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The global aging of the population, coupled with an increasing prevalence

of sedentary lifestyle and overnutrition, is fueling an alarming rise in the

worldwide obesity rates. Besides its well-known bodily consequences, obesity

is increasingly recognized as a risk factor for cognitive impairment, dementia,

mood disorders, and emotional distress, suggesting a possible role of adiposity

in the pathogenesis of both neurodegeneration and neuropsychiatric diseases.

Despite the growing research interest, the pathophysiological mechanisms

linking obesity to brain health remain poorly understood. Specifically, it is

unclear whether the neuroanatomical, neurofunctional, and neurocognitive

correlates of late-life obesity are directly imputable to either the excessive body

fat accumulation or physiological age-related neurodegeneration, or if they

are mediated by possible cardio-metabolic comorbidities which are common

chronic conditions among the elderly. This narrative review synthesizes

evidence on neuroimaging (MRI) and neurocognitive findings across adulthood

and late life, with a focus on the metabolically healthy obese individuals, a

sub-group of the obese population maintaining a favorable cardio-metabolic

health profile. Direct studies on metabolically healthy obesity often report

inconclusive evidence for the effect of obesity on neuroanatomical impairments

or cognitive functions, and when the effects are present, they are much less

pronounced compared to those observed in metabolically unhealthy individuals.

Yet, many indirect studies reporting the effects of obesity after controlling

for cardio-metabolic conditions suggest that obesity per se is associated with

brain atrophy, reduced white matter integrity, and alterations in rewards-

homeostatic-control networks. In conclusion, current evidence indicates that
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metabolically healthy obesity might not be entirely benign for brain health. More 

longitudinal multimodal imaging studies, with better characterization of both 

obesity and metabolic phenotypes, are therefore warranted to clarify trajectories 

and causal pathways. 

KEYWORDS 

metabolically healthy obesity, MRI brain imaging, neurodegenerative disease, 
neuropsychiatric disease, aging 

1 Introduction 

1.1 Background 

The prevalence of excessive body weight is escalating at an 
alarming rate in all age groups, genders, ethnicities, and societies 
across the world (Phelps et al., 2024). In 2022, 2.5 billion adults 
(aged ≥ 18 years) were overweight (BMI ≥ 25 kg/m2), and 
about 670 million of these were obese (BMI ≥ 30 kg/m2), 
corresponding to approximately 13% of the global adult population 
and 31% of the US population aged ≥ 65 years (Malik et al., 
2004; Phelps et al., 2024; United Health Foundation, 2024; 
WHO, 2000). 

Obesity is one of the most important modifiable risk factors 
for premature mortality (Crotti et al., 2018; Ghulam et al., 
2023) and is strongly associated with multiple health conditions, 
including insulin resistance, type II diabetes, cardiovascular 
disease, hypertension, dyslipidemia, osteoarthritis, chronic low-
grade inflammation, and other complex comorbidities (Hruby 
et al., 2016; Kivimäki et al., 2022). In addition to its deleterious 
impact on quality of life, disability and morbidity rates of aected 
subjects, obesity has been increasingly recognized as a risk factor 
for neurological and neurodegenerative diseases. Growing evidence 
from epidemiologic and neuroimaging studies link obesity to 
accelerated brain aging (Debette et al., 2011; Gunstad et al., 
2007; Whitmer et al., 2005), mild cognitive decline (Kharabian 
Masouleh et al., 2016), Parkinson’s disease (Kao et al., 2020), 
Alzheimer’s disease (Gustafson et al., 2003; Singh-Manoux et al., 
2018; Tabassum et al., 2020; Whitmer et al., 2005), other dementias 
(Beydoun et al., 2008; Gustafson et al., 2003; Han et al., 2021; 
Lee et al., 2020, 2019; Monda et al., 2017; Pedditzi et al., 
2016; Singh-Manoux et al., 2018; Whitmer et al., 2005) and 
ischemic stroke (Horn et al., 2021; Strazzullo et al., 2010). More 
specifically, neuroimaging evidence has highlighted a number of 
measurable eects of obesity onto the Central Nervous System, 
including reductions in total and regional gray matter through 
structural Magnetic Resonance Imaging (MRI) (García-García 
et al., 2019, 2022), microstructural alterations in white matter 
through diusion tensor imaging (DTI) (Karlsson et al., 2013; 
Kullmann et al., 2016; Mueller et al., 2011; Papageorgiou et al., 
2017), and altered activation and connectivity patterns in rewards-
and executive-control networks via functional MRI (fMRI) (Zhang 
et al., 2020). Furthermore, previous neuropsychological studies 
have reported mild to moderate impaired cognitive performances 
in obese compared to normal weight subjects, especially in 

executive functions (Gunstad et al., 2007), such as episodic 
and working memory, processing speed, and attention (Dye 
et al., 2017; Kharabian Masouleh et al., 2016). Psychological 
well-being also appears to be compromised in obesity, with 
commonly reported symptoms including emotional distress 
(Steptoe and Frank, 2023), depression (Blasco et al., 2020), bipolar 
disorder (Kambey et al., 2023), as well as appetite dysregulation 
often involving binge-eating disorder (McCuen-Wurst et al., 
2018). 

Taken together, previous evidence indicates a possible 
involvement of excessive body fat in the pathogenesis of both 
neurodegeneration and neuropsychiatric diseases. 

1.2 Challenges and aims 

1.2.1 Challenges 
Given the aging of the worldwide population, the rising 

prevalence of both obesity and neurocognitive disturbances among 
older adults, and considering the economic and social burden 
of these conditions, unveiling the complex link between obesity 
and brain health in the mid- to late-life is of utmost importance. 
However, the pathophysiological pathways linking obesity to brain 
damage and/or impaired cognition are far from being fully 
understood, and a number of aspects remain to be clarified. 
Firstly, obesity is often comorbid with several cardio-metabolic 
abnormalities, namely hypertension, dyslipidemia, and poor 
glycemic control, the latter manifesting as either insulin resistance, 
impaired fasting glucose and/or tolerance, or manifest diabetes 
(García-García et al., 2022). Moreover, systemic inflammation 
is often characteristic of this condition (García-García et al., 
2022). While neuroanatomical abnormalities in obese subjects 
with cardio-metabolic conditions have been documented using 
dierent brain MRI-derived biomarkers (Alfaro et al., 2018; Bokura 
et al., 2010; Yae et al., 2004), neuroimaging traits are notably 
under-investigated in metabolically healthy obesity (Ango et al., 
2022; Beyer et al., 2019b; Medic et al., 2016). Therefore, the 
neuroimaging literature is still inconclusive on whether patterns 
of aberrant structural/functional findings in brain MRI data are 
directly attributable to obesity itself, to physiological age-related 
neurodegeneration, or are possibly mediated through cardio-
metabolic and inflammatory dysregulation (Beyer et al., 2019b; 
García-García et al., 2022). Secondly, conflicting findings have been 
reported in the literature, especially in the mid- to late- adulthood, 
on the association between obesity and cognitive disorders, with 
obesity being linked to both deleterious and protective eects 
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on cognitive functions and dementia risk, a phenomenon often 
referred to as the “obesity paradox” (Buchman et al., 2005; 
Hughes et al., 2009; Pedditzi et al., 2016; Qizilbash et al., 2015; 
Xu et al., 2011). 

Thirdly, the employed definition of metabolically healthy 
obesity and sample demographics typically diers among studies, 
thus preventing their direct comparison (Eckel et al., 2016). 

1.2.2 Aims 
The purpose of this narrative review is to summarize the 

current brain MRI literature on metabolically (un)healthy adults 
with obesity, and to examine the link between obesity and 
cognitive impairment as assessed through test-based evaluations. 
Particularly, we aim to elucidate how obesity can coexist with 
apparently preserved metabolic health and cognitive function 
despite being widely recognized as a major risk factor for 
cardiovascular, metabolic, and neurodegenerative diseases. 
Furthermore, we attempt to shed light on the “obesity paradox” 
by clarifying whether obese individuals with preserved metabolic 
control are either at increased or reduced risk for impaired brain 
health and cognition as compared to their lean counterparts. In 
addition, we aim to highlight the biological mechanisms that 
possibly link obesity, its comorbidities, and brain health, with 
special attention to obesity-induced neuroinflammation and 
alterations in the blood–brain barrier. Recognizing these early 
indicators of neurodegeneration holds the potential to improve 
both disease diagnosis and treatment outcomes. 

To reach these goals, we first define the metabolically healthy 
obese phenotype and describe the most common MRI-derived 
markers and neurocognitive traits tested for association with 
obesity (Section “2 Metabolically healthy obesity (MHO)”). We 
focus on evidence from structural MRI alterations typical of 
brain aging (including brain atrophy, vascular pathology, and 
loss of white matter integrity) and on functional MRI literature 
to examine how obesity relates to alterations in brain networks 
and task-related activation patterns. We then provide a narrative 
review of the neuroimaging findings in metabolically healthy 
obesity, linking them to neurocognitive findings, while speculating 
on the possible pathophysiological mechanisms underlying them 
(Section “3 Neuroimaging and neurocognitive findings in obesity 
and MHO”). Particularly, we highlight the role of inflammatory, 
hormonal and cerebrovascular mechanisms on the pathogenesis 
of impaired brain health as described in the neuroimaging and 
cognitive findings. Finally, we discuss current and future challenges 
in the field and the potential implications of the collected evidence 
for personalized public health strategies (Section “4 Discussions 
and conclusions”). 

This review emphasizes that, although metabolically healthy 
obesity has been hypothesized to represent a relatively benign 
condition, it might still confer an increased risk for accelerated 
brain aging compared to metabolically healthy individuals with a 
healthy weight. This suggests a potential role of adipose tissue as an 
active endocrine organ damaging the central nervous system even 
in the absence of overt cardio-metabolic comorbidities. However, 
the available literature is sparse and partially contradictory, 
especially with respect to late adulthood, and more studies 
are needed to elucidate the complex interplay between obesity, 
metabolic health, brain health, and cognition. 

FIGURE 1 

Stratification of adult population into four groups based on their 
combined obesity and metabolic status: metabolically healthy 
obese (MHO), metabolically unhealthy obese (MUO), metabolically 
healthy lean (MHL) and metabolically unhealthy lean (MUL) subjects. 

2 Metabolically healthy obesity 
(MHO) 

Obesity is a complex disease with multifactorial origin, 
including genetic, environmental, and lifestyle factors (De Lorenzo 
et al., 2019). Although it is commonly defined by a body mass index 
(BMI) ≥ 30 kg/m2 (BMI ≥ 25 kg/m2 for overweight status) (Malik 
et al., 2004), this metric is a simple measure of weight-to-height 
ratio that does not account for body composition such as muscle 
and fat mass or bone density. Alternative measures, such as waist 
circumference (WC), waist-to-hip ratio (WHR), and percentage of 
body fat (BF%) are more directly related to body fat distribution 
and central (abdominal) adiposity, and are generally recommended 
to complement BMI (De Lorenzo et al., 2019; Shen et al., 2023). 

The endophenotype of adult and elder obesity is extremely 
diverse from one subject to another and so are the health outcomes 
in both the central nervous system (CNS) and the peripheral 
nervous system (PNS). Indeed, the concept of metabolically 
healthy obesity has been introduced in clinical practice to describe 
the heterogeneity within the obesity population, particularly to 
dierentiate the subgroup of individuals expressing a favorable 
metabolic profile (despite carrying extra body weight) from those 
who exhibit overt cardio-metabolic abnormalities (Blüher, 2020, 
2010; Kouvari et al., 2023; Machado-Fragua et al., 2023; Mayoral 
et al., 2020). Following this, individuals might be stratified into 
four groups based on their combined obesity and metabolic status: 
metabolically healthy obese (MHO), metabolically unhealthy obese 
(MUO), metabolically healthy lean (MHL) and metabolically 
unhealthy lean (MUL) subjects (see Figure 1 and Box 1). 

Recent meta-analyses have listed a number of physiological 
and phenotypic dierences of MHO as compared to MUO 
individuals. Indeed, compared with MUO, MHO individuals are 
characterized by a milder degree of obesity, a more recent onset 
of overweight/obesity, and a more favorable fat distribution, 
characterized by greater subcutaneous rather than visceral or 
ectopic fat accumulation (Blüher, 2010; Eckel et al., 2016; Gómez-
Zorita et al., 2021; Janssen et al., 2004; Ma et al., 2019; Primeau 
et al., 2011). They also demonstrate better hormonal control, higher 
insulin sensitivity, lower liver fat content, lower concentrations 
of hepatic enzymes, more favorable blood lipid profile, reduced 
atherosclerosis, less altered adipose tissue functions, smaller 
adipose cell sizes, and lower levels of systemic inflammatory 
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BOX 1 MHO definition. 

As of today, there is no standardized definition for MHO and more than 30 different criteria have been proposed (Eckel et al., 2016; Gómez-Zorita 
et al., 2021; Ma et al., 2019; Primeau et al., 2011; Rey-López et al., 2014; Smith et al., 2011). Among the most used criteria in the neuroimaging 
literature are those proposed by the National Cholesterol Adult Treatment Panel III (NCEP-ATP-III) (Expert Panel on Detection, Evaluation, and 
Treatment of High Blood Cholesterol in Adults, 2001) and the International Diabetes Federation (IDF) (Mørkedal et al., 2014). The two differ in their 
definition of both “metabolically healthy” and “obese” within the MHO category: the IDF definition demands the absence of any metabolic 
disturbance but includes individuals in the overweight range (BMI ≥ 25 kg/m2 and/or WC ≥ 94 cm for men or ≥ 80 cm for women). In contrast, the 
NCEP-ATP-III criterion is less stringent for metabolic status, allowing individuals to have no more than one metabolic abnormality among 
dyslipidemia, hypertension and glycemic control, but includes only individuals with overt obesity (BMI ≥ 30 kg/m2 and/or WC: ≥102 cm for men or 
≥88 cm for women). They also differ slightly in the definition of impaired glycemic control, as detailed in the following table (Table 2). 

Notably, neither the NCEP-ATP-III nor the IDF criteria take into account traits of systemic inflammation, hormonal imbalance, or cardiorespiratory 
fitness status. Other MHO definitions, such as the one by Karelis et al. (2005) - based primarily on markers of insulin sensitivity, inflammation and 
lipid profile – and the one by Wildman (2008) - based on markers of the metabolic syndrome combined with the homeostasis model assessment of 
insulin resistance (HOMA-IR index) – exist, but have not been widely adopted in neuroimaging literature. 

TABLE 1 Endophenotypic traits in MHO (left) and MUO 
(right) individuals. 

MHO Trait/feature MUO 

Moderate Fat mass High 

Subcutaneous Main fat location Visceral and ectopic 

Low Liver fat content High 

High Insulin sensitivity Low 

Moderate Triglycerides High 

Normal Inflammatory markers High 

Low HDL-c High 

High Adiponectin Low 

Moderate Fatty liver Yes 

Moderate Cardio-metabolic risk High 

No or moderate Hypertension Yes 

Hyperplasia Adipocyte growth Hypertrophy 

Moderate Cardiorespiratory fitness Low 

Moderate Physical activity Low 

Women Gender preference Men 

As compared to MUO, MHO individuals are characterized by a more favorable fat 
distribution, insulin sensitivity, systemic inflammation, cardiorespiratory fitness, and 
adipose tissue functions. Adapted from Blüher (2020), Gómez-Zorita et al. (2021), Primeau 
et al. (2011). 

markers. Lifestyle and functional traits also tend to be more 
favorable in MHO as compared to MUO individuals, including 
better cardiorespiratory fitness, higher engagement in physical 
activity, and better quality of sleep (Blüher, 2010; Eckel et al., 2016; 
Gómez-Zorita et al., 2021; Janssen et al., 2004; Ma et al., 2019; 
Primeau et al., 2011; Table 1). 

2.1 MRI-derived markers and cognitive 
scores for obesity research 

Among various neuroanatomical imaging modalities, MRI 
is a non-invasive in vivo examination tool that has attracted 
a substantial share of interest in research and clinical practice 
due to its wide availability, good spatial resolution, and 
absence of radiation exposure. There are several structural 

TABLE 2 Two commonly used definitions for the MHO phenotype. 

MHO 
definition 

2001 NCEP-ATP III 
criterion 
Obesity+ at most 1 
trait among 
dyslipidemia, 
hypertension and 
glycemic control 

IDF-2005 
criterion (Funnell 
et al., 2017) 
Overweight/ 
obesity+ no 
other trait among 
dyslipidemia, 
hypertension and 
glycemic control 

Unhealthy 

weight 
BMI ≥ 30 kg/m2 

WC: ≥102 cm (M) or 

≥88 cm (F) 

BMI ≥ 25 kg/m2 or 

WC: ≥94 cm (M) or 

≥80 cm (F) 

Dyslipidemia HDL: <40 mg/dL (M) or 

<50 mg/dL (F) or 

TG ≥ 150 mg/dL or 

lipid-lowering medications 

HDL: <40 mg/dL (M) or 

<50 mg/dL (F) or 

TG ≥ 150 mg/dL or 

lipid-lowering 

medications 

Hypertension SBP ≥ 130 mmHg or 

DBP ≥ 85 mmHg or 

anti-hypertension 

treatment 

SBP ≥ 130 mmHg or 

DBP ≥ 85 mmHg or 

anti-hypertension 

treatment 

Glycemic 

control 
Fasting 

glucose ≥ 110 mg/dL or 

Glucose tolerance 

medication* 

Oral glucose tolerance -
glycated hemoglobin 

Medical records of 
history/diagnosis of T2DM 

Fasting 

glucose ≥ 100 mg/dL 

Anti-diabetic medications 

*“Glucose tolerance medication” refers either to anti-diabetic medications or insulin. BMI, 
body mass index; DBP, diastolic blood pressure; HDL, high-density lipoprotein cholesterol; 
F, female; M, men; MHO, metabolically healthy obese; MUO, metabolically unhealthy obese; 
WC, waist circumference; SBP, systolic blood pressure; T2DM, type 2 diabetes mellitus; 
TG, triglycerides. 

brain MRI techniques that have been used in obesity studies 
to investigate neuroanatomical changes (Medic et al., 2016), 
essentially via biomarkers of gray matter (GM) and white matter 
(WM) integrity. Beyond structural MRI, a growing number 
of studies has employed functional MRI which provides an 
indirect assessment of brain-activity through blood-oxygen-
level-dependent (BOLD) signals, reflecting local changes in 
cerebral blood flow and oxygen metabolism. A schematic 
overview of these imaging modalities and derived measures is 
provided in Boxes 2, 3 and Tables 3, 4, while a more detailed 
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TABLE 3 Summary of the main structural MRI-derived markers to assess brain pathology. 

MRI Method Metric Definition Biological phenomenon/clinical 
significance 

T1-w Volumetric 

approach 

Total cerebral volume 

(TCV) 
Total volume enclosed by the outer surface of 
the brain. 

↓ Associated with brain atrophy and 

neurodegeneration due to aging or disease. 

GM volume (GMV) Volume of GM tissues. ↓ Associated with GM atrophy and 

neurodegeneration due to aging or disease. 

WM volume (WMV) Volume of WM tissues. ↓ Associated with demyelination, axonal loss and 

other WM degeneration due to aging or disease. 

T1-w Voxel-based 

morphometry 

(VBM) 

GM composition Voxel-level GM volume (or density*). ↓ Associated with GM atrophy and 

neurodegeneration due to aging or pathology. 

WM composition Voxel-level WM volume (or density*). ↓ Due to aging or pathology. 

CSF composition Voxel-level CSF volume (or density*). ↑ Due to vessel enlargement and brain tissue 

shrinkage. 

T1-w Surface-based 

morphometry 

(SBM) 

Cortical thickness (CT) Vertex-level distance between the inner and 

outer surface of the brain. 
↓ (thinning) Associated with cortical atrophy due 

to aging or pathology. Focal patterns of CT 

↑ (thickening) might be due to brain pathology. 

Cortical surface area 

(CSA) 
Vertex-level area of the outer surface of the 

brain. 
CSA is typically anticorrelated to CT. CSA possibly 

mirrors the tension between deep WM fibers. 

Cortical volume (CV) Vertex level volume of the cortical ribbon 

(enclosed by the inner and outer surfaces of the 

brain). CV = CT × CSA. 

See Supplementary materials 

T2-w, SD, 
FLAIR 

White matter 

hyperintensities 
(WMH) 

T2 signal hyperintensity of variable size, 
quantified with grading on visual rating scale or 

total volume based on image segmentation. 

↑ Increase indicative of macroscopic WM damage 

due to cSVD. Associated with greater age, 
increased risk of stroke, cognitive impairment, 
dementia, and death (especially due to 

cardiovascular causes) (Kim et al., 2017). 

Lacunes Fluid-filled cavities up to 15 mm diameter, often 

with hyperintense rim on FLAIR, quantified by 

counting. 

↑ Macroscopic WM damage due to aging, cSVD, 
may result from a vascular insult or hemorrhages. 
Associated with increased risk of cognitive 

impairment, dementia, stroke, and mortality (Kim 

et al., 2017; Makin et al., 2013). 

Cerebral microbleeds Small areas of signal void on T2*-w or other 

sequence sensitive to susceptibility, quantified by 

counting. 

↑ Microscopic bleeding due to aging, cSVD. 
Linked to increased risk of ischemic and 

hemorrhagic stroke, cognitive decline, dementia, 
AD, inflammatory status (Yates et al., 2014). 

Perivascular spaces Fluid-filled space following the typical course of 
a vessel penetrating the brain parenchyma, 
quantified with grading on visual rating scale or 

volume/number quantification based on image 

segmentation. 

↑ Enlargement of perivascular spaces indicative of 
aging, cSVD, arterial stiening, excessive protein 

accumulation in vessels. Commonly associated 

with cognitive decline, dementia, AD, 
inflammatory status (Bown et al., 2022; MacLullich 

et al., 2004). 

DW DTI/Free-water 

DTI modeling 

Fractional anisotropy 

(FA) 
Metric of directionality of the water diusion in 

the diusion tensor model. 
↓Decrease in case of unrestricted diusion of water 

molecules, indicative of microscopic WM damage 

(axon demyelination) due to aging or pathology, 
also associated with memory and learning deficits. 

Mean diusivity (MD) The mean diusivity in each of the three 

principal orientations in the diusion tensor. 
↑Increase indicative of axon demyelination, 
inflammation, or increased tissue water content 
due to aging or pathology. 

Free Water (FW) Water molecules that are not restricted or 

directed and thus represents the extracellular 

space. 

↑ Increase indicative of microscopic loss in WM 

integrity due to damage to the axonal structure 

and/or myelin membrane surrounding WM fibers. 
It has been linked to aging and pathology, 
including early stages of cSVD. 

*Composition refers to brain tissue’ density or volume, depending if images have been modulated or not (see Supplementary material). 

description is provided in the Supplementary material. Other 

MRI sequences and MRI-derived markers of brain pathology have 

been reviewed elsewhere (Tang et al., 2021) and are not presented 

here. 

In the context of evaluating cognitive dysfunctions in MHO, 
a number of neurocognitive tests are typically administered to 

quantify global cognitive performances and executive functions, 
particularly in the domains of episodic and working memory, 
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processing speed, attentional control, and response inhibition 
functions (Gunstad et al., 2007). Executive functions play a crucial 
role in influencing dietary intake and eating choices – and in turn 
maintaining equal or negative energy balance –through regulation 
of impulse control, self-monitoring, and goal-directed behavior 
(Gonçalves et al., 2014; Gunstad et al., 2007; Wycko et al., 
2017). A summary of these scales, which are also widely used for 
monitoring age-related cognitive decline, is provided in Table 5. 

3 Neuroimaging and neurocognitive 
findings in obesity and MHO 

Most of the existing neuroimaging and neurocognitive 
literature has investigated the deleterious impact of single traits of 
the metabolic syndrome separately –including obesity, impaired 
glucose metabolism, hypertension, dyslipidemia, and systemic 
inflammation– rather than considering their combined eects 
(Bahchevanov et al., 2021; Yae et al., 2004). As an example, 
obese individuals with type 2 diabetes have been reported to suer 
from cognitive decline (Yoon et al., 2017), reduced total and 
regional brain volume (West et al., 2020), greater burden of WM 
hyperintensities (van Bloemendaal et al., 2016), disrupted resting-
state functional connectivity in memory and executive functions 
(Cheke et al., 2017; Gao et al., 2025), and abnormal activation 
in task-fMRI paradigms including food cues and memory tasks 
(Guzzardi and Iozzo, 2019; Meng et al., 2020). Indeed, a recent 
study showed that obesity and metabolic health have an additive 
eect on cognitive dysfunction (Lyall et al., 2016). However, the 
impact of being overweight or obese in the absence (or presence 
of only a single) cardio-metabolic disturbance (i.e., MHO) on 
cognition and brain health is less well understood, particularly in 
the adult lifespan (García-García et al., 2022). While the MHO 
phenotype has often been regarded as a relatively benign status 
(Primeau et al., 2011), it has been hypothesized that it might still 
confer an increased risk of neurodegeneration and neurocognitive 
disturbances compared with MHL individuals. 

Nonetheless, there is conflicting evidence for this hypothesis. 
On one hand, a number of studies in mid-life and elderly 
MHO subjects have reported an increased risk of cardiovascular 
events relative to MHL subjects, albeit to a lesser degree than 
in metabolically unhealthy subjects (Kramer et al., 2013; Lavie 
et al., 2018). Similarly, high BMI has been associated with MRI 
evidence of increased brain atrophy and diminished WM integrity, 
consistent with the hypothesis of accelerated brain aging [reviewed 
in García-García et al. (2022)]. On the other hand, epidemiological 
studies on large-scale cohorts have reported that, compared to 
MHL subjects, MHO individuals show a decreased risk of death, 
cardiovascular disease, cognitive decline, AD and other dementias 
(Cho J. et al., 2021; Cho Y. K. et al., 2021; Lee et al., 2019; 
Ma et al., 2019). This paradoxical evidence is corroborated by a 
neuroimaging study in the elderly reporting higher whole brain 
and hippocampal volume in MHO compared to MHL, alongside a 
better clearance of (see Section 3.3.1 below). These counterintuitive 
findings are most commonly reported in older samples and are 
referred to as the “obesity paradox” (Lee et al., 2019; Ma et al., 2019, 
2018). 

To attempt to clarify these inconsistencies, we review the 
relevant brain MRI and neurocognitive literature, with a focus 
on mid- to late-adulthood. We summarize findings from both 
structural (T1-w, T1-w, T2-w, SD, FLAIR, DW) and functional 
(rs-fMRI and task-fMRI) MRI modalities. We first review studies 
reporting the impact of obesity onto brain health not taking 
into account the metabolic health status (Section “3.2 Obesity 
findings”). Next, we collect evidence on the MHO phenotype from 
the relatively few “direct studies,” namely those comparing directly 
the MHO phenotype to either the MUO or MHL groups (Section 
“3.3.1 Direct studies”). Finally, we review the brain MRI literature 
for “indirect studies” on adult obesity controlled for metabolic 
health, namely studies investigating the eects of obesity (either 
dichotomic or continuous indices) stratified by metabolic control 
(mainly glucose tolerance and/or insulin resistance, cholesterol 
and blood pressure), or controlling for possible obesity-related 
comorbidities as confounders (Section “3.3.2 Indirect studies”). 

3.1 Inclusion/exclusion criteria 

We searched PubMed and Web of Science using 
combinations of keywords related to “obesity,” “metabolic 
health,” “neuroimaging,” “MRI,” “fMRI,” “cognition,” and “brain 
function.” Eligible studies included peer-reviewed articles 
on adult human populations (≥18 years) that applied MRI-
based techniques (structural, diusion, or functional MRI) and 
neurocognitive testing to investigate brain outcomes in individuals 
with overweight or obesity, with or without consideration of 
metabolic health status. More specifically, for the “direct studies,” 
we only reviewed those studies where the sample was stratified 
by both obesity status and metabolic control following one of the 
definitions in Table 2. For the “indirect studies,” we only considered 
studies with complete information on obesity status, with a sound 
control for the metabolic panel. 

Only studies including full-head structural (T1-w, T2-w, SD, 
FLAIR, DW, see Table 3) or functional (rs-fMRI and/or task-
fMRI, see Table 4) MRI data, with or without accompanying 
neuropshycometric tests, were reviewed. Only in case of “direct 
studies,” given the scarcity of existing literature, we also 
included studies with no MRI imaging data but with at least a 
neuropshycometric test on global or domain-specific (attention and 
executive functions, memory, language, and/or visuospatial skills) 
cognitive functions (see Table 5). 

Exclusion criteria were applied to animal studies, pediatric 
samples (<18 years), articles not written in English, conference 
abstracts, and case report studies. Additionally, we excluded studies 
involving subjects aected by major neurological disorders (stroke, 
clinical dementia, neurodegenerative disease), major psychiatric 
illness (schizophrenia, bipolar disorder), current substance 
dependence, bariatric surgery, and pregnancy. Additional 
exclusions applied when sample size was <20. 

3.2 Obesity findings 

The MRI literature has highlighted several neuroanatomical 
changes in obese compared to normal weight individuals. Among 
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BOX 2 Brain structural MRI modalities and derived metrics (see also Supplementary material). 

Structural MRI 

T1-weighted (T1-w) head MRI modality is sensitive to the signal of the fatty tissue and provides good contrast between gray (GM), white matter (WM) 
and cerebrospinal fluid (CSF). Once T1-w MRI images are segmented, total brain volume can be estimated. Among the most used global volumetrics 
derived from T1-w MRI imaging are the Total Cerebral Volume (TCV), GM volume and WM volume. Particularly, TCV is an established macroscopic 
markers of brain atrophy, neurodegeneration (Moran et al., 2017), and brain aging (Tsao et al., 2013). Aside from global volumetric metrics, T1-w MRI 
brain can be analyzed via spatially fine-grained metrics using volumetric or surface-based approaches. Voxel-based morphometry (VBM) can be 
used to quantify macroscopic abnormalities in GM and WM composition and can reveal brain atrophy. Surface Based Morphometry (SBM) can be 
used to derive morphometric measures from GM cortex. Of particular clinical relevance is cortical thinning which indicates possible axonal loss, 
reduced size of neural cell bodies, and/or demyelination. This has been associated to aging (Salat et al., 2004), declined executive functions 
(Burzynska et al., 2012) and impaired intelligence (Schnack et al., 2015). Cortical surface area (CSA), on the other hand, has been hypothesized to 
mirror the tension between deep WM fibers. 

T2-weighted (T2-w), Proton Density-weighted (PD), and Fluid-Attenuated Inversion Recovery (FLAIR) MRI data can be used to detect macroscopic 
areas of WM pathology associated to aging-related processes and cerebrovascular damage. White Matter Hyperintensities (WMH), lacunes, 
microbleeds (they require sequences sensitive to susceptibility, typically T2*-w and SWI), and enlarged perivascular spaces are well-established 
markers of cerebral small vessel disease (cSVD) (Duering et al., 2023). WMH prevalence increases with age, obesity, hypertension, diabetes, but also 
with unhealthy lifestyles such as smoking and sedentary life (Hakim, 2019; Wardlaw et al., 2015). WMH are clinically relevant as they highlight 
microvascular lesions in the cerebral white matter, possibly resulting from demyelination and axonal loss, and have been linked with an increased 
risk of stroke, cognitive impairment, dementias, neurological diseases, and late-onset depression (Debette and Markus, 2010; Herrmann et al., 2007; 
Kalaria et al., 2012; Lampe et al., 2019; Tosto et al., 2014). Moreover, WMH can be used as an anatomical signature of cognitive decline and dementia 
(Marseglia et al., 2019). Other cSVD markers have also been previously associated with cognitive impairment, including lacunes (Makin et al., 2013), 
microbleeds (Cordonnier et al., 2007; Vermeer et al., 2007; Shenton et al., 2012). 

Diffusion Weighted Imaging (DWI) -Diffusion Tensor Imaging (DTI) is a type of DWI- is an MRI modality especially suited to identify the presence and 
location of microstructural WM lesions, even at the early stages of neuropathology (Tang et al., 2021). By characterizing the diffusion properties of 
water molecules in the white matter fibers, it is possible to detect microstructural abnormalities and compromised WM integrity, possibly resulting 
from axonal injuries. It can also be used to estimate structural connectivity (Shenton et al., 2012). 

BOX 3 Brain functional MRI modalities and derived metrics. 

Functional MRI 

Resting-state functional MRI (rs-fMRI) assess spontaneous neuronal activity by measuring low-frequency (<1 Hz) fluctuations in 
Blood-Oxygenation-Level-Dependent (BOLD) signals on individuals who are not engaging in a specific task (at rest) (Wang et al., 2025). The rs-fMRI 
signals measure local changes in cerebral blood flow and oxygenation, which are assumed to reflect the intrinsic functional interaction between 
brain regions. Among the most used rs-fMRI-based metrics is the Seed-Based Connectivity (SC) which quantifies temporal correlations between 
predefined regions of interest -typically large-scale networks such as the default mode network (DMN), salience network (SN), and executive control 
network (ECN)- and the rest of the brain. Abnormalities in SC connectivity are linked to dysregulated self-referential processing and salience 
attribution, which are relevant for eating behavior. In addition, independent component analysis (ICA) allows for the identification of spatially 
independent networks, providing insights into intrinsic brain organization without requiring a priori hypotheses. Also, the measures the intensity of 
spontaneous neural activity in specific brain regions, serving as proxies for regional spontaneous brain activity. Correlation patterns among 
large-scale networks in spatially remote areas, assessed via Functional Connectivity (FC), have been also used to study the neuronal control of food 
intake (Lips et al., 2014). Finally, Regional Homogeneity (ReHo) measure assesses local synchronization of BOLD signals, reflecting the functional 
coherence of neighboring voxels. 

Task-based functional MRI (task-fMRI) measures task-evoked changes in blood oxygenation (BOLD) signal to identify brain regions engaged during 
controlled stimuli or cognitive activities (Poldrack, 2007). In obesity research, experimental paradigms usually pertain food-cue reactivity, rewards 
valuation, and executive control tasks to probe specific neural systems underlying motivation, self-regulation, and rewards processing (Stoeckel 
et al., 2008; García-García et al., 2013). Fluctuations of the BOLD signals are interpreted as indirect markers of local neuronal activation mediated by 
neurovascular coupling (Logothetis et al., 2001). Task-fMRI data typically undergo a standard preprocessing pipeline, including motion correction, 
spatial normalization, temporal filtering, and smoothing, followed by first-level general linear modeling (GLM) to estimate voxel-wise task-related 
responses (Friston et al., 1994). A common derived metric is task-evoked activation contrasts to identify brain regions that respond selectively to 
specific conditions (e.g., food vs. neutral stimuli). Psychophysiological interaction (PPI) analyses assess task-modulated functional connectivity 
between brain regions, shedding light on how cognitive or emotional demands alter network interactions (Friston et al., 1997). Multivoxel pattern 
analysis (MVPA) and decoding approaches evaluate distributed patterns of activation, providing insights into representational coding of stimuli such 
as food cues or rewards signals. 

the most consistently reported alterations is the reduced global 
GM volume (Bobb et al., 2014; Han et al., 2021; Janowitz et al., 
2015; Raji et al., 2010), in line with large-scale evidence of its 
inverse association with BMI (Hamer and Batty, 2019), suggesting 

that obesity may be associated with accelerated brain atrophy. 
Besides evidence of global brain shrinkage, patterns of regional 
GM volume reductions detected through VBM have also been 

reported in obese adults, most prominently in prefrontal regions 

like the orbitofrontal cortex (OFC), inferior frontal gyrus (IFG), 
and medial prefrontal cortex (PFC) (García-García et al., 2019; 
Kharabian Masouleh et al., 2016; Kurth et al., 2013; Opel et al., 2015; 
Pannacciulli et al., 2006; Raji et al., 2010; Shott et al., 2015; Taki 
et al., 2008; Walther et al., 2010). Reduced GM volume in prefrontal 
regions may result from multiple additive mechanisms – including 

arterial stiness, hypertension, and microvascular damage – 

which can lead to chronic hypoperfusion, thereby compromising 
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TABLE 4 Summary of the main functional MRI-derived markers to identify changes in baseline functional architecture of intrinsic networks (rs-fMRI) 
or changes in the way these networks are dynamically engaged during specific tasks (task-fMRI). 

fMRI Metric Definition Biological phenomenon/clinical 
significance 

Resting-state Functional connectivity (FC) Temporal correlation of spontaneous BOLD signals 
between large-scale networks in spatially remote areas 
at rest. 

Abnormal FC can identify patterns of altered network 

integrity. Altered FC has been reported in obesity 

within rewards-related (striatum, orbitofrontal cortex), 
salience, and DMN networks, and linked to 

dysregulated appetite control and rewards sensitivity 

(Kullmann et al., 2012; Lips et al., 2014; García-García 

et al., 2019; Schwartz et al., 2000). 

Seed-based connectivity (SC) Functional connectivity (FC) between a predefined 

“seed” region and other brain regions. 
Reduced (↓) SC can identify targeted network 

disruptions. In particular, reduced SC in prefrontal 
control over striatal regions has been associated with 

food craving and impulse dysregulation (García-García 

et al., 2013; Lips et al., 2014). 

Independent component 
analysis (ICA) 

Decomposition of BOLD signals into independent 
spatial networks. 

Used to identify rs networks (DMN, salience, executive 

control) and assess obesity-related reorganization or 

reduced network segregation. 

Regional homogeneity 

(ReHo) 
Similarity or synchronization of BOLD time series 
between neighboring voxels. 

Indicates local neural coherence. Decreased ReHo in 

prefrontal and parietal areas has been observed in 

obesity and may relate to impaired executive functions 
and impaired inhibitory control. 

Task Task-evoked activation Identifies brain regions showing significant task-related 

BOLD signal changes, typically contrasting 

experimental conditions (e.g., food vs. neutral cues). 

Reveals hyperactivation in rewards-related (striatum, 
orbitofrontal cortex, amygdala) and homeostatic 

regions during food-cue exposure; hypoactivation in 

prefrontal control areas linked to impaired 

self-regulation (Stoeckel et al., 2008; García-García 

et al., 2013; Rothemund et al., 2007). 

Psychophysiological 
interaction (PPI) 

Examines task-modulated connectivity between a seed 

region and other brain areas. 
Reveals altered coupling between prefrontal control and 

limbic/rewards circuits (e.g., diminished top-down 

control in obesity) (Friston et al., 1994; Kullmann et al., 
2012). 

BOLD, blood-oxygenation-level-dependent; DNN, default mode network; FC, functional connectivity; FA, fractional anisotropy; fMRI, functional magnetic resonance imaging; ICA, 
independent component analysis; MRI, magnetic resonance imaging; PPI, psychophysiological interaction; ReHo, regional homogeneity; rs, resting-state; SC, seed-based connectivity; SN, 
salience network. 

neuronal integrity. These mechanisms may particularly aect the 
prefrontal cortex due to its high metabolic demand and sensitivity 
to oxygen and glucose deprivation (Gorelick et al., 2011; Willette 
and Kapogiannis, 2015). These results are also confirmed in 
studies reporting patterns of cortical thickness (CT) shrinkage 
in association with obesity of the prefrontal cortex - such as in 
the OFC (Medic et al., 2016), the ventromedial PFC, and the 
anterior cingulate (Marqués-Iturria et al., 2013) - so much so 
that prefrontal brain structural alterations have been hypothesized 
to mediate the genetic risk for obesity (Opel et al., 2021). The 
ventromedial PFC plays a key role in decision-making, executive 
control, rewards processing, and impulse regulation (Grafman and 
Litvan, 1999), and has been suggested as a possible neurobiological 
underpinning of obesity (Cieslik et al., 2015; García-García 
et al., 2019). More particularly, the ventromedial PFC mediates 
“hot” executive functions, namely cognitive functions involving 
rewards or aective-related domains, mostly related to tasks 
such as obeying to social rules, the interpretation of complex 
emotions, and the inhibition of inappropriate responses such as 
overeating behaviors (Grafman and Litvan, 1999). The medial PFC 
(particularly its ventral subdivision) has therefore been suggested as 
a neurobiological link between self-regulatory deficits and defective 
regulation of appetite and eating behaviors (García-García et al., 
2019). However, the literature is not always concordant with 

this hypothesis. As an example, the OFC and the whole medial 
PFC has been reported to be enlarged (Horstmann et al., 2011; 
Weise et al., 2017), reduced (García-García et al., 2019; Marqués-
Iturria et al., 2013; Medic et al., 2016), or not significantly aected 
(Kullmann et al., 2012; Sharkey et al., 2015; Zhang et al., 2017) in 
obesity. Some neuroanatomical findings, such as cortical thinning 
in the PFC, have been more consistently reported in the elderly 
than in younger adults, suggesting it might be a phenomenon 
occurring later in life or possibly secondary to obesity (García-
García et al., 2019). Beyond structural alterations, multiple rs-fMRI 
studies in obese individuals have reported altered intrinsic activity 
and functional connectivity in networks underlying rewards-
related regions (striatum, orbitofrontal cortex, amygdala), the 
salience network (insula, striatum), and executive/attentional 
control networks (prefrontal cortex) (García-García et al., 2015, 
2019; Kullmann et al., 2023; Zhang et al., 2020). These systems 
are critical for self-regulation, rewards processing, and homeostatic 
control of appetite (Zhang et al., 2020; García-García et al., 
2013; Kullmann et al., 2012; Lips et al., 2014). Such alterations 
may help explain overeating behaviors, including food cravings, 
disinhibition, “food addiction,” impulsivity, and the diÿculty many 
individuals face in sustaining weight loss interventions (Kullmann 
et al., 2023; Li et al., 2023; Hogenkamp et al., 2016; Park et al., 2015). 
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TABLE 5 Summary of the main neurocognitive tests used to assess different cognitive domains. 

Cognitive 
function 

Test Description/utility Cognitive domains assessed 

Global cognitive 

function 

MMSE (Mini-Mental State 

Examination) (Folstein et al., 
1975). 

A brief (30-points) questionnaire commonly used to screen for 

cognitive impairment. 
Orientation, recall, attention, calculation, 
language, visual-spatial skills. 

MoCA (Montreal cognitive 

assessment) (Nasreddine et al., 
2005). 

A 30 points scale - more sensitive than MMSE - for detecting 

mild cognitive impairment. All adult populations, not limited to 

the aging population. 

Attention and concentration, executive 

functions, memory, language, 
visuoconstructive abilities, abstraction, 
calculation, orientation. 

Blessed information-memory-
concentration test (BIMC) 
(Kawas et al., 1995). 

A brief screening tool (28-points) consisting of 6 items. 
Commonly used in elderly populations to assess cognitive 

decline and dementia. 

Memory, concentration, orientation, 
attention. 

Attention and 

executive 

functions 

Digit span (forward and 

backward) (Ostrosky-Solís and 

Lozano, 2006). 

A subtest of the Wechsler Adult Intelligence Scale (WAIS), 
consisting of two parts: digit span forward [repeat a series of 
digits in the same order (9- points)] and digit span backward 

[repeat a series of digits in reverse order (9- points)]. 

Attention, concentration, working 

memory. 

Trail making test (TMT) A and 

B (Carone et al., 2007). 
A neuropsychological test consisting of two parts: TMT A 

requires connecting numbered circles in sequential order, while 

TMT B involves alternating between numbers and letters. The 

score reflects completion time. 

Visual attention, task switching, cognitive 

flexibility. 

Stroop test (Periáñez et al., 
2021). 

A psychological test consisting of three parts: reading color 

words, naming the ink colors of color words, and an 

incongruent condition where the ink color and the word 

meaning dier. Performance based on reaction time and 

accuracy; no traditional scoring system based on points. 

Cognitive control, processing speed, 
inhibitory control. 

Wisconsin card sorting test 
(WCST) (Heaton et al., 1993). 

A neuropsychological test (128-points) consisting of 128 cards 
that vary in color, shape, and number. Participants must infer 

the new rule based on feedback (“correct” or “incorrect”). 

Executive function, including flexibility in 

thinking, problem-solving. 

Digit symbol substitution test 
(DSST) (Jaeger, 2018). 

A neuropsychological test (93 points) consisting of 93 pairs of 
symbols and digits. The total score is based on the number of 
correct matches made in 90 s. 

Processing speed, attention, psychomotor 

performance. 

Memory Verbal learning test (VLT) 
(Delis et al., 2010). 

A cognitive assessment consisting of 15 words presented over 

multiple trials (15-points). Participants are asked to recall the 

words immediately after the presentation and again after a 

delay. 

Verbal memory, learning ability, recall. 

Benton visual retention test 
(BVRT) (Benton, 1974). 

A visual memory test (10-points) consisting of 10 designs that 
are presented for a brief period. 

Visual memory, perception, visual-spatial 
abilities. 

Prospective memory test (PM) 
(Einstein and McDaniel, 1990). 

A cognitive assessment (12-points) designed to evaluate the 

ability to remember to perform actions in the future. 
Prospective memory, planning, 
self-initiation. 

Language Letter and category fluency 

(Gladsjo et al., 1999). 
A cognitive assessment (20 points) that includes two parts: 
letter and category fluency. Participants are asked to generate as 
many words as possible beginning with a given letter or within a 

semantic category. 

Verbal fluency, executive function, 
language processing. 

Boston naming test (Kaplan 

et al., 2016). 
A cognitive assessment (60-points) consisting of 60 pictures of 
objects that participants must name. 

Confrontational naming, language 

processing, lexical retrieval. 

Visuospatial 
skills 

Card rotations test (Wilson 

et al., 1980). 
A visuospatial test (20 points) consisting of 20 cards depicting 

various shapes at dierent orientations. Participants must 
identify the correct orientation of each shape. 

Visuospatial skills, mental rotation, spatial 
visualization 

Besides PFC, reduced GM has also been reported in 

hypothalamic regions (Kurth et al., 2013). The hypothalamus 
plays a key role in regulating food intake and energy expenditure 

(Velloso, 2009), specifically in mediating hunger versus satiety 

feelings, and pro-versus anti-thermogenesis in response to the 

amount of energy stored (Flier and Maratos-Flier, 1998; Schwartz 

et al., 2000; Velloso, 2009). In addition, evidence from rs-fMRI 
data indicates that obese individuals in a fasting state have 

stronger functional connectivity (FC) between brain areas involved 

in cognitive control, motivation, and rewards (e.g., medial PFC 

and dorsal striatum) as compared to lean subjects, suggesting an 

hypersensitivity to food cue in a fasting state (Lips et al., 2014). 
Other studies have reported evidence of brain atrophy also in 

areas involved in motor functions and emotions, such as the 

cerebellum and hippocampus (García-García et al., 2019; Han 

et al., 2021; Kurth et al., 2013; Medic et al., 2016; Opel et al., 
2021, 2015; Walther et al., 2010). Notably, studies have reported 

altered functional connectivity between salience and hypothalamic 
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TABLE 6 Summary of (structural and functional) neuroimaging and neurocognitive findings in MHO direct studies. 

Study 
(year) 

Sample 
size/ 
population 

Definition 
of MHO 

Imaging 
modality 

Cross-
sectional/ 
longitudinal 

MHO vs. MHL MHO vs. 
MUO 

Main 
conclusion 

Ango et al., 
2022 

2,170 young to 

middle-aged 

adults 
(Framingham 

Heart Study) 

NCEP-ATP III 
criteria 

Structural MRI 
(T1-w + DTI) + 

neurocognitive 

test 

Cross-sectional MHO showed 

intermediate brain 

aging compared to 

MHL; impaired 

global cognitive 

score, verbal 
memory, and 

abstract reasoning; 
higher FW content 
and lower FA 

MUO exhibited 

accelerated brain 

aging lower total 
cerebral volume 

Metabolic 

health 

moderates 
obesity-related 

GM loss 

Nam et al., 
2020 

3165, age 50–69, 
neurologically 

healthy 

participants 

HOMA-IR and 

lipid profile 

Structural MRI: 
Silent brain 

infarcts (SBI) 

Cross-sectional MHO not 
significantly dierent 
from MHL in SBI 
prevalence 

MUO associated 

with increased 

SBI risk 

WM 

microstructure 

better preserved 

in MHO 

Ma et al., 2019 6,151 Chinese 

elders 
IDF criteria Longitudinal 

imaging follow-
up + cognitive 

assessment 

Cross-sectional MHO had lower risk 

of AD compared to 

MHL 

MUO showed 

increased AD 

risk 

MHO 

phenotype 

shows 
preserved brain 

structure 

Kouvari et al., 
2023 

1,772 

middle-aged and 

older adults 
(Framingham 

Ospring Study) 

NCEP-ATP 

III + inflammatory 

markers 

Cognitive 

assessment 
Longitudinal Stable MHO had 

comparable 

cognition to MHL 

Transition from 

MHO → MUO 

linked to 

cognitive decline 

Cognitive 

advantage for 

MHO 

compared to 

MUO 

Dunn et al., 
2023 

78 middle-aged 

adults 
Obesity 

(BMI) + insulin 

resistance 

(HOMA2) 

Task-fMRI Cross- sectional MHO had a reduced 

striatal response to 

palatable taste as 
compared to MHL 

MHO had an 

increased striatal 
response to 

palatable taste as 
compared to 

MHL 

MHO 

responses are 

intermediate 

between MHL 

and MUO 

Notably, neither the NCEP-ATP-III nor the IDF criteria take into account traits of systemic inflammation, hormonal imbalance, or cardiorespiratory fitness status. Other MHO definitions, 
such as the one by Karelis et al. (2005) - based primarily on markers of insulin sensitivity, inflammation and lipid profile - and the one by Wildman (2008) - based on markers of the metabolic 
syndrome combined with the homeostasis model assessment of insulin resistance (HOMA-IR index) - exist, but have not been widely adopted in neuroimaging literature. 

networks in obesity, suggesting an imbalance between rewards 
sensitivity and self-regulation, resulting in disruption of rewards– 
homeostatic control circuits (Lips et al., 2014; Kullmann et al., 
2012; García-García et al., 2013, 2014). Reduced connectivity within 
homeostatic and interoceptive regions (insula, hypothalamus) has 
also been described as a hallmark of the obese brain, potentially 
impairing satiety signaling. 

These findings are complemented by task-fMRI evidence. 
Studies using food-cue paradigms consistently report 
hyperactivation of rewards-related regions (ventral striatum, 
orbitofrontal cortex) in obese compared to lean individuals 
(Rothemund et al., 2007; Stice et al., 2008), alongside 
hypoactivation in cognitive control regions (dorsolateral prefrontal 
cortex) during inhibitory control tasks, reflecting a reduced ability 
to resist temptation (Bruce et al., 2010). 

Indeed, evidence from human studies shows that obesity 
and high-fat/high-cholesterol diets can disrupt blood-brain-barrier 
integrity, increase its permeability, and facilitate the entry of 
inflammatory molecules into the brain. This phenomenon has 
been consistently demonstrated in experimental studies on high-
fat/high-cholesterol fed rodents, and related more specifically to 
hippocampal dysfunctions (Freeman and Granholm, 2012; Kanoski 
et al., 2010; Kanoski and Davidson, 2011) and to impaired 

clearance of amyloid-β, a peptide whose accumulation is central to 
Alzheimer’s pathology (Abdallah et al., 2021; Keaney et al., 2015; Ma 
et al., 2018). These mechanisms may accelerate neuroinflammation, 
neurotoxicity, and neurodegeneration, providing a plausible 
biological link between peripheral metabolic disturbances (such as 
obesity, insulin resistance and systemic inflammation) and central 
nervous system damage and thus cognitive decline. 

Regarding WM damage, increased markers of cerebral small 
vessel disease (cSVD), such as white matter hyperintensities 
(WMH) load (Caunca et al., 2019a,b; Debette et al., 2011; 
Haltia et al., 2007; Kim et al., 2017), cerebral microbleeds 
(Kwon et al., 2016), and lacunar infarcts (Kim et al., 2017; 
Winter et al., 2008) have been reported in obese individuals free 
from cognitive impairment and neurological conditions. These 
findings are corroborated by other reports of microstructural white 
matter damage, as quantified by reduced integrity from Diusion 
Weighted Imaging (DWI) or Diusion Tensor Imaging (DTI) data 
in distributed tracts, including the corpus callosum, cingulum, 
cerebellar peduncles, and corona radiata (Karlsson et al., 2013; 
Kullmann et al., 2016; Mueller et al., 2011; Papageorgiou et al., 
2017). Similar alterations were found in the internal and external 
capsule, the inferior longitudinal fasciculus, and the inferior 
occipitofrontal fasciculus – see (García-García et al., 2019) for a 
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review. Taken together, these diuse patterns of WM damage might 
accumulate in individuals with obesity and lead to a premature loss 
of brain tissue (atrophy) and aect cognitive performance. 

Regarding neurocognitive literature, mid-life obesity has 
been linked to impaired cognitive domains, including episodic 
memory, working memory, executive functions, and decision-
making capabilities, which might contribute to poor dietary 
choices (Dye et al., 2017). However, performances in domains 
such as executive functions and memory – which are both 
progressively impaired in physiological aging – have been reported 
to be altered in non-demented individuals with obesity in some 
studies (Gunstad et al., 2007) but not in others (Whitmer et al., 
2005). These discrepancies were partially dependent on age, 
gender, and fitness status of the studied sample, and/or on the 
incomplete confounding adjustment (García-García et al., 2019; 
Kharabian Masouleh et al., 2016; Prickett et al., 2015), as 
also reported in Section “4.1 Methodological limitations in the 
literature.” 

3.3 MHO findings 

3.3.1 Direct studies 
The MRI literature of neuroanatomical changes in 

metabolically healthy obesity, especially in late adulthood, is 
relatively scarce, see Table 6. Among the few direct brain MRI 
studies (Ango et al., 2022; Nam et al., 2020; Ma et al., 2019), 
the dierences in the definition of MHO and sample selection 
complicate direct comparisons among studies (García-García et al., 
2022; Eckel et al., 2016). 

In Ango et al. (2022), associations of metabolic health and 
obesity with brain health were investigated in a direct study of 
early- to middle-aged adults free from prevalent diabetes or brain 
disorder. The sample consisted of 2170 individuals from the 
Framingham Heart Study Exam 2 cohort (mean age: 46 ± 9 years, 
54% women, MHO/MUO/MHL/MUL: 423/198/1,385/164, 
predominantly Western European) and included T1-weighted 
and DTI along with neurocognitive data spanning executive 
function, memory, abstract reasoning, and visual processing. 
The MHO group was defined using the National Cholesterol 
Education Program Adult treatment panel III (NCEP-ATP III) 
criterion, as in Ma et al. (2019). They reported a lower total 
cerebral volume (TCV) in MUO and MUL, but not MHO, as 
compared to the MHL referent group in a multivariable model 
adjusted for confounders (age, squared age, sex, and interval 
between risk factors assessments). This finding suggests that poor 
metabolic health, rather than obesity status, may be the main 
determinant for global brain atrophy, in line with other studies 
(Tiehuis et al., 2014). Furthermore, while (Ango et al., 2022) 
reported higher Free water (FW) content and lower FA in several 
cerebral regions on MHO relative to MHL, suggesting a reduced 
WM integrity, these dierences were more circumscribed than 
those observed when comparing MUL against MHL. This suggests 
a more limited impact of obesity status compared to metabolic 
status, or possibly an earlier stage of brain damage (see also Section 
“4.1 Methodological limitations in the literature”). While the 
authors detected no evidence of higher WMH burden or silent 
brain infarcts in MHO, they observed an impaired global cognitive 

score, verbal memory, and abstract reasoning in MHO but not in 
MUL, relative to the referent MHL group. This last finding suggests 
that obesity, more than unhealthy metabolic profile, was associated 
with poor cognitive performances even in relatively young adults. 

Another direct study investigated the eects of the MHO 
phenotype on cerebrovascular disease markers in 3,165 
neurologically healthy Asian adults (age-range: 50–69 years, 
46% women, MHO/MUO/MHL/MUL: 63/1099/588/1415) (Nam 
et al., 2020). This study examined the prevalence of silent brain 
infarcts in each group after adjusting for demographic, vascular, 
and inflammatory confounders -age, sex, current smoking, current 
alcohol use, anti-platelet agents, high-sensitivity, C-reactive 
protein (CRP), and white blood cell counts, and found that 
metabolic status, but not obesity status, was associated with 
prevalence and burden of silent brain infarcts (i.e., higher burden 
in MUO/MUL relative to MHL, with no dierence between 
MHO and MHL). It should be noted that this study adopted 
an Asian-specific definition of MHO, using a BMI cut-o of 
≥25 kg/m2 to define the obesity status, and a stricter definition 
of metabolically healthy status that notably included the absence 
of enlarged waist circumference (WC) with a cut-o of 90 cm in 
men and 85 cm in women. This definition might thus represent 
a subclass of the obese population with less risky fat distribution: 
greater subcutaneous adipose tissue (SAT) than visceral adiposity 
tissue (VAT) proportions (Nam et al., 2020). Thus, the negative 
findings on the prevalence of silent brain infarcts could be partially 
attributed to the healthier profile of MHO in the study. 

In elderly samples, results have been more mixed. For example, 
(Ma et al., 2019) examined T1-w MRI data in a sample of 1,199 
non-demented elderly individuals (mean age: 73.5 ± 7.1 years, 
MHO/MUO/MHL/MUL: 415/363/289/132) from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI), a largely North American 
cohort at the time of the study. Using the NCEP-ATP III definition 
of MHO, they reported that the MHO subjects (defined using the 
NCEP-ATP III criterion) showed a decreased AD risk compared 
with their lean counterpart (MHL), after adjustment for age, 
sex, genetic (APOE 4) predisposition to dementia, cognitive 
diagnosis, education, tobacco use, alcohol consumption and LDL-
cholesterol (Ma et al., 2019). A further analysis on brain T1-w 
MRI data reported that whole brain and hippocampal volume were 
significantly higher in late-life MHO than in MHL groups, thus 
confirming a protective tendency of the MHO phenotype against 
the MHL. These findings suggest that, in late life, MHO may 
paradoxically confer neuroprotection against neurodegenerative 
processes, even after adjusting for confounders (genetic, clinical, 
and lifestyle risk factors). The protective tendency of MHO was 
also corroborated by a higher load of CSF-Amyloid β (Aβ), whose 
reduction characterizes AD, even after controlling for several 
possible confounders (Ma et al., 2019). 

Of note, existing MHO neuroimaging literature typically does 
not consider the fact that this status might be a transient phenotype 
(Ler et al., 2024). To the best of our knowledge, the only 
longitudinal study on MHO is the one described by Kouvari 
et al. (2023) only including neuropsychological testing. In Kouvari 
et al. (2023), 2·892 participants from the Framingham Ospring 
Study (mean age: 60.7 ± 9.4 years, MHO/MUO/MHL/MUL: 
234/1152/271/333) were followed longitudinally (12.9 ± 3.5 years) 
with repeated neurocognitive testing. This study highlighted the 
transient nature of MHO status, with approximately 70% of 
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participants classified as MHO at baseline developing at least one 
trait of metabolic disturbance (among dyslipidemia, hypertension 
and glycemic control) during the follow-up period, and were 
classified as non-resilient MHO. The remaining participants 
retained a healthy metabolic status and were thus classified as 
resilient MHO. The MHO group (defined at baseline) as a 
whole did not show an accelerated cognitive decline as compared 
with the metabolically unhealthy groups (MUO/MUL). However, 
non-resilient MHO showed greater decline in processing speed 
and executive functions over time compared to resilient MHO 
participants (Kouvari et al., 2023). Taken together, their findings 
suggest that obesity or overweight status per se are less harmful than 
the metabolic status for cognitive functioning, in contradiction 
with evidence reported in Ango et al. (2022). In other words, the 
study suggests that long-term maintenance of metabolic health, not 
obesity status alone, determines resilience against cognitive decline. 

The literature on functional neuroimaging in MHO versus 
MUO is extremely limited. Most fMRI studies to date have 
focused on obesity as a whole, without stratifying participants 
by metabolic status. To the best of our knowledge, a single 
direct study (Dunn et al., 2023) specifically tagged brain activity 
in MHO, as compared to either MUO or MHL groups. More 
specifically, (Dunn et al., 2023) carried out a task-fMRI cross-
sectional study on 78 participants (mean age: 39 ± 1 years, 
MHO/MUO/MHL: 29/34/15) stratified using a combination of 
criteria which included obesity and updated homeostatic model 
assessment of insulin resistance (HOMA2). They found that insulin 
resistance and obesity alter dorsal striatal responses (BOLD signals) 
in an activation task induced by palatable taste. Aberrant neuronal 
responses to taste in MHO were intermediate between MHL 
(primarily positive BOLD response) and MUO (primarily negative 
BOLD response), suggesting that functional brain alterations may 
parallel the structural and cognitive dierences observed between 
MHO and MUO. Interestingly, lower palatable taste-induced 
neuronal activation predicted higher food craving and food intake, 
in line with previous reports of reduced neural response to pleasant 
food taste in obese versus lean individuals in dorsal striatum (Babbs 
et al., 2013; Stice et al., 2008). Dorsal striatum integrates cognitive 
control signals from the prefrontal cortex and homeostatic inputs 
from hypothalamic regions, and it is thus central for weight control. 

No longitudinal fMRI studies have yet determined whether 
MHO functional brain profiles predict resilience or eventual 
progression to MUO. Moreover, few studies combine structural and 
functional modalities, leaving unanswered the question of whether 
preserved GM/WM integrity in MHO is mirrored by preserved 
connectivity patterns. 

Overall, the few existing direct comparisons of MHO group 
against MHL do not provide strong evidence for the harmful eects 
of obesity status in metabolically healthy individuals on MRI-based 
markers or cognition, with one study reporting protective eects of 
MHO relative to MHL (Ma et al., 2019), and one reporting harmful 
eects of MHO relative to MHL (Ango et al., 2022). Particularly, 
the lower WM integrity reported by Ango et al. (2022) in MHO 
as compared to MHL group was milder in intensity and less 
widespread than when comparing MUL versus MHL. This suggests 
the MHO status as a potential intermediate risk phase, as compared 
to the MUO status. In terms of cognitive functions, while lower 
global cognitive score in MHO was reported (Ango et al., 2022), 
the longitudinal examination of cognitive function in Kouvari et al. 

(2023) suggests that those who retain a metabolically healthy status 
have similar cognitive trajectories as MHL subjects, suggesting a 
limited impact of overweight/obesity status in the absence of other 
metabolic impairment. However, it should also be noted that only a 
minority of participants classified as MHO in Kouvari et al. (2023) 
remained metabolically healthy in the following decade, suggesting 
MHO as an often-transient status and that the overweight/obesity 
status as often leading to metabolic disturbances later in life. Their 
observation is corroborated by several studies following the weight 
and metabolic status of individuals over time and demonstrating 
the higher conversion rate of individuals with overweight and/or 
obesity from metabolically healthy to unhealthy status compared 
to normal weight individuals (Bogdanov et al., 2020). 

3.3.2 Indirect studies 
Indirect studies on the MHO are by far more numerous. 

Among them is a VBM analysis presented by Kharabian Masouleh 
et al. (2016), which investigated the eects of BMI on GM volume 
and its cognitive implications on a sample of cognitively healthy 
subjects with no history of stroke or use of medication aecting the 
CNS (N = 617, age-range: 60–80 years, 42% women, BMI range: 17– 
41 kg/m2) from the Life Adult Study, a predominantly European 
cohort in Germany (Loeer et al., 2015). After controlling 
for prevalent cardio-metabolic conditions, medications, APOE, 
education status, and WMH traits, their analysis revealed a 
negative association between BMI and GM volume in multiple 
cortical areas, including the prefrontal, temporal, and occipital 
cortices, as well as in subcortical structures such as the thalamus, 
putamen, amygdala and cerebellum (Kharabian Masouleh et al., 
2016). In addition, a mediation analysis revealed that lower GM 
volume partially explained the association between higher BMI and 
poorer memory performance and impaired attentional processes 
(Kharabian Masouleh et al., 2016). 

The same group carried out a follow-up analysis (Beyer et al., 
2019b) on a partly overlapping sample (N = 748, mean age: 68.4 
(±4.8), 44% women, BMI range: 17 – 42 kg/m2) of cognitively 
healthy participants with no major brain pathology from the 
LIFE-Adult Study cohort. VBM-based GM volume, markers of 
overall (BMI) and visceral (WHR) adiposity, and metabolic features 
including markers of glucose metabolism (glycated hemoglobin), 
lipid metabolism (total cholesterol, HDL), systemic inflammation 
(CRP, interleukin-6), and adipose-tissue derived hormones (leptin 
and adiponectin) were tested for covariation while controlling for 
the confounding eects of age, sex, and total intracranial volume 
(Beyer et al., 2019b). Rather than investigating the independent 
eects of highly correlated measures of obesity and metabolic 
status, they applied a multivariate statistical approach to examine 
the associations between latent factors underlying dierent 
measured variables and the GM volumetry. They demonstrated 
that the higher values of BMI, WHR, leptin, glycated hemoglobin, 
CRP and lower levels of adiponectin were jointly associated with 
widespread patterns of decreased GM volume in temporal, frontal 
and occipital lobe, sub-cortical regions, and cerebellum, suggesting 
a shared basis among obesity, inflammation, endocrine regulation 
of appetite and brain alterations (Beyer et al., 2019b). Particularly, 
BMI, WHR, and systemic inflammation had the highest influence 
on GM reduction. This study, however, did not control for genetics 
and behavioral traits, despite a reduced GM volume and impaired 
executive functions (particularly impulsive behavior leading to 
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disinhibited eating behaviors) might be both secondary to obesity 
or act as a risk factor for developing obesity later in life (Beyer et al., 
2019b; Chuang et al., 2015; Opel et al., 2015). 

In the same year, (Lampe et al., 2019) investigated the 
contribution of obesity to WMH loads using a whole-brain 
voxel-based approach on a larger sample extracted from the 
same LIFE-adult cohort (N = 1,825, age range: 20–82 years, 
44% women, BMI range: 18.4–55.4 kg/m2). They found WHR 
to be robustly associated with deep WMH, after controlling for 
age, sex, and cardiovascular risk factors including hypertension 
diagnosis, systolic (SBP) and diastolic (DBP) blood pressure, and 
smoking. These cardiovascular factors, in turn, were significantly 
associated with more periventricular WMH. Although BMI was 
significantly associated with the total WMH volume and the deep 
to periventricular WMH ratio, the voxel-based analysis did not 
identify a significant impact of BMI on regional WMH probability, 
and the eects on the overall WMH volume and regional ratio 
was uncontrolled for cardiovascular risk factors. The authors in 
Lampe et al. (2019) also performed mediation analyses and showed 
that while both BMI and WHR were associated with inflammatory 
markers like CRP and interleukin-6 (IL-6), only IL-6 significantly 
mediated the eects of obesity on the WMH ratio. The latter finding 
aligns with previous studies showing that visceral fat is more linked 
to inflammation and to microstructural brain damage in deep WM, 
compared to subcutaneous adiposity (Kim et al., 2017; Widya et al., 
2015). 

More recently, a comprehensive study conducted on a middle-
to older-aged participants of the UK Biobank (N = 23,676, mean 
age: 62.8 ± 7.5 years, 52.5% women, mean WC: 87.9 ± 12.5 cm) 
examined the impact of obesity in relation to neurodegenerative 
diseases and metabolic brain aging (Shen et al., 2023). Obesity, 
defined by elevated waist circumference (WC ≥ 102 cm in males 
and ≥88 cm in females), showed the strongest association with 
structural changes in the brain – namely the higher cortical 
surface area, lower cortical thickness, and lower subcortical 
volumes-, after adjusting for demographic factors –such as age, 
sex, ethnicity, and handedness, as well as brain size, socioeconomic 
and lifestyle factors-. These associations exceeded the influence 
of other metabolic syndrome components such as hyperglycemia, 
hypertension, hypertriglyceridemia, high cholesterol and low HDL 
levels. This result supports the view that obesity defined by WC 
has an impact on brain aging, beyond other cardiometabolic 
conditions. The authors also reported significant intercorrelations 
among all five metabolic components. Importantly, the overall 
burden of metabolic dysfunction was associated with the magnitude 
of brain morphological alterations, characterized by reduced 
basal ganglia volume, increased cortical surface area (CSA), and 
decreased cortical thickness (CT) in key regions such as the frontal, 
temporal, and sensorimotor cortices. 

Another UK Biobank study (Dekkers et al., 2019) investigated 
total body fat (TBF), an adiposity measure assessed by impedance, 
and its eects on brain structural and microstructural integrity 
(N = 12,087, mean age: 62 ± 7.3, 53% women, mean BMI: 
26.6 (±4.4) kg/m2), stratifying on BMI groups (normal weight, 
overweight, and obese group). They reported sex-specific eects of 
TBF, showing a positive association with global cortical volume in 
women but negative association in men, although there were some 
specific regional volumes with concordant negative associations in 
both sexes (in the temporal fusiform anterior cortex and the ventral 

striatum). Men also exhibited a negative association between TBF 
and subcortical GM volumes, particularly among the obese group, 
while in women this association was much weaker and significant 
only for globus pallidus. In line with this evidence, TBF-by-sex 
interaction revealed that obese men were more vulnerable to mild 
cognitive impairment compared to women (Dekkers et al., 2019). 

In Caunca et al. (2019a), the link between several indexes 
of obesity and global MRI-derived markers of brain health was 
studied in a racially and ethnically diverse North American urban 
cohort (N = 1,289, mean age: 64 ± 8 years, 60% women) 
including Hispanic/Latino (66%), non-Hispanic Black (17%), non-
Hispanic White (15%), and other races/ethnicities (2%). This 
study revealed significant associations between greater BMI and 
WC and a reduced CT after adjustment for sociodemographic, 
lifestyle, cognitive, vascular and metabolic risk factors. Similarly, 
CT was reduced in obese (BMI > 30) compared to normal-
weight participants (BMI < 25), particularly in those younger than 
65 years. Concordantly, weaker negative associations were observed 
for BMI and WC with total cerebral volume, but not with markers 
of WMH burden. Interestingly, these negative associations between 
obesity metrics (BMI and WC) and brain atrophy did not change 
significantly after adjusting for vascular risk factors, suggesting that 
these factors did not strongly mediate this association (Caunca 
et al., 2019a). 

Taken together, the evidence from indirect studies suggests that 
both general obesity, as assessed via BMI (Caunca et al., 2019a,b; 
Kharabian Masouleh et al., 2016), and abdominal (e.g., visceral) 
adiposity, as assessed via WC or WHR (Caunca et al., 2019a,b; 
Shen et al., 2023; Suzuki et al., 2019), are negatively associated with 
markers or regional and global GM volume. Nonetheless, stronger 
and more robust associations are reported with single or composite 
measures of visceral adipose tissue [WC, WHR, and multivariate 
composite measures as in Beyer et al. (2019b)] rather than BMI 
alone. This may be due to visceral adipose tissue potentially playing 
a key role in initiating neuroinflammatory pathways that contribute 
to neuronal loss, as suggested by Lampe et al. (2019) and discussed 
in Section “3.4 Biological pathways of brain damage.” 

3.4 Biological pathways of brain damage 

Several mechanisms have been suggested as possibly mediating 
the link between obesity and brain health. Here we summarize key 
biological pathways that can lead to neuroimaging abnormalities 
and ultimately to cognitive impairments (Figure 2). Their complex 
interplay can be modeled using structural equation modeling, as 
exemplified by Morys et al. (2021), who made use of the large 
and phenotypically rich UK Biobank (N = 20,210, mean age 
63 ± 8 years, females: 53%, mean BMI: 26.6 ± 4.27 kg/m2) 
to model the relationships between obesity and other cardio-
metabolic measures, brain MRI based measures and cognitive 
functions. This study revealed that (i) obesity was related to 
systemic inflammation and metabolic comorbidities of obesity 
like hypertension, diabetes, and dyslipidemia; (ii) these, in turn, 
were associated with cerebrovascular alterations (WMH), which 
were further related to cortical thinning, GM loss and impaired 
cognition; and (iii) obesity measures (BMI, WHR and BF%) were 
also directly related to GM shrinkage independent of WMH. Below 
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we review obesity-related pathways (Sections “3.4.1 Inflammatory 
pathways: systemic low-grade and neuro-inflammation,” “3.4.2 
Hormonal pathways: leptin, adiponectin and ghrelin,” “3.4.3 
Oxidative stress”), then cardio-metabolic factors likely triggered by 
obesity (Section “3.4.4 Cardio-metabolic pathways: blood pressure, 
lipid, and glucose homeostasis”), and their collective impact on the 
cerebrovascular health (Section “3.4.5 Cerebrovascular pathways”). 

3.4.1 Inflammatory pathways: systemic low-grade 
and neuro-inflammation 

Adipose tissue in the abdominal region can be considered as 
an active endocrine organ secreting pro-inflammatory cytokines, 
such as interleukin-6 (IL-6), and inflammation-related proteins, 
such as CRP (Morys et al., 2021). These cytokines promote a status 
of chronic low-grade inflammation, endothelial dysfunction, and 
disrupted fibrinolysis (Hakim, 2019; Kivimäki et al., 2022). These 
have been shown to increase the permeability of the blood-brain-
barrier to circulating cytokines and immune cells, paving the way 
for neuroinflammation (Chiefari et al., 2021; Yae et al., 2004). 
In turn, neuroinflammation can impair cognition, learning-related 
skills, and social behavior, potentially leading to neuropsychiatric 
disorders (Biessels and Despa, 2018). Interestingly, elevated 
markers of systemic inflammation (such as IL-6 and CRP) have 
been linked to increased dementia risk (Yae, 2007; Yae et al., 
2004), even decades prior to its occurrence (Schmidt et al., 2002), 
possibly due to accelerated accumulation of amyloid-β (Abdallah 
et al., 2021; Keaney et al., 2015; Ma et al., 2018). In accordance 
with this, markers of systemic inflammation have been also linked 
to MRI-derived markers of global brain atrophy in middle-aged 
adults (Gustafson et al., 2003), to GM reduction particularly in 
the hypothalamus, hippocampus and prefrontal cortex (Marsland 
et al., 2008), and to macroscopic WM markers of cerebral vessel 
disease (Hakim, 2019). This is in line with, previous animal 
studies showing that highly fatty diets induce blood-brain-barrier 
breakdown, hypothalamic inflammation and subsequent atrophy, 
whereas calorie restriction reduces systemic inflammation and 
brain atrophy (Hargrave et al., 2016; Kanoski et al., 2010; Kanoski 
and Davidson, 2011; Thaler et al., 2012; Willette et al., 2010). 

3.4.2 Hormonal pathways: leptin, adiponectin and 
ghrelin 

Leptin, adiponectin and ghrelin are signaling hormones 
playing a key role in energy homeostasis that also influence 
brain structure and function (Ango et al., 2022; Beyer et al., 
2019a; Han et al., 2021). In the hypothalamus, a group of 
nuclei respond to these hormonal signals to either promote 
or suppress feeding (arcuate nucleus), to regulate energy 
expenditure (paraventricular nucleus), to activate food-seeking 
and rewards-related behaviors (lateral hypothalamus), and to 
activate satiety signals (ventromedial hypothalamus) (Purnell 
and le Roux, 2024). Dysregulation of these nuclei has been 
consistently observed in both rodent-models of diet-induced 
obesity and in humans, and linked to abnormal feeding 
behaviors and energy imbalance (Briggs et al., 2010; Enriori 
et al., 2007). 

Besides being involved in the hypothalamic control of satiety 
signals and suppression of food intake, leptin also acts in the 
hippocampus to support memory functions (Beyer et al., 2017; 

Klok et al., 2007). Increased levels of leptin have been associated 
with reduced dementia incidence in non-obese adults and larger 
brain volume (Lieb, 2009). On the other hand, chronically 
elevated levels of leptin in obesity induce resistance to the 
eects of the molecule (Myers et al., 2010) and have been 
linked to impaired executive functions in older adults (Ango 
et al., 2022; Spitznagel et al., 2010). In line with this, because 
of the higher expression of leptin in subcutaneous fat tissues, 
this hormone has been hypothesized to be a less important 
neurodegenerative risk factor compared to visceral adiposity 
(Debette et al., 2010). 

Adiponectin has positive eects on the brain due to its insulin 
sensitizing (Cisternas et al., 2019) and glucose-regulating properties 
(Lihn et al., 2005). However, existing neuroimaging studies have 
failed to find evidence of a link between adiponectin and GM 
volume (Beyer et al., 2019b; García-Casares et al., 2016). 

Ghrelin stimulates meal-initiation and thus food intake, 
but also aects brain regions controlling rewards and mood 
regulation such as prefrontal cortex and striatum (Bogdanov et al., 
2020). Beyond feeding, ghrelin has also been found to have a 
neuroprotective eect after ischemic brain injury (Spencer et al., 
2013) and brain traumatic injury in mice (Shao et al., 2018), 
possibly due to prevention of blood–brain barrier breakdown and 
neuronal death. Ghrelin is inversely correlated with BMI (Klok 
et al., 2007), and its metabolic action appears dysregulated in 
obesity, possibly due to ghrelin resistance. 

Finally, high levels of cortisol, a steroid hormone usually 
secreted under stress conditions and oversecreted in subjects with 
obesity (Björntorp, 2001) might lead to premature brain atrophy 
(Simmons et al., 2000). 

3.4.3 Oxidative stress 
Obesity increases oxidative stress - an imbalance between 

generation and clearance of reactive oxygen species (ROS) and 
reactive nitrogen species (RNS) – through biochemical mechanisms 
such as superoxide generation and oxidative glyceraldehyde 
auto-oxidation ( ̌Colak and Pap, 2021; Wang, 2010). These in 
turn trigger further deposition of adipose tissue by promoting 
preadipocyte proliferation, adipocyte dierentiation and growth 
( ̌  Colak and Pap, 2021; Dandona et al., 2010; Higuchi et al.,
2013). Oxidative stress also impacts insulin secretion and glucose 
transport in adipose tissue and muscles, being therefore involved 
in the development of metabolic disturbances ( ̌Colak and Pap, 
2021; Hopps et al., 2010), and has also been linked with 
increased permeability of the blood-brain-barrier ( ̌Colak and Pap, 
2021). 

Due to its high metabolic activity, the brain is particularly 
vulnerable to oxidative damage (Reynolds et al., 2007; Singh et al., 
2019). Cerebral oxidative stress causes insults to neurons, such as 
hypoxia and hypoglycemia, leading to cell injury and neuronal 
dysfunction in specific population of neurons more vulnerable to 
age-associated decline -particularly in the hippocampus, amygdala, 
and prefrontal cortex-, with consequent behavioral and cognitive 
impairment (Salim, 2017; Wang, 2010). This ultimately leads 
to neuropsychiatric diseases such as depression (Correia et al., 
2023), and to neurodegenerative disorders such as Alzheimer’s, 
Parkinson’s, and Huntington diseases, as well as amyotrophic 
lateral sclerosis (Reynolds et al., 2007; Singh et al., 2019; Wang, 
2010). 
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FIGURE 2 

Mechanisms and pathways potentially leading to brain damage in MHO. 

3.4.4 Cardio-metabolic pathways: blood 
pressure, lipid, and glucose homeostasis 

Central obesity – prominently hypertrophic adipocytes - has 
been linked to the disruption of insulin signaling and insulin 
resistance, possibly via diet-induced inflammation (Medic et al., 
2016; Vachharajani and Granger, 2009; Velloso, 2009). Notably, 
neuronal cells influenced by insulin can aect critical CNS 
functions, including neurotransmission, synaptic plasticity, and 
neuroprotection (Fanelli et al., 2022; Klinedinst et al., 2019). 
Disturbed insulin signaling pathway and consequent glucose 
dysregulation have been also linked to impaired memory and to 
GMV reduction in key memory regions such as the hippocampus 
and the temporal lobe (Beyer et al., 2019a; Cherbuin et al., 
2012; Kerti et al., 2013). Concordantly, disturbed insulin signaling 
has been thought to be implicated in the pathogenesis of 
neurodegeneration (Wrighten et al., 2009), particularly of AD 
(Kroner, 2009). 

Overall, this evidence suggests a pathway linking obesity and 
cognitive impairments, through cardio-metabolic dysfunction and 
neuroanatomical alterations. 

3.4.5 Cerebrovascular pathways 
Obesity has also been linked to maladaptive changes of the 

vasculature (O’Rourke and Safar, 2005), including arterial stiness, 
thickening of the carotid wall, ventricular hypertrophy, vascular 
endothelial dysfunction, hypertension, and ischemia (Taki et al., 
2008). These alterations can compromise cerebral perfusion and 
damage brain tissues. In particular, cerebral vascular pathology 
has been associated with decline in GM tissues, especially in the 
hippocampus and lateral temporal lobe (de Toledo Ferraz Alves 

et al., 2010; Tini et al., 2020). Each standard deviation increase in 
carotid-femoral pulse wave velocity corresponds to a reduction in 
total cerebral volume (TCV) equivalent to ∼1.2 years of accelerated 
brain aging (Tsao et al., 2013). 

In Morys et al. (2021), cerebrovascular alterations were also 
associated with cognitive impairments and the link between BMI 
and working memory was partly mediated by WMH load (9%), 
as were the associations of WHR with working memory (7%) 
and fluid intelligence (21%), and the association between BF% 
and working memory (9%). In WM, vascular dysfunction might 
lead to demyelination, loss of oligodendrocytes, and gliosis (Morys 
et al., 2021), which might accumulate in the years and result 
into increased WMH load and/or into a sensible change in other 
markers of WM pathology, such as silent cerebral infarcts (de 
Toledo Ferraz Alves et al., 2010; Tini et al., 2020; Tsao et al., 2013). 

Vascular stiening might also lead to hypoperfusion and 
hypoxia, and cause cerebral tissue damage (Lampe et al., 2019). 
A significant clinical consequence of cerebrovascular pathology is 
the onset of cognitive impairment and increased risk of dementia, 
even in otherwise healthy individuals (Friedman et al., 2014; 
Furlano et al., 2021; Wrighten et al., 2009). A recent study in the 
field (Siedlinski et al., 2023), combining genetic and observational 
evidence, led to similar conclusions, supporting a negative 
influence of elevated blood pressure on cognitive performance 
also through genetic causal inference methods (Mendelian 
randomization). Notably, the latter study also identified deleterious 
eects of systolic blood pressure on t neuroimaging markers of 
cognitive function, especially in the anterior thalamic radiation, the 
anterior corona radiata, and the external capsule (Siedlinski et al., 
2023). 
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4 Discussions and conclusions 

There is no clear characterization of the neuroanatomical 
and neurofunctional signature of the “metabolically healthy obese 
brain” and of its neurocognitive characteristics. Comparative 
studies between metabolically healthy (MHO) and unhealthy obese 
(MUO) reveal lower GM (Ango et al., 2022) and WM (Nam 
et al., 2020) integrity and worse cognitive outcomes (Kouvari 
et al., 2023) in the latter group, highlighting the critical role 
of metabolic status in determining brain health in individuals 
with obesity. Nonetheless, there are also indications that MHO 
individuals are still at increased risk of impaired brain health 
when compared to their lean counterparts (MHL), as reported in 
three out of the four direct studies reviewed (Ango et al., 2022; 
Kouvari et al., 2023; Nam et al., 2020) This points to a potential 
role of obesity, and overall fat composition more in particular, 
in disrupting brain health even in the absence of overt cardio-
metabolic disturbances. It also supports the notion that preserving 
metabolic health in individuals with obesity has a measurable 
protective eect on brain health. This perspective underscores the 
potential of neuroimaging techniques to unveil distinctive patterns 
of subclinical neuroanatomical changes associated with diverse 
health conditions accompanying obesity, oering valuable insights 
into the intricate relationship between psychiatric, neurological 
and systemic disorders. Given the transient nature of the MHO 
phenotype into MUO for most (but not all) individuals, the MHO 
could be seen as a precious time window for interventions aimed at 
preserving a healthy metabolic status and preventing the obesity-
related brain damage (Blüher, 2020, 2010; Roberson et al., 2014). 

4.1 Methodological limitations in the 
literature 

Despite the evidence reported, the literature in the field is fairly 
inconsistent, possibly due to dierent sources of heterogeneity 
across studies, which might explain, at least in part, the obesity 
paradox. We provide below an overview of such aspects. 

4.1.1 Heterogeneity in cognitive assessment 
methods 

Among the instruments summarized in Table 5, the Montreal 
Cognitive Assessment (MoCA) stands out for its greater sensitivity 
compared with the Mini-Mental State Examination (MMSE) in 
detecting subtle deficits, particularly in fronto-executive domains 
(Freitas et al., 2013; Nasreddine et al., 2005). Because obesity 
and metabolic dysregulation are thought to preferentially aect 
prefrontal circuits involved in executive control (Rösch et al., 2020), 
the use of the MoCA or other sensitive instruments is essential to 
capture early brain–behavior changes. 

The lack of standardized cognitive batteries, combined 
with the frequent use of screening tools with dierent cut-
os and follow-up periods, further complicates comparisons 
across studies and may partly explain the variability of 
neurocognitive findings. Therefore, when interpreting 
cognitive outcomes in this literature, it is important to 
consider both the psychometric properties of the instruments 
and the specific domains they assess, as these factors 

strongly influence the detection of subtle deficits and the 
characterization of longitudinal cognitive trajectories in 
individuals with obesity. 

4.1.2 Obesity definition via BMI 
Despite its wide use, the definition of obesity via BMI has 

some obvious limitations since it cannot discriminate lean from 
fat mass (body composition), nor subcutaneous adiposity from 
either visceral or ectopic fat deposition (body-fat distribution) 
(De Lorenzo et al., 2019; Hainer and Aldhoon-Hainerová, 2013; 
Kassir et al., 2023; Macek et al., 2020; Smith et al., 2019; 
Tchernof and Després, 2013). This is especially important when 
studying the elderly (Huxley et al., 2008; Kim et al., 2017), since 
visceral adipose tissue deposition tends to increase significantly 
with age (Smith et al., 2011; Tchernof and Després, 2013) while 
skeletal muscle mass is progressively reduced (i.e., sarcopenia) 
(Guglielmi et al., 2016). Moreover, there is a dierence between 
males versus females, due to body composition, when computing 
BMI (Pray and Riskin, 2023). Consequently, other obesity indexes 
like the accumulation of visceral adipose tissue (VAT) measured 
from abdominal CT images and the % BF computed from Dual-
Energy X-ray Absorptiometry, have been proved to be better 
predictors of clinical and neurocognitive health outcomes (Kim 
et al., 2017), especially in the case of late-onset obesity (Hainer and 
Aldhoon-Hainerová, 2013). 

Previous reviews have highlighted that fat distribution 
cannot be overlooked, as excess visceral and ectopic adiposity 
(central obesity), more than subcutaneous fat accumulation 
(peripheral obesity), are linked to dyslipidemia, proinflammatory 
and prothrombotic activity, increased risk for cerebrovascular 
disease, more severe microstructural brain damage and more 
adverse cognitive outcomes (Hainer and Aldhoon-Hainerová, 2013; 
Iacobini et al., 2019; Kim et al., 2017; Lampe et al., 2019; Tchernof 
and Després, 2013; Widya et al., 2015). Interestingly, (Debette 
et al., 2010) reported a negative association between VAT and total 
brain volume, independent of BMI in middle-aged community 
participants. 

4.1.3 MHO definition 
The prevalence of MHO has been reported to range from 

approximately 6% to 75% of the total adult obese population (Eckel 
et al., 2016; Ma et al., 2019; Rey-López et al., 2014; Smith et al., 
2011), depending on the employed criteria applied. In other words, 
the definition of the MHO phenotype is not unique, mostly due to 
dierences in the number and severity of metabolic abnormalities 
included across the dierent definitions. Therefore, this represents 
an aspect which might have contributed to the high heterogeneity 
of findings reported in the obesity literature (Eckel et al., 2016; 
Gómez-Zorita et al., 2021; Ma et al., 2019; Rey-López et al., 2014; 
Smith et al., 2011). 

Furthermore, the most commonly used definitions of MHO 
phenotype suer from the inherent limitations of dichotomous 
classifications: (1) a small variation in one parameter can 
lead to classify a subject into an opposite class/category; (2) 
subjects within the “metabolically unhealthy” class are considered 
as equally aected (same level of “sickness”), without taking 
into account the number or severity of metabolic traits; (3) 
subjects within the “obese” class are considered equivalent in 
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terms of adiposity (same level of “fatness”), without taking into 
account its severity and distribution; (4) subjects which do 
not meet yet a clinical diagnosis for any metabolic trait but 
express sub-clinical disturbances are all classified as “metabolically 
healthy.” 

Finally, the two most common MHO definitions in the 
neuroimaging literature (namely the NCEP-ATP III and the IDF 
criteria) do not incorporate markers of systemic inflammation 
and/or hormonal imbalance, neglecting the importance of these 
molecular mechanisms as possible pathways underlying brain 
damage in metabolically healthy and unhealthy obesity. 

4.1.4 Sex effects 
Adipose tissue tends to distribute dierently between sexes, 

with visceral fat more common in men and subcutaneous fat more 
common in women (Nakamura et al., 1994; Taki et al., 2008). 
Furthermore, women tend to be more insulin-sensitive than men, 
possibly due to their higher levels of adiponectin, and/or to the 
eect of estrogens onto insulin and glucose homeostasis (Cavalieri 
et al., 2010; Geer and Shen, 2009; Kim, 2024). Although prevalence 
estimates vary depending on the diagnostic criteria employed, the 
MHO phenotype is more common in women than in men (Smith 
et al., 2019). As a further confirmation, previous neuroimaging 
studies have suggested that the relationship between GM atrophy 
and obesity might be modulated by gender (Kurth et al., 2013; Taki 
et al., 2008). This calls for a more careful treatment of sex, which 
may likely act as an eect modifier. 

4.1.5 Differences in sensitivity of MRI-derived 
biomarkers 

Dierent MRI markers are sensitive to dierent 
anatomical/functional changes which might happen at dierent 
times and at a dierent spatial (microscopic versus macroscopic) 
scale. As an example, DTI-derived markers of WM integrity can 
detect earlier and more spatially subtle alterations than cSVD 
markers from T2w-MRI, which typically indicate macroscopic 
WM anomalies. More so, cSVD induces protracted stenosis of 
small arteries, that leads to hypoperfusion of the brain, resulting 
first in small cerebral infarcts and WMH loads, and only later into 
cerebral atrophy due to the accumulation in time of brain damage 
(Hakim, 2019). It follows that inconsistent neuroimaging findings 
might partially be due to the timing that subjects have been imaged 
during their lifespan, and to the MRI-modalities used to examine 
anomalies. 

4.1.6 Causality and bidirectionality: the need for 
longitudinal studies 

Most of the reviewed studies are cross-sectional (Table 6). This 
approach underlines the assumption that MHO is a stable rather 
than transient state, despite previous epidemiological evidence 
indicating the transitions for many individuals either in metabolic 
health or obesity status over time (Bobbioni-Harsch et al., 2012; 
Eckel et al., 2016; Janssen et al., 2004; Ler et al., 2024; Soriguer et al., 
2013). Also, subjects with a later onset of metabolic dysfunction and 
shorter exposition to the obesity insult might be representative of 
an earlier stage of the trajectory, and this in turn might explain 
dierent neuroimaging (and neurocognitive) findings (Hainer 
and Aldhoon-Hainerová, 2013). Furthermore, cross-sectional 

studies implicitly assume that the observed neuroanatomical, 
neurofunctional, or cognitive alterations are consequences of 
the obesity insult. However, emerging evidence suggests that 
abnormalities in rewards- and control-related regions (e.g., such as 
atrophy and/or altered activation in the prefrontal, orbitofrontal 
cortex, striatum, and anterior cingulate) might actually precede 
obesity. These abnormalities might then predispose subjects to 
overeating behavior and impaired self-regulation, and thus to 
weight gain (Lowe et al., 2019; Stice et al., 2008; Yokum et al., 2011). 
This could further exacerbate brain damages in these same regions 
(Lowe et al., 2019; Stice et al., 2008; Yokum et al., 2011). 

In this view, longitudinal studies may help to untangle the 
temporal direction of eects and clarify if executive dysfunction 
might be a cause of obesity, a consequence, or both. Statistic 
approaches that take advantage of genetic instruments, such as 
Mendelian randomization, may allow us to clarify the causal 
relationship between obesity sub-types and brain trait variability, 
in a way free of typical biases of observational studies like residual 
confounding and reverse causality (e.g., increased mortality 
among subjects with more risky fat distributions, and weight 
loss associated with a preclinical dementia status - see Section 
“4.3.2 Recommendations for future research: toward a precision 
obesity approach”). 

4.1.7 Population age and other sources of bias 
It has been postulated that subjects with a less favorable 

obesity, both in terms of degree and fat distribution, tend to 
have a shorter life expectancy than obese subjects with less risky 
(subcutaneous lower body) obesity patterns (Beyer et al., 2017, 
2019a). Furthermore, unintentional weight loss has been reported 
to precede AD diagnosis in older adults (Johnson et al., 2006), 
and to be exacerbated as dementia progresses (Franx et al., 2017). 
Age and other dierences in the sample demographics, as well 
as limited sample sizes, might therefore partly account for the 
discrepancies in the literature (Kharabian Masouleh et al., 2016). 
In addition, since obesity is associated with increased head motion 
during scanning and thus image artifacts, special attention should 
be paid to control for head micro-movements during image 
acquisition (Medawar and Witte, 2022). Education, smoking habit, 
and cardiorespiratory fitness status are further factors that might 
confound the study of possible links among adiposity metrics, 
MRI markers and cognitive performances, as are the possible 
concurrent presence of other clinical/subclinical conditions (e.g., 
depression) and related medication intake, which are not accounted 
for by the most used MHO definitions (Kharabian Masouleh 
et al., 2016). Finally, collider stratification bias, survivorship 
bias and other potential methodological aspects may explain 
the obesity paradox and definitely deserve careful consideration 
(Banack and Kaufman, 2013). 

4.1.8 Generalizability to non-Caucasian 
ethnicities and health equity concerns 

Most neuroimaging studies on obesity and brain health have 
been conducted on Caucasian cohorts from high-income countries, 
mainly in North America and Europe. Compared to Caucasian and 
European populations, Asian populations typically exhibit higher 
central obesity for each stratum of BMI (Huxley et al., 2008), which 
may lead to dierent susceptibility to metabolic complications and 
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brain tissue damage (Kim et al., 2017). Similar ethnic dierences 
in body composition, fat distribution, and metabolic profiles exist 
in African, Hispanic/Latino, and Indigenous populations (Martos-
Moreno et al., 2020; Justice et al., 2021). Besides minority ethnic 
groups, individuals from lower socioeconomic backgrounds face 
higher risks of obesity, metabolic disturbances, and cognitive 
aging possibly due to dietary, cultural, and/or environmental 
factors (García-García et al., 2022; Tchernof and Després, 2013), 
yet they are typically under-represented in neuroimaging studies. 
This ethnic, geographic, and socioeconomic imbalance limits 
the generalizability of findings to these populations. Beyond 
methodological limitations, this lack of diversity also raises ethical 
concerns related to health equity. 

4.1.9 Rebound mechanisms in obesity and brain 
health 

Weight-loss interventions, whether behavioral, 
pharmacological, or surgical, are often followed by compensatory 
“rebound” responses that tend to restore body weight (Contreras 
et al., 2019; Strohacker et al., 2014). These include reduced resting 
energy expenditure, increased appetite mediated by ghrelin, and 
decreased satiety hormones such as leptin and GLP-1, as well 
as heightened activity of hypothalamic–pituitary–adrenal stress 
pathways (Aschbacher et al., 2014; van Loenen et al., 2022). 
Such homeostatic adaptations favor rapid weight regain and 
recurrent metabolic stress, which in turn may exacerbate systemic 
inflammation, insulin resistance, and cerebrovascular dysfunction 
(Phuong-Nguyen et al., 2024). Repeated weight cycling (“yo-yo” 
dieting) has been associated with greater visceral fat accumulation 
and impaired WM integrity, potentially accelerating age-related 
brain atrophy and cognitive decline. Considering rebound 
physiology is therefore critical when interpreting neuroimaging 
findings in obese individuals, particularly in those undergoing 
weight-loss interventions. For these reasons, our review does not 
also cover samples of individuals who have undergone significant 
weight-lost interventions. 

4.2 Strengths and limitations 

Despite this review presents a clear aspect of novelty by 
attempting to compare direct versus indirect studies investigating 
the impact of obesity onto brain health, several limitations should 
be acknowledged. First, we were unable to make strong and 
definitive conclusions on the possible associations between obesity, 
metabolism status, and brain health, a limitation largely due 
to current limitations of the research field (see Section “4.1 
Methodological limitations in the literature” above). Indeed, the 
scarcity of available studies, the inconsistencies across reported 
findings, the heterogeneity across the MHO definitions, the 
relatively small and demographically narrow sample sizes, and 
the predominantly cross-sectional nature of most of the current 
scientific literature, necessarily limited the strength of our 
conclusions. Second, information on silent brain disease, such as 
silent strokes or subclinical cerebrovascular events, is typically not 
provided and we cannot exclude confounding eects. Finally, as 
this is a narrative review, publication bias cannot be excluded. 

4.3 Future directions and clinical 
implications 

4.3.1 Eating behavior and its neuronal control 
While it is acknowledged that obesity, with or without 

other cardio-metabolic comorbidities, might cause measurable 
neuroanatomical and neurocognitive damage, the possible 
influence of neuroanatomical and neurocognitive alterations 
on incident obesity remains an open and intriguing question. 
Indeed, it has been hypothesized that anatomical changes in the 
prefrontal cortex, a brain region supporting executive functions 
and under genetic control (Chouinard-Decorte et al., 2014), 
might precede the development of overeating - through deficits of 
self-regulatory control over food intake - and thus obesity (García-
García et al., 2019). These same neuroanatomical alterations 
might then be further exacerbated by the obesity insult in a 
vicious cycle of progressive obesity severity, brain dam-age and 
cognitive decline (Hargrave et al., 2016). Similar positive feedback 
has been hypothesized for the hippocampus (Hakim, 2019), 
possibly initiated by hippocampal dysfunctions due to congenital 
deficits, early exposition to highly-caloric fatty diets, and/or to 
environmental toxin exposition (Hargrave et al., 2016; Parent et al., 
2014; Shefer et al., 2013). In turn, hippocampal dysfunctions might 
cause impaired memory inhibition leading to unhealthy responses 
to food cues, consumption of energy dense food, and in turn weight 
gain (Dye et al., 2017). 

Most of the current knowledge of neuronal control on eating 
behaviors is coming from animal studies. In humans, task-
based functional MRI studies have reported dierences in the 
activation patterns of individuals with obesity when presented 
with food stimuli, that possibly would make them more inclined 
to high-caloric food craving and thus to obesity (Rothemund 
et al., 2007). Aberrant brain networks and related cognitive 
functions - such as rewards evaluation and eating behaviors -
are also important aspects in obesity research. Indeed, network 
connectivity studies from resting-state MRI have found that BMI 
is negatively associated to posterior default mode functional 
connectivity in older adults - independently of possible cardio-
metabolic comorbidities, gray matter volume and APOE genotype 
- and with worse executive functions and outcomes (Beyer et al., 
2017). Interestingly, decreased posterior default mode connectivity 
has been also reported in cognitively normal adults at increased 
genetic AD risk (APOE-e4 carriers) (Sheline et al., 2010), and in 
subjects presenting mild cognitive impairment (Sorg et al., 2007), 
suggesting that obesity might be associated to patterns of functional 
connectivity abnormality similar to those observed in individuals at 
AD risk (Beyer et al., 2017; Sheline et al., 2010). 

4.3.2 Recommendations for future research: 
toward a precision obesity approach 

To avoid the aforementioned shortcomings of current 
neuroimaging literature on the MHO phenotype (see Sections “4.1 
Methodological limitations in the literature” and “4.2 Strengths 
and limitations”), we recommend that future studies should be 
carried out in large multicenter cohorts and in a longitudinal 
setting, following in time both MHO subjects who will convert 
into metabolic unhealth (MHO converters) and those who will not 
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(MHO resilients) (García-García et al., 2019). The use of multi-
modal (including both structural and functional) and multi-scale 
(both microscopic and macroscopic) brain imaging, might allow a 
more comprehensive understanding of the shared underpinnings 
of obesity, metabolic regulation, and brain health (Petersen 
et al., 2024). In particular, more functional MR imaging studies 
(such as rs-fMRI and task-MRI), which remain underutilized 
in this field, might fill critical gaps in understanding network-
level brain changes in obesity. Also, systematic meta-analyses 
might provide complementary information on the eect sizes 
and direction of eects across dierent cohorts and imaging 
modalities. Furthermore, we recommend the use of a standardized 
criterion to define the MHO phenotype that would capture the 
truly multifaceted nature of obesity, especially of visceral and 
ectopic adiposity, and related metabolic comorbidities, in each 
of its facets/dimensions: severity and distribution of fatness, 
vascular health, glycemic control, dyslipidemia, low-grade systemic 
inflammation, hormonal dysregulation and resistance, ethnicity, 
cardio-metabolic fitness, lifestyles. Given the limitations of BMI 
as a proxy for adiposity (see Section “2 Metabolically healthy 
obesity (MHO)”), we also recommend that future neuroimaging 
research on obesity adopt more biologically informative measures 
of obesity, such as waist circumference, waist-to-hip ratio, 
or imaging-based assessments of visceral and subcutaneous 
fat distribution. Stratifying future analyses by sex/gender or 
other potential modifiers (e.g., polygenic influences on obesity, 
neuroimaging traits, eating behaviors, and socioeconomic status) 
might also improve the sensitivity of future studies. Similarly, 
integrating genetic information through the use of polygenic scores 
or, even better, instrumental variables in two-sample Mendelian 
randomization studies, might help uncover possible causal links in 
this complex relationship. 

Studying obesity status through these lenses and its interplay 
with brain imaging endophenotypes may contribute to furthering 
our understanding of the pathological processes associated 
with neurodegenerative and neuropsychiatric diseases. Most 
importantly, it may represent one step forward in establishing 
features for the early diagnosis of neurodegenerative conditions, 
which currently suer from the lack of risk-predictive biomarkers. 
If MHO converters, a subset of the adult MHO population 
at high risk of developing brain health complications, could 
be identified early enough, this information could be used in 
clinical settings. Also, targeted public health strategies could 
be planned for weight loss in these subjects, before brain 
(and cardio-metabolic) health is irreversibly impaired. The use 
of risk-stratified treatment for obesity may possibly lead to a 
consequent reduction of the prevalence and burden of both obesity 
and of its neurological and neuropsychiatric sequelae, which 
have currently reached epidemic diusion in most populations, 
especially among elderlies, with unprecedented costs for most 
welfare and healthcare systems. 

4.4 Conclusion 

In this narrative review, we integrated evidence of 
neuroanatomical abnormalities– as derived from structural 
brain MRI data– with findings of disrupted brain networks 
and activation patterns –from functional brain MRI data– in 

metabolically healthy obesity, examining their links to cognitive 
dysfunctions. By doing so, we comprehensively covered profound 
aspects of the complex relationship among obesity, metabolic 
health, and brain health, and emphasized their relevance for both 
clinical and research purposes. Furthermore, by jointly reviewing 
evidence from both structural and functional imaging data, we 
aimed to move beyond a single modality approach, oering a 
broader view of how obesity may shape brain health. 

However, the evidence collected here is partly contrasting, 
with the majority of studies directly comparing MHO and MUO 
supporting a neuroprotective or cognitively advantageous profile 
for MHO individuals and other studies reporting either no 
dierence or mixed findings. Dierences in sample demographics 
and the use of an oversimplified definition of metabolically healthy 
obesity (which overlooks the type and degree of obesity, as well as 
a possible inflammatory status, hormonal control, lifestyle factors, 
genetic risk for dementia, medication intake, and subclinical 
metabolic disturbances), are among the most important sources 
of bias. Findings reported here partially support the view of 
adipose tissue as an active endocrine organ damaging the CNS 
- independently of the comorbidities which might coexist with 
obesity - even if in a milder form compared to metabolically 
unhealthy obesity. They also highlight the key role of alterations 
in rewards-homeostatic-control networks. While firm conclusions 
on the MHO phenotype and its eects on brain health cannot yet 
be derived, the evidence collected here warrants further systematic 
investigations on large sample sizes, via multimodality structural 
and functional neuroimaging, the use of a more comprehensive 
and standardized definition for MHO, a careful assessment of 
cognitive dysfunction, and the investigation into possible causal 
pathways linking obesity, cardio-metabolic disturbances, and brain 
structural/functional damage. 

To conclude, in a public health context of global aging 
populations and rising prevalence of obesity, the present review 
underscores the urgency of better understanding the eects of 
obesity on brain health for implementing prevention strategies 
targeted at promoting healthy cognitive aging. 
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