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Background: Alzheimer's disease (AD) is the most prevalent cause of dementia
in the elderly, imposing a significant societal burden. Current therapeutic
approaches primarily address symptoms, underscoring the critical need to
elucidate its pathogenesis and identify robust early biomarkers. N-glycosylation,
a critical post-translational modification, is dysregulated in neurodegenerative
disorders, yet its role in AD and diagnostic potential remain underexplored.

Objective: This investigation aimed to characterize the interplay between
N-glycosylation and AD through multi-dimensional bioinformatics analysis,
identify core differentially expressed genes (DEGs) associated with this crosstalk,
and evaluate their diagnostic efficacy in early AD detection.

Methods: A bibliometric analysis of Web of Science literature spanning 2001-
2025 was performed using VOSviewer, CiteSpace, and R. Transcriptomic data
were analyzed with LIMMA to identify DEGs. Feature prioritization and molecular
interaction decoding were achieved through Lasso, Random Forest, XGBoost,
and SHAP analysis.

Results: Bibliometric analysis highlighted a shift toward granular molecular
mechanisms, with “bisecting GIcNAc” and "GNT-IIl (MGAT3)" emerging as key
research topics. Differential expression profiling identified 6,845 DEGs, including
TMEMS59, MLEC, and MAX. Machine learning algorithms consistently prioritized
these three genes as core N-glycosylation-related biomarkers, alongside APP as
a key associated molecule. Among transcription factors, MAX was identified as a
central regulator, with a subset of 8 factors (including MAX and BRD9) pinpointed
as critical modulators of N-glycosylation and glial activation in AD. Diagnostic
models demonstrated strong performance: logistic regression achieved an AUC
of 0.947 with MAX, APP, and MLEC; Random Forest and XGBoost attained
perfect AUC = 1.0 in primary analyses; and a clinical nomogram integrating
core genes yielded an AUC of 0.899. SHAP analysis confirmed MAX, APP,
MLEC, and TMEM59 as top predictors, revealing significant positive interactions
between MLEC and TMEMS59 (p = 0.00019) and a negative interaction between
MAX and MGAT3 (p = 0.0288). Notably, MAX alone served as a impactful
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single-gene biomarker, with AUC values ranging from 0.644 to 0.898 across

external validation.

Conclusion: MAX, MLEC, and TMEM59 represent key N-glycosylation-linked
diagnostic biomarkers for AD. This integrative framework provides novel insights
into AD pathogenesis and lays the foundation for personalized diagnostic tools
and therapies, warranting experimental validation.

KEYWORDS

Alzheimer's disease,
transcription factors

1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder and the leading cause of dementia in the elderly
population. It is characterized by a gradual decline in cognitive
function and impairment of daily living activities, imposing a
significant burden on affected individuals, their families, and
society (Kawaharada et al,, 2019). The rising prevalence of AD
aligns with global demographic shifts toward an aging population,
making it a critical public health priority. Projections indicate
that by 2,050, dementia incidence will double in Europe and
triple globally, with AD accounting for the majority of cases
(You, 2025). Beyond its direct impact on patients, AD also
affects caregivers, who often face psychological, physical, and
economic strain, as well as healthcare systems, which must address
the growing demand for long-term care and support services
(Fang et al., 2024). Despite extensive research and resource
allocation, current therapeutic approaches—both pharmacological
(e.g., cholinesterase inhibitors and NMDA receptor antagonists)
and non-pharmacological—remain largely symptomatic and do
not halt or reverse disease progression (Kaye et al, 2024).
This limitation underscores the urgent need to elucidate AD
pathogenesis and identify reliable biomarkers for early diagnosis
and effective management.

Significant progress has been made in characterizing the
molecular hallmarks of AD, including amyloid-f plaques and
neurofibrillary tangles composed of hyperphosphorylated tau
protein (Huang and Jiang, 2009). However, emerging research
highlights the complexity of AD, implicating a diverse array
of genetic, epigenetic, metabolic, and environmental factors
that contribute to its heterogeneity and clinical variability
(Migliore and Coppede, 2022). Among these, post-translational
particularly  N-glycosylation,
garnered increasing attention due to their critical roles in

protein  modifications, have
protein folding, trafficking, and cell signaling (Hou et al,
2023). N-glycosylation, a highly conserved enzymatic process
involving the attachment of oligosaccharides to asparagine
residues, is essential for proper protein conformation and function
(Diinser and Schoberer, 2025). Dysregulation of N-glycosylation
pathways has been implicated in the pathogenesis of various
diseases, disorders,

including neurodegenerative suggesting

that alterations in glycosylation may contribute to protein
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aggregation, synaptic dysfunction, and neuroinflammation in
AD (Xu et al,, 2025a).

Despite these insights, the precise role of N-glycosylation in
AD pathogenesis remains incompletely understood. While studies
have documented the importance of N-glycans in neuronal protein
homeostasis and synaptic plasticity, direct evidence linking specific
N-glycosylation-related genes to AD onset and progression is
limited (Lee et al,, 2017). Furthermore, few investigations have
systematically evaluated the diagnostic utility of N-glycosylation
profiles or associated genetic markers in AD, in contrast to
established biomarkers such as amyloid-, tau, and neuroimaging
modalities. This knowledge gap represents a critical obstacle to the
development of novel, non-invasive diagnostic strategies for early
AD detection and risk stratification (Khan, 2018). Additionally,
existing studies often rely on single-omic or unidimensional
analytic approaches, lacking the integrative perspective necessary
to disentangle the complex molecular networks underlying AD
(Xu et al., 2025b).

To address these challenges, this study integrates multi-
dimensional bioinformatic and statistical methods to systematically
explore the intersection of N-glycosylation and AD. By combining
bibliometric analysis, gene expression profiling, and machine
learning, this work seeks to overcome previous limitations.
Bibliometric approaches map thematic evolution and identify
research frontiers within the N-glycosylation-AD field, while
differential gene expression analysis provides insights into
status. The
incorporation of machine learning algorithms facilitates robust

molecular alterations associated with disease
feature selection and prioritization of candidate biomarkers,
offering the potential to enhance diagnostic accuracy beyond
traditional approaches.

The research design encompasses a comprehensive workflow:
first, systematic literature retrieval and bibliometric mapping to
delineate key trends and knowledge gaps; second, integration of
transcriptomic data from multiple publicly available databases
to identify differentially
genes in AD; third, employment of advanced machine learning

expressed N-glycosylation-related
techniques—including regularized regression and ensemble
methods—to screen and validate potential biomarkers; and
finally, network and regulatory analyses to elucidate interactions
among identified genes, transcription factors (TFs), and molecular
pathways. This multi-layered strategy aims to maximize the
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discovery of clinically relevant targets and provide a holistic
understanding of the N-glycosylation landscape in AD.

2 Materials and methods

2.1 Data sources and retrieval strategy
for N-glycosylation and AD bibliometrics

To investigate the intersection of N-glycosylation and AD
through bibliometric analysis, data were retrieved from the Web
of Science Core Collection, a gold-standard database for such
research. English-language research articles and reviews published
between 2001 and 2025 were included using the optimized search
query:

“TS = ((“N-glycosylat*” OR “N-linked glycosylat*” OR “N-
glycan®” OR “N-glycoprotein®” OR “protein N-glycosylat*” OR
“n-glycoform*”) AND (Alzheimer® OR “Alzheimer’s disease” OR
“Alzheimers” OR “Alzheimer disease” OR “Alzheimer’s-like” OR
“Alzheimer pathology” OR “Alzheimer pathogenesis” OR “tau
protein” OR “beta-amyloid”)).”

The initial search yielded 239 documents, which were filtered
to retain only research articles and reviews. The complete list of
these documents and detailed search outcomes are provided in
Supplementary Table 1.

2.2 Analytical methods and tools for
bibliometric analysis

Three analytical tools were employed: VOSviewer (v1.6.20),
CiteSpace (v6.4 R1), and R (v4.3.3). VOSviewer was used to
generate network visualizations, including thematic evolution
mappings (to track shifts in research focus over time) and thematic
quadrant mappings (to classify themes by centrality and density)
(Zhou et al., 2025). CiteSpace constructed circular thematic
landscapes (to identify clusters using silhouette coefficients) and
performed targeted cluster analyses (for in-depth exploration of
specific clusters) (Sebastian et al., 2020). Additionally, keyword
burst detection was applied to characterize dynamic changes
in research themes. R was utilized for quantitative analysis of
publication data, including thematic trend quantification and
keyword correlation calculations, to ensure rigorous examination
of the literature.

2.3 ldentification of
N-glycosylation-related genes in AD via
differential expression and machine
learning

The GSE5281
N-glycosylation-related genes in AD. This dataset comprises

dataset was analyzed to investigate
gene expression profiles from 150 brain samples collected across
three Alzheimer’s Disease Centers (ADCs): Arizona ADC, Duke
University ADC, and Washington University ADC (Zhang

et al, 2022). The dataset covers six brain regions relevant to

Frontiers in Aging Neuroscience

10.3389/fnagi.2025.1597511

AD and aging, including the entorhinal cortex, hippocampus,
medial temporal gyrus, posterior cingulate, superior frontal
gyrus, and primary visual cortex. Samples were stratified by
diagnostic group, age group, and APOE genotype to ensure
comprehensive coverage of molecular mechanisms in AD and
normal aging.

Differentially expressed genes (DEGs) were identified using
the LIMMA package in R, a widely used tool for microarray
data analysis. The workflow included data preprocessing to
normalize expression values and reduce technical variability,
followed by fitting linear models to assess differential expression
between AD-affected and DEGs
defined using stringent criteria: an absolute log2 fold change
(logFc)
correction) < 0.05.

control samples. were

> 0.4 and an adjusted p-value (Benjamini-Hochberg

To investigate the overlap between DEGs and N-glycosylation-
related genes, a list of N-glycosylation-associated genes was
GeneCards database
Table 1). The intersection between DEGs and this list was

retrieved from the (Supplementary
computed to identify genes implicated in both AD pathogenesis
and N-glycosylation processes. All analyses, including data
preprocessing, statistical modeling, and visualization, were
performed using R.

Machine learning techniques were employed to identify genes
associated with AD from an initial set of 39 genes derived
from the intersection of DEGs and N-glycosylation-related genes
in the GSE5281 and GSE122063 datasets. Three regularization
methods were applied: Lasso, Elastic-Net, and Adaptive Lasso.
Lasso regression was configured with an alpha parameter (a) set
to 1, Elastic-Net with a =
a predefined o, allowing adaptive adjustment of regularization

0.5, and Adaptive Lasso without

strength. These methods were implemented using the glmnet
package in R, with cross-validation to determine the optimal
regularization parameter (\) that minimized deviance. Genes
with non-zero coefficients at the optimal A were considered
significant. Results were visualized using coefficient path plots
and feature impact bar charts, and a Venn diagram was
constructed to illustrate the overlap of selected genes across
the three methods.

2.4 ldentification of diagnostic
biomarkers in DEGs via machine learning
analysis

The relationship between five specific genes and AD was
investigated using the GSE48350 and GSE5281 datasets. The
workflow began with data preprocessing, including data
normalization and removal of features with zero variance.
Feature selection was performed using the Random Forest
algorithm, configured to grow 100 trees to assess feature
importance. Three machine learning models were constructed:
logistic regression, Random Forest, and XGBoost. The logistic
regression model was implemented using the “lrm” function
from the “rms” package, the Random Forest model with
100 trees and importance parameter set to TRUE, and the
XGBoost model trained for 50 rounds using the “xgb.train”

function with the objective parameter set to “binary:logistic.”
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Model performance was evaluated using the Area Under the
Curve (AUC) metric.

2.5 Identification of
N-glycosylation-related genes
associated with TMEM59 in AD

The GSE5281 and GSE122063 datasets were utilized to
investigate molecular interactions associated with TMEM59,
focusing on 11 genes implicated in N-glycosylation and AD. These
genes—STT3A, MLEC, CALR, CANX, CTSD, MGAT1, MGAT2,
MGAT3, MGATS5, APP, and STT3B—were selected based on their
roles in glycosylation processes, calcium signaling, and protein
quality control. For example, STT3A and STT3B are involved in
glycosylation initiation (Lu et al., 2018), MGAT family members in
glycan chain modification (Cha et al., 2017), and MLEC in glycan
recognition (Dos Santos Silva et al., 2019). CALR and CANX act
as chaperones in protein folding (Knee et al., 2003), while CTSD is
linked to protein degradation (Marques et al., 2020). Eight feature
selection algorithms were employed: LASSO, Elastic Net, Random
Forest, XGBoost, Boruta, Stepwise Regression, Genetic Algorithm,
and Decision Tree. Data preprocessing included normalization
and removal of samples with missing values. The analysis was
implemented in R with parallel computing for efficiency. Core
genes selected by at least four algorithms were aggregated as the
final output.

2.6 Discovering transcription factors
linked to MLEC, TMEM59, and glial
activation in AD

To identify pivotal TFs associated with AD, the ChIPBase
database was leveraged to predict 44 TFs regulating the expression
of four genes of interest: GFAP, FOS, MLEC, and TMEM59.
These genes were selected based on their relevance to glial cell
differentiation, a process intricately linked to AD pathogenesis
(Giesen et al., 2003). The VennDiagram package in R was used
to perform intersection analysis, identifying common TFs among
GFAP, FOS, MLEC, and TMEM59.

Subsequently, the GSE5281 and GSE48350 datasets were
analyzed, providing comprehensive gene expression profiles
from brain regions relevant to AD and aging. Seven machine
Elastic Net,
XGBoost, Boruta, Genetic Algorithm, and Linear Discriminant

learning  algorithms—Lasso, Adaptive Lasso,
Analysis (LDA)—were applied to assess the significance of
the predicted TFs. Each algorithm was optimized for feature
selection, balancing model complexity and predictive accuracy.
The performance of these algorithms was quantified by the
selection rate, defined as the ratio of selected genes to the total
number of genes considered. Core biomarkers consistently
recognized by at least four algorithms were identified as
key contributors to AD pathogenesis. The R programming
language was used for these analyses, with specific packages
such as “glmnet] “xgboost” “Boruta} “GA) and “MASS”

playing critical roles.
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2.7 Investigating the diagnostic value of
transcription factors associated with
MLEC, TMEMS59, and microglial
activation in AD

The diagnostic performance of machine learning algorithms
in AD was evaluated using a panel of genes associated with
N-glycosylation and AD pathogenesis. The analysis focused
on 13 molecular features: APP, CALR, CANX, CTSD, MAX,
MGAT1, MGAT2, MGAT3, MGATS5, MLEC, STT3A, STT3B,
and TMEM59. Machine learning algorithms, including logistic
regression, support vector machines (linear and radial kernels),
random forest, XGBoost, k-nearest neighbors (KNN), LDA, naive
Bayes, and decision trees, were implemented to assess diagnostic
accuracy. Feature selection was performed using random forest-
based importance scoring, and models were trained and validated
using five-fold repeated cross-validation. Key performance metrics,
including AUC, accuracy, sensitivity, specificity, and F1 score, were
calculated for each algorithm and gene combination. The analysis
was conducted in R, leveraging packages such as “caret,” “pROC,
“xgboost,” and “randomForest.”

2.8 Machine learning and SHAP analysis
of N-glycosylation-related molecular
features in AD

The GSE5281 and GSE48350 datasets were used to analyze 13
molecular features selected based on their roles in N-glycosylation
pathways and potential involvement in AD pathogenesis. These
features included APP, CALR, CANX, CTSD, MAX, MGATI,
MGAT2, MGAT3, MGAT5, MLEC, STT3A, STT3B, and TMEM59.
Data preprocessing involved normalization, median imputation
for missing values, and removal of zero-variance features. Feature
selection was conducted using a hybrid approach combining
random forest importance scoring (ntree = 100) and logistic
regression coefficients. Predictive models were built using random
100), XGBoost (nrounds = 50), and logistic
regression with interaction terms. Model performance was
evaluated using AUC-ROC, with random forest and XGBoost
achieving perfect AUC values of 1.0. SHAP values were calculated
to interpret feature contributions, and molecular interactions were

forest (ntree =

analyzed using heatmaps and interaction plots. All analyses were
implemented in R, with visualization supported by packages such
as “ggplot2,” “pheatmap,” and SHAP tools.

The workflow implemented in our study is depicted in Figure 1,
detailed accession numbers and information of the GEO datasets

we used can be found in Supplementary Figure 1.

3 Results

3.1 Thematic evolution and research
trends

Thematic evolution analysis of the N-glycosylation-AD
field from 2001 to 2025 revealed sustained focus on AD’s
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FIGURE 1

10.3389/fnagi.2025.1597511

Workflow of the integrated bibliometric and bioinformatics analysis for identifying N-glycosylation-related genes in Alzheimer's disease (AD).

interactions with core biological and biochemical processes, with
N-glycosylation serving as a central connecting theme (Figure 2A).
Between 2021 and 2024, research narrowed its focus to granular
molecular and biochemical topics, including “cleavage,” “protein,”

» o«

“mechanisms,” “mass-spectrometry,” and “peptide;” reflecting a
shift toward dissecting AD pathogenesis at the molecular level to
advance diagnostics and therapeutics. Thematic quadrant analysis
(2021-2024) further clarified research priorities (Figure 2B): the
upper-right quadrant (“Motor Themes”) included high-centrality
and high-density topics such as “Alzheimer’s disease expression”
and “glycosylation,” which bridge research directions; the upper-
left quadrant (“Niche Themes”) featured specialized subfields
like “nervous-system” and “receptor subunits’; the lower-right
quadrant (“Basic Themes”) highlighted foundational concepts
such as “biomarker” and “dementia”; and the lower-left quadrant
(“Emerging/Declining Themes”) included evolving interests like
“tau-protein” and “peptide.”

CiteSpace-generated circular thematic landscapes identified
high-confidence clusters (Figure 2C): Cluster #0 (“cerebrospinal
fluid”  “N-glycan 0.726)
emphasized glycomic analysis of AD clinical samples; Cluster

profiley  silhouette  coefficient:
#1 (“neurodegenerative diseases,” silhouette coefficient: 0.712)
contextualized N-glycosylation within broader neurodegeneration;
and Cluster #3 (“GNT-III activity,

0.909) focused on enzymatic regulation of glycan maturation.

silhouette coefficient:

Nodes such as “cerebrospinal fluid” and “N-glycosylation”
exhibited high centrality, underscoring their role in connecting
clusters. Deep analysis of Cluster #3 revealed high-degree
keywords—“glycosylation,” “glycan,” and “Alzheimers beta
secretase”—highlighting their relevance to GNT-III-mediated AD
pathways (Figure 2D). Temporal tracking (2015-2025) showed
sustained interest in keywords such as “oxidative stress” and
“cell adhesion,” indicating growing focus on GNT-IITs role in
AD-related pathology.

3.2 Keyword analysis and research focus

The three-field plot visualized the interconnections between
key literature, institutions, and keywords in the N-glycosylation-
AD field (Figure 3A). Influential studies, including “Vassar R
(1999) Science, “Kizuka Y (2016) Biochem ] “Ohtsubo K

Frontiers in Aging Neuroscience

(2006) Cell,” “Gizaw ST (2016) BBA-Gen Subjects,” and “Kizuka
Y (2015) EMBO Mol Med,” formed the backbone of current
understanding of N-glycosylation’s role in AD pathogenesis. These
works were closely linked to leading institutions such as Karolinska
Institutet, the University of California System, and Fukushima
Medical University, underscoring their dominant contributions
to the field. Core keywords included “glycosylation,” “Alzheimer’s
disease,” and “amyloid-beta,” while “bisecting GIcNAc” emerged as
a prominent focus, signaling growing interest in this specific glycan
modification’s role in AD.

The keyword burst detection chart (Figure 3B) tracked high-
impact temporal trends (2001-2025): early bursts included “N-
linked glycosylation” (strength = 3.65) and “protein glycosylation”
(strength = 3.85), reflecting foundational interest in glycan
biology. More recently, “pathology” (strength = 3.63) and “tau”
(strength = 3.72) have sustained bursts since 2020 (projected
through 2025), indicating current focus on disease mechanisms.
“Bisecting GIcNAc” also showed a notable burst (strength = 2.74)
from 2016 to 2018, underscoring its historical relevance as
a specialized research topic. Network visualizations further
delineated thematic connections in N-glycosylation-AD research
(Figures 3C,D). In Figure 3C, “Alzheimer’s disease” was the
most central node (57 occurrences, total link strength = 134),
reflecting its status as the field’s core focus, while “N-glycosylation”
(24 occurrences, total link strength = 58) confirmed its pivotal
role in AD pathological processes. Figure 3D highlighted
recent thematic priorities via warm red node coloring: “N-
glycosylation” (24 occurrences, link strength = 58) remained
central, “Bisecting GIcNAC” (8 occurrences, link strength = 27)
showed sustained relevance in recent studies, and “GNT-III
(MGAT3)” (2 occurrences, link strength = 7) emerged as a novel
focus, consistent with its role in regulating bisecting GlcNAc
formation.

3.3 Key differentially expressed and
N-glycosylation-related genes in
Alzheimer's disease identified via
machine learning

Differential expression analysis of the GSE5281 dataset

identified 6,845 differentially expressed genes (DEGs)
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FIGURE 2

10.3389/fnagi.2025.1597511

Thematic evolution and research trends. (A) The temporal progression of research themes in N-glycosylation and Alzheimer's disease (AD) from
2001 to 2025, underscoring N-glycosylation as a pivotal theme in AD research. (B) Categorizes research priorities from 2021 to 2024 into four
distinct categories: motor themes (high centrality and density), niche themes (specialized subfields), basic themes (foundational concepts), and
emerging/declining themes. (C) Identifies key research clusters, including glycomic analysis of AD clinical samples and the role of GNT-III in glycan
maturation. (D) Focuses on Cluster #3, highlighting keywords such as “glycosylation,” “glycan,” and “Alzheimer’s beta secretase,” and emphasizing

the relevance of GNT-III to AD pathology.

Table
(Figure 4A). The plot highlights significant upregulated genes

(Supplementary 1), visualized in the volcano plot
(red) and downregulated genes (blue), with gray dots representing
non-significant genes. Notably, TMEMS59 was identified as a
significantly downregulated gene, while MLEC and MAX were
significantly upregulated in AD-affected samples compared to
controls. The intersection of DEGs with N-glycosylation-related
genes from the GeneCards database yielded 39 overlapping genes.
In Figure 4B, the Lasso regression coefficient path reveals the
influence of various genes on the model, with genes like UNG
and MLEC showing the most significant impact as indicated by
their steep paths. Figure 4C presents the Elastic-Net regression
coefficient path, where genes such as UNG, MLEC, and MAN1Cl1
are prominently featured, demonstrating their importance in the
model with considerable standardized coefficients. Figure 4D
showcases the Lasso feature impact, highlighting the top genes
selected by absolute coefficient. UNG, MLEC, and MANI1CI are
at the forefront, with UNG having the highest positive coefficient,
suggesting its strong association with the disease. Figure 4E
illustrates the Adaptive Lasso feature impact, where UNG again
leads with the highest positive coefficient, followed by MAN1C1
and MLEC. This figure emphasizes the genes significance in
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the context of AD, with a clear distinction between positive
and negative contributions. Lastly, Figure 4F provides a Venn
diagram of the key gene intersections across the three methods,
showing a core set of genes that are consistently selected: ADPRH,
ALG12, ALGS8, ARSG, CXCR4, DNPH1, MAGT1, MANICI,
MLEC, NOX4, NTRK1, ORAIl, SLC3A2, SRD5A3, TMEM59, and
UNG. This overlap underscores the robustness of these genes as
potential biomarkers for AD, as they are identified across different
regularization techniques.

The analysis of the GSE122063 dataset using machine learning
algorithms identified a set of genes with potential significance
in AD. Figure 4G illustrates the Lasso regression results, where
genes such as DAD1 and MLEC exhibit the highest absolute
standardized coefficients, indicating their strong influence on the
model. Figure 4H presents the Elastic-Net regression outcomes,
showing a similar pattern with DAD1 and MLEC being prominent,
alongside other genes like ALG8 and MOGS. Figure 41 highlights
the top features selected by Lasso regression, with DAD1, MLEC,
and ALG8 having the most substantial impact. The Adaptive Lasso
results in Figure 4] show DADI1 as the most influential gene,
followed by TMEM59 and MLEC, pointing to their crucial role
in the disease pathology. The Venn diagram in Figure 4K reveals
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FIGURE 3

10.3389/fnagi.2025.1597511

Keyword analysis and research focus. (A) Presents a three-field plot linking key studies, institutions, and keywords such as “glycosylation,”
“Alzheimer’s disease,” and "amyloid-beta.” (B) Tracks keyword bursts, revealing early interest in “N-linked glycosylation” and recent focus on
“pathology” and “tau.” (C) Displays a network visualization with "Alzheimer’s disease” as the central node. (D) Highlights recent thematic priorities via

warm red node coloring, emphasizing “bisecting GIcNAc” and “GNT-Ill (MGAT3)" as emerging research focuses.

the intersection of genes selected by all three methods, with ALG1,
ALG3, ALGS8, DAD1, MLEC, MOGS, ORAIl, PRKCSH, RPNI1,
SLC3A2, TMEM59, and TMEM59L being consistently identified
across Lasso, Elastic-Net, and Adaptive Lasso, underscoring their
potential as biomarkers. Finally, Figure 4L compares the gene
selection between the GSE5281 and GSE122063 datasets, showing
an overlap in ALG8, MLEC, ORAII, SLC3A2, and TMEM59, which
further validates their importance in AD research.

3.4 Validation of gene biomarkers in
DEGs and nomogram development for
Alzheimer’s disease diagnosis

The analysis of the GSE48350 dataset focusing on five genes
yielded several significant findings. The logistic regression model
achieved a test AUC of 0.594, indicating moderate predictive
accuracy. Figure 5A presents the model performance comparison
across various machine learning algorithms, showcasing the logistic
regression model’s moderate predictive power. Figure 5B illustrates
the ranking of the five genes by their importance across different
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models, with TMEM59 showing the highest mean importance.
Figure 5C depicts the molecular signature expression patterns,
highlighting a clear distinction between control and disease groups,
particularly for TMEMS59, which exhibited the most pronounced
differential expression. Figure 5D presents the clinical prediction
nomogram, which achieved a model performance AUC of 0.699,
indicating a reasonable ability to discriminate between control and
disease states. This nomogram assigns points to each gene based
on its standardized coefficient, with TMEM59 receiving the highest
point allocation, significantly contributing to the total points and
thus the risk probability of AD. These results underscore the
potential utility of these genes as diagnostic biomarkers for AD,
with TMEM59 emerging as a particularly promising candidate due
to its significant differential expression and high feature importance
across models.

The in-depth analysis of the GSE5281 dataset shed light on
the roles of five key genes—ALGS8, MLEC, ORAIl, SLC3A2,
and TMEM59—in AD. The performance of various machine
learning models was evaluated in Figure 5E, with logistic regression
and Random Forest standing out, achieving test AUC scores of
0.8566 and 0.8505, respectively. XGBoost also performed well,
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FIGURE 4

Key differentially expressed and N-glycosylation-related genes. (A—F) Focus on the GSE5281 dataset: a volcano plot (A) highlights significant
upregulated (red) and downregulated (blue) differentially expressed genes (DEGs); regression coefficient paths and feature impact bar charts from
Lasso (B,D), Elastic-Net (C), and Adaptive Lasso (E) reveal genes such as UNG, MLEC, and MAN1C1 as top contributors; a Venn diagram (F)
underscores overlapping genes across these methods, identifying robust biomarker candidates. (G—L) Shift to the GSE122063 dataset: regression
coefficient paths and feature impact bar charts (G—-J) highlight DAD1, MLEC, and TMEM59 as key genes; a Venn diagram (K) illustrates overlapping
genes across methods; comparative analysis (L) reveals consistent candidates such as MLEC and TMEM59 between the two datasets.

with a test AUC of 0.8304. The clinical prediction nomogram in
Figure 5F, which incorporates these genes, shows a high model
performance AUC of 0.899, indicating its strong predictive power.
This nomogram assigns points to each gene based on its expression
level, with TMEMS59 receiving the most points, suggesting it plays a
crucial role in determining the risk probability of AD. Figure 5G
highlights the average feature importance across models, with
TMEMS59 being identified as the most important gene, followed
by ALG8 and MLEC. This underscores the significant impact
of these genes on the model’s predictive capabilities. Figure 5H,
which includes MLEC and TMEM59, shows molecular signature
expression patterns.
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3.5 Characterization of
N-glycosylation-related genes correlated
with TMEMS59 in Alzheimer's disease
pathology

The heatmap (Figure 6A) resulting from the analysis of the
GSE5281 dataset illustrates the pairwise correlations among the
nine selected genes. A significant negative correlation of -0.46
was observed between TMEM59 and MLEC, as indicated by the
deep blue color in the heatmap. This finding suggests an inverse
relationship between the expression levels of these two genes.
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FIGURE 5

0.01, ***p < 0.001.

Validation of gene biomarkers and diagnostic models. (A—D) Analyze the GSE48350 dataset: model performance is compared across machine
learning algorithms (A); TMEM59 emerges as the most important gene through rankings (B); molecular signature expression patterns distinguish
control and disease groups (C); a clinical prediction nomogram (D) validates TMEM59's role. (E-=H) Focus on the GSE5281 dataset: logistic
regression and Random Forest models achieve AUC scores of 0.8566 and 0.8505 (E); a nomogram (F) achieves an AUC of 0.899, emphasizing
TMEM59’s contribution; feature importance analysis (G) and expression patterns (H) highlight TMEM59 and MLEC as critical drivers. *p < 0.05, **p <

The hierarchical clustering dendrogram positioned TMEM59 and
MLEC in separate clusters, reinforcing the distinctness of their
expression profiles among the analyzed genes. In the analysis of the
GSE122063 dataset (Figure 6B), a notable correlation was identified
between TMEM59 and MLEC, with a correlation coefficient of
0.52, indicating a moderate positive relationship. This finding
suggests that the expression levels of TMEM59 and MLEC may
be associated in the samples analyzed from individuals with AD.
Analyzing the GSE122063 dataset, Figure 6C shows that MLEC
expression levels are increased in the disease group compared to
controls.
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In the GSE122063 dataset, the feature selection algorithms
identified STT3A, CALR, and MLEC as the top three genes
associated with TMEMS59. Figure 6D shows that the Genetic
Algorithm selected all genes, achieving a 100% selection rate, while
XGBoost selected 9 genes, indicating an 81.8% selection rate. The
heatmap in Figure 6E demonstrates the normalized importance
of each gene across algorithms, with STT3A, CALR, and MLEC
showing the highest importance. Figure 6I' summarizes the core
genes, highlighting STT3A, CALR, and MLEC as frequently
selected by multiple algorithms. In the GSE5281 dataset, the
top three genes associated with TMEM59 were APP, MLEC,
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FIGURE 6

Molecular interactions of TMEM59. (A) (GSE5281) shows a heatmap revealing a strong negative correlation between TMEM59 and MLEC, with
hierarchical clustering distinguishing their expression profiles. (B) (GSE122063) highlights a moderate positive correlation between these genes.
Panel (C) displays elevated MLEC expression in disease groups within GSE122063. (D—F) (GSE122063) detail gene selection rates, noting the Genetic
Algorithm’s 100% selection rate, and illustrate the importance of genes like STT3A, CALR, and MLEC across algorithms. (G—I) (GSE5281) reveal similar
trends, with the Genetic Algorithm again achieving a 100% selection rate and underscoring genes like APP, MLEC, and STT3B. Overall, MLEC
consistently ranks as a key gene associated with TMEM59 across both datasets. *p < 0.05, **p < 0.01, ***p < 0.001.

and STT3B. Figure 6G details the number of genes selected by
each algorithm, with the Genetic Algorithm achieving a 100%
selection rate and XGBoost selecting 9 genes, indicating an 81.8%
selection rate. The heatmap in Figure 6H illustrates the normalized
importance of each gene across algorithms, with APP, MLEC, and
STT3B consistently showing high importance. Figure 61 confirms
these findings, emphasizing APP, MLEC, and STT3B as core genes
frequently selected by multiple algorithms. Across both datasets,
MLEC is consistently identified as one of the top three genes
associated with TMEMS59.

3.6 Uncovering transcription factors that
regulate MLEC, TMEMS59, and glial
activation in Alzheimer’s disease

The Venn diagram analysis identified 44 shared TFs among
the genes GFAP, FOS, MLEC, and TMEMS59 (Figure 7A), as
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detailed in Supplementary Table 1. This set of TFs is indicative
of a regulatory network that may be involved in the biological
processes associated with these genes. The rigorous application of
machine learning algorithms to the GSE5281 dataset has yielded
a refined list of 17 key TFs from an initial pool of 44 predicted
TFs. This selection was based on the consistent recognition
by multiple algorithms, indicating their potential significance
in AD. The 17 TFs identified as critical include MAX, SMC3,
ZBTB7A, TCF12, SMARCCI, EP300, SMARCA4, BRD1, EGRI,
BRDY, RXRA, MBD4, ARID2, FLI1, TRIM24, SRF, and CTCF.
As depicted in Figure 7B, the Elastic Net and Lasso algorithms
demonstrated the highest gene selection rates, suggesting their
effectiveness in this context. Figure 7C provides a comparative
view of the number of genes selected by each method, highlighting
the variability in gene selection across different algorithms.
Figure 7D presents a heatmap that ranks gene importance across
various methods, offering a visual representation of the relative
significance of each TF. Figure 7E specifically emphasizes the
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core biomarkers (MAX ranked top), selected by at least four
methods, underscoring their potential role as key regulators in
AD.

The analysis leveraging the GSE48350 dataset, as depicted in
Figure 7F, demonstrates that the Elastic Net algorithm selected
the highest number of genes (37), followed by Lasso (32), and
Genetic Algorithm and Adaptive Lasso (20 each). In contrast, the
Random Forest and XGBoost algorithms selected fewer genes,
indicating a lower frequency of gene importance attribution by
these methods. Figure 7G provides a comparative overview of
the number of genes selected by each method, with the bar
chart visually representing the variability in gene selection across
different algorithms. Figure 7H presents a heatmap that ranks gene
importance across various methods, offering a visual representation
of the relative significance of each TF. Notably, genes such as
STAG1, MAZ, BRDY, and FLI1 were consistently identified as
important across multiple methods, as highlighted in Figure 71,
which also shows the frequency of gene selection by the algorithms.
The Venn diagram in Figure 7] illustrates the intersection of key
TFs identified from two distinct datasets, GSE5281 and GSE48350.
The intersection, indicating the common TFs significant to both
datasets, consists of 8 factors: MAX, ZBTB7A, BRD9, RXRA,
MBD4, ARID2, FLI1, and TRIM24.

3.7 Evaluating the diagnostic potential of
transcription factors linked to MLEC,
TMEMS59, and microglial activation in
Alzheimer's disease

The analysis of the GSE5281 dataset (Figures 8A-D) has
been conducted with a focus on eight TFs, utilizing machine
learning models to predict Alzheimer’s disease risk. The results are
summarized as follows: Figure 8A presents the ROC curves for
three predictive models. The logistic regression model achieved
a test AUC of 0.8444, indicating good model performance. The
random forest model demonstrated a slightly higher discriminative
ability with a test AUC of 0.8715, while the XGBoost model showed
a test AUC of 0.8601. These AUC values suggest that all models
are effective in distinguishing between disease and control samples,
with the random forest model performing the best among the three.
In Figure 8B, the boxplot analysis reveals significant differences in
the expression levels of TFs between control and disease groups.
MAX, in particular, shows a notable higher median expression
in control samples compared to disease samples, suggesting its
potential role in the disease’s pathogenesis.

Figure 8C features a clinical prediction nomogram that
integrates the influence of various TFs to estimate disease risk.
The nomogram is based on a logistic regression model with an
AUC of 0.985, indicating excellent predictive power. For instance,
a patient with a MAX expression level of 6.5 would receive 30
points, which, when combined with points from other factors,
contributes to a total score that predicts disease risk. Figure 8D
illustrates the average feature importance across the three models,
with MAX being the most influential, followed by ZBTB7A, BRD9Y,
and RXRA. The normalized mean importance scores highlight
MAX’s predominant role in the model’s predictive accuracy, with
a score of 1.000, significantly higher than the other factors.
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The current study (Figures 8E-H) analyzed the expression
patterns and diagnostic potential of eight TFs (MAX, ZBTB7A,
BRD9, RXRA, MBD4, ARID2, FLIl, and TRIM24) in AD
using the GSE48350 dataset, which comprises 253 samples from
postmortem brain tissues. Figure 8E illustrates the receiver
operating characteristic (ROC) curves for the three machine
learning models. The logistic regression model demonstrated the
highest area under the curve (AUC) of 0.772, followed by RF
(AUC = 0.734) and XGBoost (AUC = 0.707). The performance
gap between training and testing datasets was minimal for all
models, indicating robust generalizability. Figure 8F presents the
differential expression analysis of five TFs (ARID2, BRD9, FLI1,
MAX, and RXRA) between control and disease groups. Significant
differences in expression levels were observed for all analyzed
TFs. Notably, MAX exhibited elevated expression in the disease
group compared to the control group. Figure 8G displays a clinical
prediction nomogram based on the logistic regression model,
with an AUC of 0.74. The nomogram assigns points to each TF
based on its expression level, and the total points are converted
into a risk probability. MAX contributes significantly to the risk
score, alongside BRD9 and ARID2. Specifically, higher expression
levels of MAX are associated with an increased risk probability,
underscoring its role as an important predictor in the model.
Figure 8H highlights the average feature importance of the eight
TFs across the three machine learning models. BRD9 ranked
highest with a normalized importance of 1.000, followed by ARID2
(0.860) and MAX (0.633). The integrated importance scores reflect
the relative contribution of each TF to the diagnostic model. MAX
emerges as one of the most critical features, with its importance
supported by both its differential expression and its substantial
contribution to the model’s predictive power.

3.8 Optimizing diagnostic accuracy with
key molecules (MAX, MLEC, TMEM59)
and N-glycosylation-related genes
across different algorithms

The diagnostic performance of machine learning algorithms
was evaluated using the GSE5281 dataset, with a focus on achieving
optimal diagnostic efficacy with fewer gene combinations.
Figure 9A illustrates a radar plot comparing key performance
metrics across algorithms. Logistic regression demonstrated
superior performance in accuracy, specificity, and F1 score,
while XGBoost and SVM linear showed strong AUC values.
Figure 9B highlights algorithm stability through boxplots of AUC
distributions. Logistic regression and SVM linear exhibited the
highest median AUC values with minimal variability, indicating
robustness. Figure 9C displays a performance matrix heatmap
for different gene combinations and algorithms. Notably, logistic
regression achieved an AUC of 0.947 using only three genes (MAX,
APP, MLEC), and an AUC of 0.948 with five genes (MAX, APP,
MLEC, TMEM59, MGAT3). Even with a single gene (MAX),
logistic regression demonstrated an AUC of 0.898, underscoring
its diagnostic utility. The findings highlight the importance of
MAX as a critical feature in gene panels, with logistic regression
emerging as the most stable and accurate algorithm for minimizing
the number of genes while maximizing diagnostic efficacy.
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FIGURE 7

10.3389/fnagi.2025.1597511

Transcription factors regulating N-glycosylation-related genes. (A) Identifies 44 shared transcription factors (TFs) among GFAP, FOS, MLEC, and
TMEM59. (B—E) Focus on GSE5281: (B) Elastic Net and Lasso have the highest selection rates. (C) Compares selection rates, (D) Ranks TF importance
via a heatmap, and (E) highlights core biomarkers like MAX. (F=1) Analyze GSE48350: (F) Indicates Elastic Net selected the most genes (37),

(G) Contrasts selection rates, (H) ranks TF importance, and Panel | shows selection frequency. (J) Presents a Venn diagram of key TFs from both
datasets, identifying eight common factors: MAX, ZBTB7A, BRD9, RXRA, MBD4, ARID2, FLI1, and TRIM24.

The analysis of the GSE48350 dataset, comprising 253
samples, evaluated the diagnostic performance of machine
learning algorithms across different gene combinations related to
N-glycosylation and AD. Figure 9D illustrates the multi-metric
performance of algorithms, with Naive Bayes achieving the highest
mean AUC of 0.723 using the five-gene combination of MAX,
MGAT3, APP, STT3A, and CTSD, supported by an accuracy of
0.702, sensitivity of 0.873, specificity of 0.331, and an FI score of
0.8. Figure 9E shows the stability of algorithms through boxplots of
AUC distributions, with Naive Bayes demonstrating robust stability
with a median AUC above 0.70, while algorithms such as Decision
Tree and SVM Linear exhibited greater variability. Figure 9F
provides a heat map matrix comparing algorithm performance
across gene combinations, indicating that Naive Bayes achieved
the highest AUC of 0.723 with five genes (MAX, MGAT3, APP,
STT3A, CTSD). Even with fewer genes, Naive Bayes maintained
strong diagnostic efficacy, achieving an AUC of 0.704 with three
genes (MAX, MGAT3, APP) and an AUC of 0.644 with a
single gene (MAX). While the five-gene combination yielded the
highest diagnostic performance, the three-gene combination offers
a balance between diagnostic accuracy and clinical practicality. The
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MAX gene was identified as the most critical single gene in this
analysis.

3.9 Key molecular features and
interactions in Alzheimer’s disease
revealed by machine learning and SHAP
analysis

The analysis of Figures 10A-K provides a comprehensive
overview of the key molecular features and interactions driving
AD classification in the GSE5281 dataset. The random forest
and XGBoost models demonstrated exceptional performance with
perfect AUC values of 1.0, outperforming other algorithms such
as SVM Radial (AUC = 0.976) and Elastic Net (AUC = 0.953)
(Figure 10A). Feature importance analysis identified MAX, APP,
MLEC, and TMEM59 as the most impactful predictors, with
MAX showing the highest mean absolute SHAP value of 0.195
(Figures 10B,C). The SHAP value distribution (Figure 10B) and
feature value vs. SHAP impact analysis (Figure 10E) revealed
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FIGURE 8

Diagnostic potential of transcription factors. (A—D) Analyze the GSE5281 dataset: ROC curves compare predictive models (A), with Random Forest
achieving the highest AUC of 0.8715; boxplots reveal significant differences in TF expression between control and disease groups (B); a clinical
prediction nomogram (C) achieves an AUC of 0.985; feature importance analysis (D) ranks MAX as the most influential TF. (E-=H) Focus on the
GSE48350 dataset: logistic regression demonstrates the highest AUC of 0.772 (E); differential expression analysis supports these findings (F); a
nomogram achieves an AUC of 0.74 (G); feature importance analysis highlights significance in BRD9 and MAX (H). *p < 0.05, **p < 0.01, ***p < 0.001.

nonlinear relationships between feature expression levels and
their contributions to predictions. MAX and APP exhibited
strong positive impacts, with their contributions increasing sharply
at higher expression levels. MLEC and TMEMS59 also showed
significant contributions, though their dependencies on expression
levels were weaker. The force plot (Figure 10D) and individual
prediction decomposition (Figure 10F) further highlighted the
dominant roles of MAX, MLEC, APP, and TMEM59 in driving
prediction scores, with MAX contributing the most significantly.
Interaction analysis uncovered several key relationships. The
interaction between MLEC and TMEMS59 was highly significant
(p = 0.00019, p = 2.469), with higher expression of both genes
correlating with increased predicted probabilities (Figure 10I).
Conversely, the interaction between MAX and MGAT3 (p = 0.0288,
p = -4.491) showed a strong negative effect, where higher
MAX expression reduced predicted probabilities when MGAT3
expression was low (Figure 10H). The interaction between APP and
MLEC (p = 0.03068, f = -1.473) also demonstrated a significant
negative effect (Figure 10G). While some interactions, such as
MAX x MLEC (p = 0.3604, p = -1.439) and APP x MGAT3
(p = 0.3216, p = -0.827), did not reach statistical significance, they
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suggested potential regulatory trends worth further investigation
(Figures 10],K).

The analysis of N-glycosylation-related molecular features
in AD using the GSE48350 dataset provided a comprehensive
understanding of their roles and interactions through 11
key visualizations. The Random Forest model demonstrated
exceptional classification performance with an AUC of 1.0
(Figure 11A), outperforming other algorithms such as XGBoost
(AUC = 0.976) and SVM Radial (AUC = 0.852). This result
was supported by SHAP value distributions (Figure 11B), which
identified APP and MAX as the most impactful features due to their
high SHAP values. The feature importance analysis (Figure 11C)
further confirmed APP and MAX as the top predictors, followed
by MGAT3 and STT3A. Force plots (Figure 11D) and waterfall
plots (Figure 11F) detailed the directional contributions of these
features to prediction scores, with MAX showing a strong positive
impact and CTSD a significant negative impact. The non-linear
relationships between feature expression values and SHAP impacts
(Figure 11E) revealed that APP and MAX had positive correlations
with AD classification, while STT3A demonstrated a negative
correlation. MGAT3 exhibited a non-linear trend, highlighting its
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FIGURE 9

Optimization of diagnostic models. (A—C) Analyze the GSE5281 dataset: a radar plot compares key performance metrics across algorithms (A), with
logistic regression demonstrating superior accuracy; AUC stability is assessed through boxplots (B), further validating logistic regression and SVYM
linear; a performance matrix heatmap (C) underscores logistic regression’s efficiency, achieving an AUC of 0.947 with three genes (MAX, APP, MLEC).
(D—F) Shift to the GSE48350 dataset: Naive Bayes achieves the highest mean AUC of 0.723 using five genes (D); algorithm stability is highlighted (E);

performance across gene combinations is shown in heatmap matrices (F).

complex role in AD pathology. Interaction analyses uncovered
significant synergies between molecular pairs. The interaction
between MAX and MGAT1 (Figure 11G) showed a strong positive
effect (P = 0.0016, B = 7.7), while the interaction between MGAT3
and STT3A (Figure 11T) demonstrated a highly significant negative
effect (P < 0.001, B = -6.864). The interaction between MGAT3
and MGAT1 (Figure 11H) also showed a near-significant effect
(P=0.0775, p = 2.767). Other interactions, such as APP x MGAT3
(Figure 11K) and MAX x STT3A (Figure 11]), showed limited
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or non-significant effects (P = 0.1743, p = -2.298 and P = 0.4841,
B = -1.745, respectively).

4 Discussion

AD is a disorder

characterized by progressive cognitive decline and memory

devastating  neurodegenerative

impairment, predominantly affecting the elderly population
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FIGURE 10

10.3389/fnagi.2025.1597511

Key molecular features and interactions. (A—K) Focus on the GSE5281 dataset: ROC curves demonstrate Random Forest and XGBoost achieving
perfect AUC values of 1.0 (A); SHAP value distribution (B) and feature importance analysis (C) identify MAX, APP, MLEC, and TMEM59 as top
predictors; a force plot (D) emphasizes their dominant roles in driving prediction scores. (E-K) Explore nonlinear relationships and significant
interactions: interactions include a positive effect between MLEC and TMEM59 (p = 0.00019) and a negative effect between MAX and MGAT3

(p = 0.0288).

(Rampaetal, 2013). Its pathophysiology is marked by the
accumulation of amyloid-beta plaques and neurofibrillary tangles,
which lead to synaptic dysfunction and neuronal loss (Han and
Shi, 2016). As the leading cause of dementia globally, AD poses
significant challenges to affected individuals, their families, and
healthcare systems (Lozupone et al., 2025). With its prevalence
on the rise, understanding the underlying mechanisms of AD and
identifying reliable biomarkers for early diagnosis have become
critical priorities in the development of effective therapeutic
strategies (Wu et al., 2021).

This investigation explores the role of N-glycosylation
in AD pathology, highlighting its potential as a key factor
in disease progression. By integrating gene expression data
from the multiple datasets with advanced machine learning
identified
genes that may serve as promising biomarkers for early

techniques, we several N-glycosylation-associated
detection. These findings underscore the importance of these
biomarkers in improving diagnostic accuracy and guiding
thereby

understanding of AD mechanisms and paving the way for

future therapeutic interventions, advancing our

targeted treatment approaches.

Frontiers in Aging Neuroscience

15

In-depth analysis of gene expression profiles in the GSE5281
dataset revealed a substantial set of DEGs. Notably, TMEM59 was
markedly downregulated, while MLEC and MAX were significantly
upregulated. This observation aligns with transcriptomic studies
indicating widespread alterations in glycosylation-related genes in
the brains of individuals with AD, where nearly 80% of such genes
were reported to be differentially expressed in at least one brain
region (Tang et al., 2023). The downregulation of TMEM59 may
disrupt glycoprotein maturation and trafficking, impairing protein-
folding quality control mechanisms and exacerbating proteostatic
stress—a phenomenon previously linked to AD pathology (Meng
etal,, 2020). Conversely, the upregulation of MLEC, which encodes
malectin, an ER-resident lectin involved in the recognition of
misfolded glycoproteins, could reflect a compensatory response
to the increased burden of unfolded proteins or aberrant
N-glycan structures in the AD brain (Chen et al., 2011). MAX,
a transcriptional regulator implicated in cellular responses to
metabolic stress, may be associated with the metabolic alterations
observed in AD neurons (Hsich and Dang, 2016). These expression
patterns diverge from those seen in other neurodegenerative
conditions, underscoring a potential disease-specific adaptation in
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FIGURE 11
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N-glycosylation-related molecular features. (A—K) Analyze the GSE48350 dataset: ROC curves highlight Random Forest's perfect AUC of 1.0 (A);
SHAP value distribution (B) and feature importance analysis (C) underscore APP and MAX as top predictors. (D—F) Detail feature contributions: a
force plot (D) and waterfall plot (F) detail feature contributions to prediction scores. (G—=K) Explore significant interactions: relationships include a
positive effect between MAX and MGAT1 (p = 0.0016) and a negative effect between MGAT3 and STT3A (p < 0.001).

N-glycosylation pathways. Thus, the coordinated dysregulation of
TMEMS59, MLEC, and MAX highlights a mechanistic nexus linking
glycoprotein homeostasis, ER stress, and metabolic reprogramming
in AD.

The application of machine learning algorithms enabled
the identification of 5 N-glycosylation-associated genes with
potential diagnostic relevance for AD. Feature selection methods
such as Lasso, Elastic-Net, and Adaptive Lasso were employed
to address concerns raised in previous literature regarding the
limitations of single-method feature selection, particularly in
high-dimensional, collinear “omics” data. Recent biomarker
studies have emphasized the importance of integrating multiple
selection strategies to enhance the robustness and interpretability
of candidate biomarkers, especially when dataset shift and cohort
heterogeneity pose significant translational challenges. Unlike the
reliance on univariate or standard regression-based selections,
the present methodology combines penalized regression with
ensemble learning, thereby mitigating overfitting and improving
out-of-sample predictive performance. This integrative analytic
framework surpasses previous approaches by systematically
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accounting for correlation structures among glycosylation
genes and accommodating the biological complexity inherent
to AD. Importantly, the genes prioritized by this approach
show minimal overlap with those identified by conventional
differential expression analysis alone, demonstrating the capacity
of machine learning to uncover non-obvious biomarker candidates
in the context of multifactorial disease etiology (Abbas and
El-Manzalawy, 2020).

The observed correlation between MLEC and TMEMS59
suggests a functional interplay within the N-glycosylation pathway,
which may be pivotal for maintaining glycoprotein quality
control in neural tissue. Previous glycomic investigations have
identified enhanced or aberrant glycan biosynthesis as a hallmark
of AD, wherein genetic or dietary modulation of glycosylation
enzymes directly impacts cognitive and behavioral phenotypes
(Hawkinson et al, 2025). The concurrent upregulation of
MLEC alongside the downregulation of TMEM59 could indicate
an adaptive but ultimately insufficient cellular response to
glycoprotein misfolding and aggregation. Mechanistically, MLEC
may facilitate the recognition and retention of misfolded
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glycoproteins in the endoplasmic reticulum, whereas TMEM59 is
implicated in the trafficking and processing of these substrates
(Boada-Romero et al,, 2013). The linkage between MLEC and
TMEMS59 thus provides a molecular rationale for the dysfunction
in protein quality control and aberrant glycosylation characterizing
AD neuropathology.

The identification of eight TFs—including MAX, ZBTB7A,
BRDY, RXRA, MBD4, ARID2, FLI1, and TRIM24—as regulators
of MLEC, TMEMS59, GFAP, and FOS expands our understanding
of the gene regulatory networks that orchestrate glycosylation
and neuroinflammatory responses in AD. Prior computational
studies have highlighted the centrality of specific TFs, such
as STAT1 and HSF5, in controlling glycosyltransferase gene
expression in the AD brain (Tang et al, 2023), and these
regulatory axes are predicted to alter glycan biosynthesis in a
cell-type and region-specific manner. The selection of MAX as
a pivotal regulator is particularly noteworthy, as its role extends
beyond classic metabolic regulation, implicating it in neural stress
responses and possibly in the modulation of microglial and
astrocytic activation states (McFerrin and Atchley, 2011). Notably,
this regulatory constellation diverges from previously established
transcriptional landscapes in other neurodegenerative disorders,
suggesting a unique transcriptional architecture underpinning
AD-specific glycosylation and glial responses. These findings not
only corroborate the significance of transcriptional modulation
in AD pathogenesis but also reveal novel candidate regulators
that may serve as intervention points for modulating disease
trajectory.

The comparative of diagnostic algorithms
demonstrated that logistic regression exhibited superior accuracy

evaluation

and stability for classifying AD status based on gene expression
signatures, outperforming ensemble methods such as random
forest and XGBoost in this context. This result stands in
partial contrast to recent meta-analyses of machine learning
in medical diagnostics, which often report that ensemble models
provide enhanced performance, especially when handling high-
dimensional or nonlinear data. However, the relatively modest
sample sizes and stringent feature selection employed in this
study may favor the generalizability and interpretability of
linear models, aligning with reports that logistic regression
can outperform more complex algorithms when the number
of predictors is tightly controlled and the risk of overfitting is
minimized (Hu and Hu, 2014). Furthermore, the consistent
performance of logistic regression across external validation
datasets underscores its practical utility in clinical biomarker
development for AD, particularly when transparency and
reproducibility are paramount. This methodological insight
supports a nuanced approach to model selection, emphasizing
context-dependent optimization over blanket preference for
algorithmic complexity.

The limitations of this study are primarily reflected in the
absence of wet lab validation and the relatively small sample
size, which restricts the generalizability of the findings. The
reliance on publicly available datasets may introduce batch
effects that could skew the results, potentially impacting the
robustness of the identified biomarkers (Carry et al, 2023).
Additionally, while machine learning techniques were employed
to enhance the identification of N-glycosylation-related genes,
the interpretability of complex models remains a challenge,
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necessitating further validation to establish clinical relevance. These
aspects highlight the need for larger, multi-center studies that
integrate both computational and experimental approaches to
bolster the reliability of the findings.

In summary, this investigation identified several genes
associated with N-glycosylation and AD, demonstrating their
potential as biomarkers for early diagnosis. The innovative
application of machine learning methods underscores the
significance of these findings in advancing our understanding of
AD pathology and facilitating early intervention strategies. Future
research should prioritize larger cohorts and clinical validation of
these biomarkers, as well as exploring their mechanistic roles in
disease progression. The integration of these insights into clinical
practice may pave the way for improved diagnostic and therapeutic
frameworks in AD management.

5 Conclusion

This study bridges bibliometric and bioinformatics approaches
to elucidate the role of N-glycosylation in AD. Bibliometric analysis
highlights a growing focus on molecular mechanisms in AD
research, with N-glycosylation emerging as a key area of interest.
Bioinformatics identified critical genes such as TMEM59, MLEC,
and MAX, which are implicated in glycoprotein homeostasis
and neuroinflammatory processes. Machine learning models,
particularly logistic regression, demonstrated strong diagnostic
potential using minimal gene panels. Additionally, TFs like
MAX and BRD9Y were linked to glycosylation regulation and
glial activation. These findings advance our understanding of
N-glycosylation’s role in AD pathogenesis and provide promising
targets for early diagnosis and therapeutic intervention.
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