should be acknowledged. First, rTMS target
regions and pulse counts varied across the included studies,
limiting the generalizability of our findings. Second, previous
studies (Chung et al, 2019) have indicated that high-level
estrogen exposure during HF-rTMS stimulation can enhance
the neuroplasticity effect of the prefrontal cortex, suggesting
that gender may also influence stimulation outcomes. This
study includes a mixed-gender sample from the literature,
making subgroup analysis impossible. Third, the severity of sleep
disturbance correlates positively with age in PD, yet all participants
in the analyzed studies were over 60 years old, precluding age-
stratified subgroup analyses. Therefore, future research can focus
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on more personalized designs for rTMS stimulation targets,
pulse counts, gender, and age to provide references for clinical
applications.

6 Conclusion

In summary, this analysis demonstrates the potential of
different rTMS frequencies to ameliorate sleep disturbances and
depressive symptoms in PD patients. Notably, 10 Hz rTMS
emerged as the most effective intervention for both outcomes.
These results provide clinicians and researchers with valuable
guidance for managing non-motor symptoms in PD.
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