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Background: Alzheimer’s disease (AD) is the most prevalent cause of dementia

in the elderly, imposing a significant societal burden. Current therapeutic

approaches primarily address symptoms, underscoring the critical need to

elucidate its pathogenesis and identify robust early biomarkers. N-glycosylation,

a critical post-translational modification, is dysregulated in neurodegenerative

disorders, yet its role in AD and diagnostic potential remain underexplored.

Objective: This investigation aimed to characterize the interplay between

N-glycosylation and AD through multi-dimensional bioinformatics analysis,

identify core differentially expressed genes (DEGs) associated with this crosstalk,

and evaluate their diagnostic efficacy in early AD detection.

Methods: A bibliometric analysis of Web of Science literature spanning 2001–

2025 was performed using VOSviewer, CiteSpace, and R. Transcriptomic data

were analyzed with LIMMA to identify DEGs. Feature prioritization and molecular

interaction decoding were achieved through Lasso, Random Forest, XGBoost,

and SHAP analysis.

Results: Bibliometric analysis highlighted a shift toward granular molecular

mechanisms, with “bisecting GlcNAc” and “GNT-III (MGAT3)” emerging as key

research topics. Differential expression profiling identified 6,845 DEGs, including

TMEM59, MLEC, and MAX. Machine learning algorithms consistently prioritized

these three genes as core N-glycosylation-related biomarkers, alongside APP as

a key associated molecule. Among transcription factors, MAX was identified as a

central regulator, with a subset of 8 factors (including MAX and BRD9) pinpointed

as critical modulators of N-glycosylation and glial activation in AD. Diagnostic

models demonstrated strong performance: logistic regression achieved an AUC

of 0.947 with MAX, APP, and MLEC; Random Forest and XGBoost attained

perfect AUC = 1.0 in primary analyses; and a clinical nomogram integrating

core genes yielded an AUC of 0.899. SHAP analysis confirmed MAX, APP,

MLEC, and TMEM59 as top predictors, revealing significant positive interactions

between MLEC and TMEM59 (p = 0.00019) and a negative interaction between

MAX and MGAT3 (p = 0.0288). Notably, MAX alone served as a impactful
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single-gene biomarker, with AUC values ranging from 0.644 to 0.898 across 

external validation. 

Conclusion: MAX, MLEC, and TMEM59 represent key N-glycosylation-linked 

diagnostic biomarkers for AD. This integrative framework provides novel insights 

into AD pathogenesis and lays the foundation for personalized diagnostic tools 

and therapies, warranting experimental validation. 

KEYWORDS 

Alzheimer’s disease, N-glycosylation, diagnostic biomarkers, machine learning, 
transcription factors 

1 Introduction 

Alzheimer’s disease (AD) is a progressive neurodegenerative 
disorder and the leading cause of dementia in the elderly 
population. It is characterized by a gradual decline in cognitive 
function and impairment of daily living activities, imposing a 
significant burden on aected individuals, their families, and 
society (Kawaharada et al., 2019). The rising prevalence of AD 
aligns with global demographic shifts toward an aging population, 
making it a critical public health priority. Projections indicate 
that by 2,050, dementia incidence will double in Europe and 
triple globally, with AD accounting for the majority of cases 
(You, 2025). Beyond its direct impact on patients, AD also 
aects caregivers, who often face psychological, physical, and 
economic strain, as well as healthcare systems, which must address 
the growing demand for long-term care and support services 
(Fang et al., 2024). Despite extensive research and resource 
allocation, current therapeutic approaches—both pharmacological 
(e.g., cholinesterase inhibitors and NMDA receptor antagonists) 
and non-pharmacological—remain largely symptomatic and do 
not halt or reverse disease progression (Kaye et al., 2024). 
This limitation underscores the urgent need to elucidate AD 
pathogenesis and identify reliable biomarkers for early diagnosis 
and eective management. 

Significant progress has been made in characterizing the 
molecular hallmarks of AD, including amyloid-β plaques and 
neurofibrillary tangles composed of hyperphosphorylated tau 
protein (Huang and Jiang, 2009). However, emerging research 
highlights the complexity of AD, implicating a diverse array 
of genetic, epigenetic, metabolic, and environmental factors 
that contribute to its heterogeneity and clinical variability 
(Migliore and Coppedè, 2022). Among these, post-translational 
protein modifications, particularly N-glycosylation, have 
garnered increasing attention due to their critical roles in 
protein folding, traÿcking, and cell signaling (Hou et al., 
2023). N-glycosylation, a highly conserved enzymatic process 
involving the attachment of oligosaccharides to asparagine 
residues, is essential for proper protein conformation and function 
(Dünser and Schoberer, 2025). Dysregulation of N-glycosylation 
pathways has been implicated in the pathogenesis of various 
diseases, including neurodegenerative disorders, suggesting 
that alterations in glycosylation may contribute to protein 

aggregation, synaptic dysfunction, and neuroinflammation in 
AD (Xu et al., 2025a). 

Despite these insights, the precise role of N-glycosylation in 
AD pathogenesis remains incompletely understood. While studies 
have documented the importance of N-glycans in neuronal protein 
homeostasis and synaptic plasticity, direct evidence linking specific 
N-glycosylation-related genes to AD onset and progression is 
limited (Lee et al., 2017). Furthermore, few investigations have 
systematically evaluated the diagnostic utility of N-glycosylation 
profiles or associated genetic markers in AD, in contrast to 
established biomarkers such as amyloid-β, tau, and neuroimaging 
modalities. This knowledge gap represents a critical obstacle to the 
development of novel, non-invasive diagnostic strategies for early 
AD detection and risk stratification (Khan, 2018). Additionally, 
existing studies often rely on single-omic or unidimensional 
analytic approaches, lacking the integrative perspective necessary 
to disentangle the complex molecular networks underlying AD 
(Xu et al., 2025b). 

To address these challenges, this study integrates multi-
dimensional bioinformatic and statistical methods to systematically 
explore the intersection of N-glycosylation and AD. By combining 
bibliometric analysis, gene expression profiling, and machine 
learning, this work seeks to overcome previous limitations. 
Bibliometric approaches map thematic evolution and identify 
research frontiers within the N-glycosylation–AD field, while 
dierential gene expression analysis provides insights into 
molecular alterations associated with disease status. The 
incorporation of machine learning algorithms facilitates robust 
feature selection and prioritization of candidate biomarkers, 
oering the potential to enhance diagnostic accuracy beyond 
traditional approaches. 

The research design encompasses a comprehensive workflow: 
first, systematic literature retrieval and bibliometric mapping to 
delineate key trends and knowledge gaps; second, integration of 
transcriptomic data from multiple publicly available databases 
to identify dierentially expressed N-glycosylation-related 
genes in AD; third, employment of advanced machine learning 
techniques—including regularized regression and ensemble 
methods—to screen and validate potential biomarkers; and 
finally, network and regulatory analyses to elucidate interactions 
among identified genes, transcription factors (TFs), and molecular 
pathways. This multi-layered strategy aims to maximize the 
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discovery of clinically relevant targets and provide a holistic 
understanding of the N-glycosylation landscape in AD. 

2 Materials and methods 

2.1 Data sources and retrieval strategy 
for N-glycosylation and AD bibliometrics 

To investigate the intersection of N-glycosylation and AD 
through bibliometric analysis, data were retrieved from the Web 
of Science Core Collection, a gold-standard database for such 
research. English-language research articles and reviews published 
between 2001 and 2025 were included using the optimized search 
query: 

“TS = ((“N-glycosylat∗” OR “N-linked glycosylat∗” OR “N-
glycan∗” OR “N-glycoprotein∗” OR “protein N-glycosylat∗” OR 
“n-glycoform∗”) AND (Alzheimer∗ OR “Alzheimer’s disease” OR 
“Alzheimer’s” OR “Alzheimer disease” OR “Alzheimer’s-like” OR 
“Alzheimer pathology” OR “Alzheimer pathogenesis” OR “tau 
protein” OR “beta-amyloid”)).” 

The initial search yielded 239 documents, which were filtered 
to retain only research articles and reviews. The complete list of 
these documents and detailed search outcomes are provided in 
Supplementary Table 1. 

2.2 Analytical methods and tools for 
bibliometric analysis 

Three analytical tools were employed: VOSviewer (v1.6.20), 
CiteSpace (v6.4 R1), and R (v4.3.3). VOSviewer was used to 
generate network visualizations, including thematic evolution 
mappings (to track shifts in research focus over time) and thematic 
quadrant mappings (to classify themes by centrality and density) 
(Zhou et al., 2025). CiteSpace constructed circular thematic 
landscapes (to identify clusters using silhouette coeÿcients) and 
performed targeted cluster analyses (for in-depth exploration of 
specific clusters) (Sebastian et al., 2020). Additionally, keyword 
burst detection was applied to characterize dynamic changes 
in research themes. R was utilized for quantitative analysis of 
publication data, including thematic trend quantification and 
keyword correlation calculations, to ensure rigorous examination 
of the literature. 

2.3 Identification of 
N-glycosylation-related genes in AD via 
differential expression and machine 
learning 

The GSE5281 dataset was analyzed to investigate 
N-glycosylation-related genes in AD. This dataset comprises 
gene expression profiles from 150 brain samples collected across 
three Alzheimer’s Disease Centers (ADCs): Arizona ADC, Duke 
University ADC, and Washington University ADC (Zhang 
et al., 2022). The dataset covers six brain regions relevant to 

AD and aging, including the entorhinal cortex, hippocampus, 
medial temporal gyrus, posterior cingulate, superior frontal 
gyrus, and primary visual cortex. Samples were stratified by 
diagnostic group, age group, and APOE genotype to ensure 
comprehensive coverage of molecular mechanisms in AD and 
normal aging. 

Dierentially expressed genes (DEGs) were identified using 
the LIMMA package in R, a widely used tool for microarray 
data analysis. The workflow included data preprocessing to 
normalize expression values and reduce technical variability, 
followed by fitting linear models to assess dierential expression 
between AD-aected and control samples. DEGs were 
defined using stringent criteria: an absolute log2 fold change 
(logFc) > 0.4 and an adjusted p-value (Benjamini-Hochberg 
correction) < 0.05. 

To investigate the overlap between DEGs and N-glycosylation-
related genes, a list of N-glycosylation-associated genes was 
retrieved from the GeneCards database (Supplementary 
Table 1). The intersection between DEGs and this list was 
computed to identify genes implicated in both AD pathogenesis 
and N-glycosylation processes. All analyses, including data 
preprocessing, statistical modeling, and visualization, were 
performed using R. 

Machine learning techniques were employed to identify genes 
associated with AD from an initial set of 39 genes derived 
from the intersection of DEGs and N-glycosylation-related genes 
in the GSE5281 and GSE122063 datasets. Three regularization 
methods were applied: Lasso, Elastic-Net, and Adaptive Lasso. 
Lasso regression was configured with an alpha parameter (α) set 
to 1, Elastic-Net with α = 0.5, and Adaptive Lasso without 
a predefined α, allowing adaptive adjustment of regularization 
strength. These methods were implemented using the glmnet 
package in R, with cross-validation to determine the optimal 
regularization parameter (λ) that minimized deviance. Genes 
with non-zero coeÿcients at the optimal λ were considered 
significant. Results were visualized using coeÿcient path plots 
and feature impact bar charts, and a Venn diagram was 
constructed to illustrate the overlap of selected genes across 
the three methods. 

2.4 Identification of diagnostic 
biomarkers in DEGs via machine learning 
analysis 

The relationship between five specific genes and AD was 
investigated using the GSE48350 and GSE5281 datasets. The 
workflow began with data preprocessing, including data 
normalization and removal of features with zero variance. 
Feature selection was performed using the Random Forest 
algorithm, configured to grow 100 trees to assess feature 
importance. Three machine learning models were constructed: 
logistic regression, Random Forest, and XGBoost. The logistic 
regression model was implemented using the “lrm” function 
from the “rms” package, the Random Forest model with 
100 trees and importance parameter set to TRUE, and the 
XGBoost model trained for 50 rounds using the “xgb.train” 
function with the objective parameter set to “binary:logistic.” 
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Model performance was evaluated using the Area Under the 
Curve (AUC) metric. 

2.5 Identification of 
N-glycosylation-related genes 
associated with TMEM59 in AD 

The GSE5281 and GSE122063 datasets were utilized to 
investigate molecular interactions associated with TMEM59, 
focusing on 11 genes implicated in N-glycosylation and AD. These 
genes—STT3A, MLEC, CALR, CANX, CTSD, MGAT1, MGAT2, 
MGAT3, MGAT5, APP, and STT3B—were selected based on their 
roles in glycosylation processes, calcium signaling, and protein 
quality control. For example, STT3A and STT3B are involved in 
glycosylation initiation (Lu et al., 2018), MGAT family members in 
glycan chain modification (Cha et al., 2017), and MLEC in glycan 
recognition (Dos Santos Silva et al., 2019). CALR and CANX act 
as chaperones in protein folding (Knee et al., 2003), while CTSD is 
linked to protein degradation (Marques et al., 2020). Eight feature 
selection algorithms were employed: LASSO, Elastic Net, Random 
Forest, XGBoost, Boruta, Stepwise Regression, Genetic Algorithm, 
and Decision Tree. Data preprocessing included normalization 
and removal of samples with missing values. The analysis was 
implemented in R with parallel computing for eÿciency. Core 
genes selected by at least four algorithms were aggregated as the 
final output. 

2.6 Discovering transcription factors 
linked to MLEC, TMEM59, and glial 
activation in AD 

To identify pivotal TFs associated with AD, the ChIPBase 
database was leveraged to predict 44 TFs regulating the expression 
of four genes of interest: GFAP, FOS, MLEC, and TMEM59. 
These genes were selected based on their relevance to glial cell 
dierentiation, a process intricately linked to AD pathogenesis 
(Giesen et al., 2003). The VennDiagram package in R was used 
to perform intersection analysis, identifying common TFs among 
GFAP, FOS, MLEC, and TMEM59. 

Subsequently, the GSE5281 and GSE48350 datasets were 
analyzed, providing comprehensive gene expression profiles 
from brain regions relevant to AD and aging. Seven machine 
learning algorithms—Lasso, Elastic Net, Adaptive Lasso, 
XGBoost, Boruta, Genetic Algorithm, and Linear Discriminant 
Analysis (LDA)—were applied to assess the significance of 
the predicted TFs. Each algorithm was optimized for feature 
selection, balancing model complexity and predictive accuracy. 
The performance of these algorithms was quantified by the 
selection rate, defined as the ratio of selected genes to the total 
number of genes considered. Core biomarkers consistently 
recognized by at least four algorithms were identified as 
key contributors to AD pathogenesis. The R programming 
language was used for these analyses, with specific packages 
such as “glmnet,” “xgboost,” “Boruta,” “GA,” and “MASS” 
playing critical roles. 

2.7 Investigating the diagnostic value of 
transcription factors associated with 
MLEC, TMEM59, and microglial 
activation in AD 

The diagnostic performance of machine learning algorithms 
in AD was evaluated using a panel of genes associated with 
N-glycosylation and AD pathogenesis. The analysis focused 
on 13 molecular features: APP, CALR, CANX, CTSD, MAX, 
MGAT1, MGAT2, MGAT3, MGAT5, MLEC, STT3A, STT3B, 
and TMEM59. Machine learning algorithms, including logistic 
regression, support vector machines (linear and radial kernels), 
random forest, XGBoost, k-nearest neighbors (KNN), LDA, naive 
Bayes, and decision trees, were implemented to assess diagnostic 
accuracy. Feature selection was performed using random forest-
based importance scoring, and models were trained and validated 
using five-fold repeated cross-validation. Key performance metrics, 
including AUC, accuracy, sensitivity, specificity, and F1 score, were 
calculated for each algorithm and gene combination. The analysis 
was conducted in R, leveraging packages such as “caret,” “pROC,” 
“xgboost,” and “randomForest.” 

2.8 Machine learning and SHAP analysis 
of N-glycosylation-related molecular 
features in AD 

The GSE5281 and GSE48350 datasets were used to analyze 13 
molecular features selected based on their roles in N-glycosylation 
pathways and potential involvement in AD pathogenesis. These 
features included APP, CALR, CANX, CTSD, MAX, MGAT1, 
MGAT2, MGAT3, MGAT5, MLEC, STT3A, STT3B, and TMEM59. 
Data preprocessing involved normalization, median imputation 
for missing values, and removal of zero-variance features. Feature 
selection was conducted using a hybrid approach combining 
random forest importance scoring (ntree = 100) and logistic 
regression coeÿcients. Predictive models were built using random 
forest (ntree = 100), XGBoost (nrounds = 50), and logistic 
regression with interaction terms. Model performance was 
evaluated using AUC-ROC, with random forest and XGBoost 
achieving perfect AUC values of 1.0. SHAP values were calculated 
to interpret feature contributions, and molecular interactions were 
analyzed using heatmaps and interaction plots. All analyses were 
implemented in R, with visualization supported by packages such 
as “ggplot2,” “pheatmap,” and SHAP tools. 

The workflow implemented in our study is depicted in Figure 1, 
detailed accession numbers and information of the GEO datasets 
we used can be found in Supplementary Figure 1. 

3 Results 

3.1 Thematic evolution and research 
trends 

Thematic evolution analysis of the N-glycosylation–AD 
field from 2001 to 2025 revealed sustained focus on AD’s 
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FIGURE 1 

Workflow of the integrated bibliometric and bioinformatics analysis for identifying N-glycosylation-related genes in Alzheimer’s disease (AD). 

interactions with core biological and biochemical processes, with 
N-glycosylation serving as a central connecting theme (Figure 2A). 
Between 2021 and 2024, research narrowed its focus to granular 
molecular and biochemical topics, including “cleavage,” “protein,” 
“mechanisms,” “mass-spectrometry,” and “peptide,” reflecting a 
shift toward dissecting AD pathogenesis at the molecular level to 
advance diagnostics and therapeutics. Thematic quadrant analysis 
(2021–2024) further clarified research priorities (Figure 2B): the 
upper-right quadrant (“Motor Themes”) included high-centrality 
and high-density topics such as “Alzheimer’s disease expression” 
and “glycosylation,” which bridge research directions; the upper-
left quadrant (“Niche Themes”) featured specialized subfields 
like “nervous-system” and “receptor subunits”; the lower-right 
quadrant (“Basic Themes”) highlighted foundational concepts 
such as “biomarker” and “dementia”; and the lower-left quadrant 
(“Emerging/Declining Themes”) included evolving interests like 
“tau-protein” and “peptide.” 

CiteSpace-generated circular thematic landscapes identified 
high-confidence clusters (Figure 2C): Cluster #0 (“cerebrospinal 
fluid,” “N-glycan profile,” silhouette coeÿcient: 0.726) 
emphasized glycomic analysis of AD clinical samples; Cluster 
#1 (“neurodegenerative diseases,” silhouette coeÿcient: 0.712) 
contextualized N-glycosylation within broader neurodegeneration; 
and Cluster #3 (“GNT-III activity,” silhouette coeÿcient: 
0.909) focused on enzymatic regulation of glycan maturation. 
Nodes such as “cerebrospinal fluid” and “N-glycosylation” 
exhibited high centrality, underscoring their role in connecting 
clusters. Deep analysis of Cluster #3 revealed high-degree 
keywords—“glycosylation,” “glycan,” and “Alzheimer’s beta 
secretase”—highlighting their relevance to GNT-III–mediated AD 
pathways (Figure 2D). Temporal tracking (2015–2025) showed 
sustained interest in keywords such as “oxidative stress” and 
“cell adhesion,” indicating growing focus on GNT-III’s role in 
AD-related pathology. 

3.2 Keyword analysis and research focus 

The three-field plot visualized the interconnections between 
key literature, institutions, and keywords in the N-glycosylation– 
AD field (Figure 3A). Influential studies, including “Vassar R 
(1999) Science,” “Kizuka Y (2016) Biochem J,” “Ohtsubo K 

(2006) Cell,” “Gizaw ST (2016) BBA-Gen Subjects,” and “Kizuka 
Y (2015) EMBO Mol Med,” formed the backbone of current 
understanding of N-glycosylation’s role in AD pathogenesis. These 
works were closely linked to leading institutions such as Karolinska 
Institutet, the University of California System, and Fukushima 
Medical University, underscoring their dominant contributions 
to the field. Core keywords included “glycosylation,” “Alzheimer’s 
disease,” and “amyloid-beta,” while “bisecting GlcNAc” emerged as 
a prominent focus, signaling growing interest in this specific glycan 
modification’s role in AD. 

The keyword burst detection chart (Figure 3B) tracked high-
impact temporal trends (2001–2025): early bursts included “N-
linked glycosylation” (strength = 3.65) and “protein glycosylation” 
(strength = 3.85), reflecting foundational interest in glycan 
biology. More recently, “pathology” (strength = 3.63) and “tau” 
(strength = 3.72) have sustained bursts since 2020 (projected 
through 2025), indicating current focus on disease mechanisms. 
“Bisecting GlcNAc” also showed a notable burst (strength = 2.74) 
from 2016 to 2018, underscoring its historical relevance as 
a specialized research topic. Network visualizations further 
delineated thematic connections in N-glycosylation–AD research 
(Figures 3C,D). In Figure 3C, “Alzheimer’s disease” was the 
most central node (57 occurrences, total link strength = 134), 
reflecting its status as the field’s core focus, while “N-glycosylation” 
(24 occurrences, total link strength = 58) confirmed its pivotal 
role in AD pathological processes. Figure 3D highlighted 
recent thematic priorities via warm red node coloring: “N-
glycosylation” (24 occurrences, link strength = 58) remained 
central, “Bisecting GlcNAc” (8 occurrences, link strength = 27) 
showed sustained relevance in recent studies, and “GNT-III 
(MGAT3)” (2 occurrences, link strength = 7) emerged as a novel 
focus, consistent with its role in regulating bisecting GlcNAc 
formation. 

3.3 Key differentially expressed and 
N-glycosylation-related genes in 
Alzheimer’s disease identified via 
machine learning 

Dierential expression analysis of the GSE5281 dataset 
identified 6,845 dierentially expressed genes (DEGs) 
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FIGURE 2 

Thematic evolution and research trends. (A) The temporal progression of research themes in N-glycosylation and Alzheimer’s disease (AD) from 
2001 to 2025, underscoring N-glycosylation as a pivotal theme in AD research. (B) Categorizes research priorities from 2021 to 2024 into four 
distinct categories: motor themes (high centrality and density), niche themes (specialized subfields), basic themes (foundational concepts), and 
emerging/declining themes. (C) Identifies key research clusters, including glycomic analysis of AD clinical samples and the role of GNT-III in glycan 
maturation. (D) Focuses on Cluster #3, highlighting keywords such as “glycosylation,” “glycan,” and “Alzheimer’s beta secretase,” and emphasizing 
the relevance of GNT-III to AD pathology. 

(Supplementary Table 1), visualized in the volcano plot 
(Figure 4A). The plot highlights significant upregulated genes 
(red) and downregulated genes (blue), with gray dots representing 
non-significant genes. Notably, TMEM59 was identified as a 
significantly downregulated gene, while MLEC and MAX were 
significantly upregulated in AD-aected samples compared to 
controls. The intersection of DEGs with N-glycosylation-related 
genes from the GeneCards database yielded 39 overlapping genes. 

In Figure 4B, the Lasso regression coeÿcient path reveals the 
influence of various genes on the model, with genes like UNG 
and MLEC showing the most significant impact as indicated by 
their steep paths. Figure 4C presents the Elastic-Net regression 
coeÿcient path, where genes such as UNG, MLEC, and MAN1C1 
are prominently featured, demonstrating their importance in the 
model with considerable standardized coeÿcients. Figure 4D 
showcases the Lasso feature impact, highlighting the top genes 
selected by absolute coeÿcient. UNG, MLEC, and MAN1C1 are 
at the forefront, with UNG having the highest positive coeÿcient, 
suggesting its strong association with the disease. Figure 4E 
illustrates the Adaptive Lasso feature impact, where UNG again 
leads with the highest positive coeÿcient, followed by MAN1C1 
and MLEC. This figure emphasizes the genes’ significance in 

the context of AD, with a clear distinction between positive 
and negative contributions. Lastly, Figure 4F provides a Venn 
diagram of the key gene intersections across the three methods, 
showing a core set of genes that are consistently selected: ADPRH, 
ALG12, ALG8, ARSG, CXCR4, DNPH1, MAGT1, MAN1C1, 
MLEC, NOX4, NTRK1, ORAI1, SLC3A2, SRD5A3, TMEM59, and 
UNG. This overlap underscores the robustness of these genes as 
potential biomarkers for AD, as they are identified across dierent 
regularization techniques. 

The analysis of the GSE122063 dataset using machine learning 
algorithms identified a set of genes with potential significance 
in AD. Figure 4G illustrates the Lasso regression results, where 
genes such as DAD1 and MLEC exhibit the highest absolute 
standardized coeÿcients, indicating their strong influence on the 
model. Figure 4H presents the Elastic-Net regression outcomes, 
showing a similar pattern with DAD1 and MLEC being prominent, 
alongside other genes like ALG8 and MOGS. Figure 4I highlights 
the top features selected by Lasso regression, with DAD1, MLEC, 
and ALG8 having the most substantial impact. The Adaptive Lasso 
results in Figure 4J show DAD1 as the most influential gene, 
followed by TMEM59 and MLEC, pointing to their crucial role 
in the disease pathology. The Venn diagram in Figure 4K reveals 
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FIGURE 3 

Keyword analysis and research focus. (A) Presents a three-field plot linking key studies, institutions, and keywords such as “glycosylation,” 
“Alzheimer’s disease,” and “amyloid-beta.” (B) Tracks keyword bursts, revealing early interest in “N-linked glycosylation” and recent focus on 
“pathology” and “tau.” (C) Displays a network visualization with “Alzheimer’s disease” as the central node. (D) Highlights recent thematic priorities via 
warm red node coloring, emphasizing “bisecting GlcNAc” and “GNT-III (MGAT3)” as emerging research focuses. 

the intersection of genes selected by all three methods, with ALG1, 
ALG3, ALG8, DAD1, MLEC, MOGS, ORAI1, PRKCSH, RPN1, 
SLC3A2, TMEM59, and TMEM59L being consistently identified 
across Lasso, Elastic-Net, and Adaptive Lasso, underscoring their 
potential as biomarkers. Finally, Figure 4L compares the gene 
selection between the GSE5281 and GSE122063 datasets, showing 
an overlap in ALG8, MLEC, ORAI1, SLC3A2, and TMEM59, which 
further validates their importance in AD research. 

3.4 Validation of gene biomarkers in 
DEGs and nomogram development for 
Alzheimer’s disease diagnosis 

The analysis of the GSE48350 dataset focusing on five genes 
yielded several significant findings. The logistic regression model 
achieved a test AUC of 0.594, indicating moderate predictive 
accuracy. Figure 5A presents the model performance comparison 
across various machine learning algorithms, showcasing the logistic 
regression model’s moderate predictive power. Figure 5B illustrates 
the ranking of the five genes by their importance across dierent 

models, with TMEM59 showing the highest mean importance. 
Figure 5C depicts the molecular signature expression patterns, 
highlighting a clear distinction between control and disease groups, 
particularly for TMEM59, which exhibited the most pronounced 
dierential expression. Figure 5D presents the clinical prediction 
nomogram, which achieved a model performance AUC of 0.699, 
indicating a reasonable ability to discriminate between control and 
disease states. This nomogram assigns points to each gene based 
on its standardized coeÿcient, with TMEM59 receiving the highest 
point allocation, significantly contributing to the total points and 
thus the risk probability of AD. These results underscore the 
potential utility of these genes as diagnostic biomarkers for AD, 
with TMEM59 emerging as a particularly promising candidate due 
to its significant dierential expression and high feature importance 
across models. 

The in-depth analysis of the GSE5281 dataset shed light on 
the roles of five key genes—ALG8, MLEC, ORAI1, SLC3A2, 
and TMEM59—in AD. The performance of various machine 
learning models was evaluated in Figure 5E, with logistic regression 
and Random Forest standing out, achieving test AUC scores of 
0.8566 and 0.8505, respectively. XGBoost also performed well, 
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FIGURE 4 

Key differentially expressed and N-glycosylation-related genes. (A–F) Focus on the GSE5281 dataset: a volcano plot (A) highlights significant 
upregulated (red) and downregulated (blue) differentially expressed genes (DEGs); regression coefficient paths and feature impact bar charts from 
Lasso (B,D), Elastic-Net (C), and Adaptive Lasso (E) reveal genes such as UNG, MLEC, and MAN1C1 as top contributors; a Venn diagram (F) 
underscores overlapping genes across these methods, identifying robust biomarker candidates. (G–L) Shift to the GSE122063 dataset: regression 
coefficient paths and feature impact bar charts (G–J) highlight DAD1, MLEC, and TMEM59 as key genes; a Venn diagram (K) illustrates overlapping 
genes across methods; comparative analysis (L) reveals consistent candidates such as MLEC and TMEM59 between the two datasets. 

with a test AUC of 0.8304. The clinical prediction nomogram in 
Figure 5F, which incorporates these genes, shows a high model 
performance AUC of 0.899, indicating its strong predictive power. 
This nomogram assigns points to each gene based on its expression 
level, with TMEM59 receiving the most points, suggesting it plays a 
crucial role in determining the risk probability of AD. Figure 5G 
highlights the average feature importance across models, with 
TMEM59 being identified as the most important gene, followed 
by ALG8 and MLEC. This underscores the significant impact 
of these genes on the model’s predictive capabilities. Figure 5H, 
which includes MLEC and TMEM59, shows molecular signature 
expression patterns. 

3.5 Characterization of 
N-glycosylation-related genes correlated 
with TMEM59 in Alzheimer’s disease 
pathology 

The heatmap (Figure 6A) resulting from the analysis of the 

GSE5281 dataset illustrates the pairwise correlations among the 

nine selected genes. A significant negative correlation of –0.46 

was observed between TMEM59 and MLEC, as indicated by the 

deep blue color in the heatmap. This finding suggests an inverse 

relationship between the expression levels of these two genes. 
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FIGURE 5 

Validation of gene biomarkers and diagnostic models. (A–D) Analyze the GSE48350 dataset: model performance is compared across machine 
learning algorithms (A); TMEM59 emerges as the most important gene through rankings (B); molecular signature expression patterns distinguish 
control and disease groups (C); a clinical prediction nomogram (D) validates TMEM59’s role. (E–H) Focus on the GSE5281 dataset: logistic 
regression and Random Forest models achieve AUC scores of 0.8566 and 0.8505 (E); a nomogram (F) achieves an AUC of 0.899, emphasizing 
TMEM59’s contribution; feature importance analysis (G) and expression patterns (H) highlight TMEM59 and MLEC as critical drivers. *p < 0.05, **p < 
0.01, ***p < 0.001. 

The hierarchical clustering dendrogram positioned TMEM59 and 

MLEC in separate clusters, reinforcing the distinctness of their 

expression profiles among the analyzed genes. In the analysis of the 

GSE122063 dataset (Figure 6B), a notable correlation was identified 

between TMEM59 and MLEC, with a correlation coeÿcient of 
0.52, indicating a moderate positive relationship. This finding 

suggests that the expression levels of TMEM59 and MLEC may 

be associated in the samples analyzed from individuals with AD. 
Analyzing the GSE122063 dataset, Figure 6C shows that MLEC 

expression levels are increased in the disease group compared to 

controls. 

In the GSE122063 dataset, the feature selection algorithms 
identified STT3A, CALR, and MLEC as the top three genes 
associated with TMEM59. Figure 6D shows that the Genetic 

Algorithm selected all genes, achieving a 100% selection rate, while 

XGBoost selected 9 genes, indicating an 81.8% selection rate. The 

heatmap in Figure 6E demonstrates the normalized importance 

of each gene across algorithms, with STT3A, CALR, and MLEC 

showing the highest importance. Figure 6F summarizes the core 

genes, highlighting STT3A, CALR, and MLEC as frequently 

selected by multiple algorithms. In the GSE5281 dataset, the 

top three genes associated with TMEM59 were APP, MLEC, 
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FIGURE 6 

Molecular interactions of TMEM59. (A) (GSE5281) shows a heatmap revealing a strong negative correlation between TMEM59 and MLEC, with 
hierarchical clustering distinguishing their expression profiles. (B) (GSE122063) highlights a moderate positive correlation between these genes. 
Panel (C) displays elevated MLEC expression in disease groups within GSE122063. (D–F) (GSE122063) detail gene selection rates, noting the Genetic 
Algorithm’s 100% selection rate, and illustrate the importance of genes like STT3A, CALR, and MLEC across algorithms. (G–I) (GSE5281) reveal similar 
trends, with the Genetic Algorithm again achieving a 100% selection rate and underscoring genes like APP, MLEC, and STT3B. Overall, MLEC 
consistently ranks as a key gene associated with TMEM59 across both datasets. *p < 0.05, **p < 0.01, ***p < 0.001. 

and STT3B. Figure 6G details the number of genes selected by 
each algorithm, with the Genetic Algorithm achieving a 100% 
selection rate and XGBoost selecting 9 genes, indicating an 81.8% 
selection rate. The heatmap in Figure 6H illustrates the normalized 
importance of each gene across algorithms, with APP, MLEC, and 
STT3B consistently showing high importance. Figure 6I confirms 
these findings, emphasizing APP, MLEC, and STT3B as core genes 
frequently selected by multiple algorithms. Across both datasets, 
MLEC is consistently identified as one of the top three genes 
associated with TMEM59. 

3.6 Uncovering transcription factors that 
regulate MLEC, TMEM59, and glial 
activation in Alzheimer’s disease 

The Venn diagram analysis identified 44 shared TFs among 
the genes GFAP, FOS, MLEC, and TMEM59 (Figure 7A), as 

detailed in Supplementary Table 1. This set of TFs is indicative 
of a regulatory network that may be involved in the biological 
processes associated with these genes. The rigorous application of 
machine learning algorithms to the GSE5281 dataset has yielded 
a refined list of 17 key TFs from an initial pool of 44 predicted 
TFs. This selection was based on the consistent recognition 
by multiple algorithms, indicating their potential significance 
in AD. The 17 TFs identified as critical include MAX, SMC3, 
ZBTB7A, TCF12, SMARCC1, EP300, SMARCA4, BRD1, EGR1, 
BRD9, RXRA, MBD4, ARID2, FLI1, TRIM24, SRF, and CTCF. 
As depicted in Figure 7B, the Elastic Net and Lasso algorithms 
demonstrated the highest gene selection rates, suggesting their 
eectiveness in this context. Figure 7C provides a comparative 
view of the number of genes selected by each method, highlighting 
the variability in gene selection across dierent algorithms. 
Figure 7D presents a heatmap that ranks gene importance across 
various methods, oering a visual representation of the relative 
significance of each TF. Figure 7E specifically emphasizes the 
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core biomarkers (MAX ranked top), selected by at least four 
methods, underscoring their potential role as key regulators in 
AD. 

The analysis leveraging the GSE48350 dataset, as depicted in 
Figure 7F, demonstrates that the Elastic Net algorithm selected 
the highest number of genes (37), followed by Lasso (32), and 
Genetic Algorithm and Adaptive Lasso (20 each). In contrast, the 
Random Forest and XGBoost algorithms selected fewer genes, 
indicating a lower frequency of gene importance attribution by 
these methods. Figure 7G provides a comparative overview of 
the number of genes selected by each method, with the bar 
chart visually representing the variability in gene selection across 
dierent algorithms. Figure 7H presents a heatmap that ranks gene 
importance across various methods, oering a visual representation 
of the relative significance of each TF. Notably, genes such as 
STAG1, MAZ, BRD9, and FLI1 were consistently identified as 
important across multiple methods, as highlighted in Figure 7I, 
which also shows the frequency of gene selection by the algorithms. 
The Venn diagram in Figure 7J illustrates the intersection of key 
TFs identified from two distinct datasets, GSE5281 and GSE48350. 
The intersection, indicating the common TFs significant to both 
datasets, consists of 8 factors: MAX, ZBTB7A, BRD9, RXRA, 
MBD4, ARID2, FLI1, and TRIM24. 

3.7 Evaluating the diagnostic potential of 
transcription factors linked to MLEC, 
TMEM59, and microglial activation in 
Alzheimer’s disease 

The analysis of the GSE5281 dataset (Figures 8A–D) has 
been conducted with a focus on eight TFs, utilizing machine 
learning models to predict Alzheimer’s disease risk. The results are 
summarized as follows: Figure 8A presents the ROC curves for 
three predictive models. The logistic regression model achieved 
a test AUC of 0.8444, indicating good model performance. The 
random forest model demonstrated a slightly higher discriminative 
ability with a test AUC of 0.8715, while the XGBoost model showed 
a test AUC of 0.8601. These AUC values suggest that all models 
are eective in distinguishing between disease and control samples, 
with the random forest model performing the best among the three. 
In Figure 8B, the boxplot analysis reveals significant dierences in 
the expression levels of TFs between control and disease groups. 
MAX, in particular, shows a notable higher median expression 
in control samples compared to disease samples, suggesting its 
potential role in the disease’s pathogenesis. 

Figure 8C features a clinical prediction nomogram that 
integrates the influence of various TFs to estimate disease risk. 
The nomogram is based on a logistic regression model with an 
AUC of 0.985, indicating excellent predictive power. For instance, 
a patient with a MAX expression level of 6.5 would receive 30 
points, which, when combined with points from other factors, 
contributes to a total score that predicts disease risk. Figure 8D 
illustrates the average feature importance across the three models, 
with MAX being the most influential, followed by ZBTB7A, BRD9, 
and RXRA. The normalized mean importance scores highlight 
MAX’s predominant role in the model’s predictive accuracy, with 
a score of 1.000, significantly higher than the other factors. 

The current study (Figures 8E–H) analyzed the expression 
patterns and diagnostic potential of eight TFs (MAX, ZBTB7A, 
BRD9, RXRA, MBD4, ARID2, FLI1, and TRIM24) in AD 
using the GSE48350 dataset, which comprises 253 samples from 
postmortem brain tissues. Figure 8E illustrates the receiver 
operating characteristic (ROC) curves for the three machine 
learning models. The logistic regression model demonstrated the 
highest area under the curve (AUC) of 0.772, followed by RF 
(AUC = 0.734) and XGBoost (AUC = 0.707). The performance 
gap between training and testing datasets was minimal for all 
models, indicating robust generalizability. Figure 8F presents the 
dierential expression analysis of five TFs (ARID2, BRD9, FLI1, 
MAX, and RXRA) between control and disease groups. Significant 
dierences in expression levels were observed for all analyzed 
TFs. Notably, MAX exhibited elevated expression in the disease 
group compared to the control group. Figure 8G displays a clinical 
prediction nomogram based on the logistic regression model, 
with an AUC of 0.74. The nomogram assigns points to each TF 
based on its expression level, and the total points are converted 
into a risk probability. MAX contributes significantly to the risk 
score, alongside BRD9 and ARID2. Specifically, higher expression 
levels of MAX are associated with an increased risk probability, 
underscoring its role as an important predictor in the model. 
Figure 8H highlights the average feature importance of the eight 
TFs across the three machine learning models. BRD9 ranked 
highest with a normalized importance of 1.000, followed by ARID2 
(0.860) and MAX (0.633). The integrated importance scores reflect 
the relative contribution of each TF to the diagnostic model. MAX 
emerges as one of the most critical features, with its importance 
supported by both its dierential expression and its substantial 
contribution to the model’s predictive power. 

3.8 Optimizing diagnostic accuracy with 
key molecules (MAX, MLEC, TMEM59) 
and N-glycosylation-related genes 
across different algorithms 

The diagnostic performance of machine learning algorithms 
was evaluated using the GSE5281 dataset, with a focus on achieving 
optimal diagnostic eÿcacy with fewer gene combinations. 
Figure 9A illustrates a radar plot comparing key performance 
metrics across algorithms. Logistic regression demonstrated 
superior performance in accuracy, specificity, and F1 score, 
while XGBoost and SVM linear showed strong AUC values. 
Figure 9B highlights algorithm stability through boxplots of AUC 
distributions. Logistic regression and SVM linear exhibited the 
highest median AUC values with minimal variability, indicating 
robustness. Figure 9C displays a performance matrix heatmap 
for dierent gene combinations and algorithms. Notably, logistic 
regression achieved an AUC of 0.947 using only three genes (MAX, 
APP, MLEC), and an AUC of 0.948 with five genes (MAX, APP, 
MLEC, TMEM59, MGAT3). Even with a single gene (MAX), 
logistic regression demonstrated an AUC of 0.898, underscoring 
its diagnostic utility. The findings highlight the importance of 
MAX as a critical feature in gene panels, with logistic regression 
emerging as the most stable and accurate algorithm for minimizing 
the number of genes while maximizing diagnostic eÿcacy. 
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FIGURE 7 

Transcription factors regulating N-glycosylation-related genes. (A) Identifies 44 shared transcription factors (TFs) among GFAP, FOS, MLEC, and 
TMEM59. (B–E) Focus on GSE5281: (B) Elastic Net and Lasso have the highest selection rates. (C) Compares selection rates, (D) Ranks TF importance 
via a heatmap, and (E) highlights core biomarkers like MAX. (F–I) Analyze GSE48350: (F) Indicates Elastic Net selected the most genes (37), 
(G) Contrasts selection rates, (H) ranks TF importance, and Panel I shows selection frequency. (J) Presents a Venn diagram of key TFs from both 
datasets, identifying eight common factors: MAX, ZBTB7A, BRD9, RXRA, MBD4, ARID2, FLI1, and TRIM24. 

The analysis of the GSE48350 dataset, comprising 253 
samples, evaluated the diagnostic performance of machine 
learning algorithms across dierent gene combinations related to 
N-glycosylation and AD. Figure 9D illustrates the multi-metric 
performance of algorithms, with Naive Bayes achieving the highest 
mean AUC of 0.723 using the five-gene combination of MAX, 
MGAT3, APP, STT3A, and CTSD, supported by an accuracy of 
0.702, sensitivity of 0.873, specificity of 0.331, and an F1 score of 
0.8. Figure 9E shows the stability of algorithms through boxplots of 
AUC distributions, with Naive Bayes demonstrating robust stability 
with a median AUC above 0.70, while algorithms such as Decision 
Tree and SVM Linear exhibited greater variability. Figure 9F 
provides a heat map matrix comparing algorithm performance 
across gene combinations, indicating that Naive Bayes achieved 
the highest AUC of 0.723 with five genes (MAX, MGAT3, APP, 
STT3A, CTSD). Even with fewer genes, Naive Bayes maintained 
strong diagnostic eÿcacy, achieving an AUC of 0.704 with three 
genes (MAX, MGAT3, APP) and an AUC of 0.644 with a 
single gene (MAX). While the five-gene combination yielded the 
highest diagnostic performance, the three-gene combination oers 
a balance between diagnostic accuracy and clinical practicality. The 

MAX gene was identified as the most critical single gene in this 
analysis. 

3.9 Key molecular features and 
interactions in Alzheimer’s disease 
revealed by machine learning and SHAP 
analysis 

The analysis of Figures 10A–K provides a comprehensive 
overview of the key molecular features and interactions driving 
AD classification in the GSE5281 dataset. The random forest 
and XGBoost models demonstrated exceptional performance with 
perfect AUC values of 1.0, outperforming other algorithms such 
as SVM Radial (AUC = 0.976) and Elastic Net (AUC = 0.953) 
(Figure 10A). Feature importance analysis identified MAX, APP, 
MLEC, and TMEM59 as the most impactful predictors, with 
MAX showing the highest mean absolute SHAP value of 0.195 
(Figures 10B,C). The SHAP value distribution (Figure 10B) and 
feature value vs. SHAP impact analysis (Figure 10E) revealed 
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FIGURE 8 

Diagnostic potential of transcription factors. (A–D) Analyze the GSE5281 dataset: ROC curves compare predictive models (A), with Random Forest 
achieving the highest AUC of 0.8715; boxplots reveal significant differences in TF expression between control and disease groups (B); a clinical 
prediction nomogram (C) achieves an AUC of 0.985; feature importance analysis (D) ranks MAX as the most influential TF. (E–H) Focus on the 
GSE48350 dataset: logistic regression demonstrates the highest AUC of 0.772 (E); differential expression analysis supports these findings (F); a 
nomogram achieves an AUC of 0.74 (G); feature importance analysis highlights significance in BRD9 and MAX (H). *p < 0.05, **p < 0.01, ***p < 0.001. 

nonlinear relationships between feature expression levels and 
their contributions to predictions. MAX and APP exhibited 
strong positive impacts, with their contributions increasing sharply 
at higher expression levels. MLEC and TMEM59 also showed 
significant contributions, though their dependencies on expression 
levels were weaker. The force plot (Figure 10D) and individual 
prediction decomposition (Figure 10F) further highlighted the 
dominant roles of MAX, MLEC, APP, and TMEM59 in driving 
prediction scores, with MAX contributing the most significantly. 
Interaction analysis uncovered several key relationships. The 
interaction between MLEC and TMEM59 was highly significant 
(p = 0.00019, β = 2.469), with higher expression of both genes 
correlating with increased predicted probabilities (Figure 10I). 
Conversely, the interaction between MAX and MGAT3 (p = 0.0288, 
β = –4.491) showed a strong negative eect, where higher 
MAX expression reduced predicted probabilities when MGAT3 
expression was low (Figure 10H). The interaction between APP and 
MLEC (p = 0.03068, β = –1.473) also demonstrated a significant 
negative eect (Figure 10G). While some interactions, such as 
MAX × MLEC (p = 0.3604, β = –1.439) and APP × MGAT3 
(p = 0.3216, β = –0.827), did not reach statistical significance, they 

suggested potential regulatory trends worth further investigation 
(Figures 10J,K). 

The analysis of N-glycosylation-related molecular features 
in AD using the GSE48350 dataset provided a comprehensive 
understanding of their roles and interactions through 11 
key visualizations. The Random Forest model demonstrated 
exceptional classification performance with an AUC of 1.0 
(Figure 11A), outperforming other algorithms such as XGBoost 
(AUC = 0.976) and SVM Radial (AUC = 0.852). This result 
was supported by SHAP value distributions (Figure 11B), which 
identified APP and MAX as the most impactful features due to their 
high SHAP values. The feature importance analysis (Figure 11C) 
further confirmed APP and MAX as the top predictors, followed 
by MGAT3 and STT3A. Force plots (Figure 11D) and waterfall 
plots (Figure 11F) detailed the directional contributions of these 
features to prediction scores, with MAX showing a strong positive 
impact and CTSD a significant negative impact. The non-linear 
relationships between feature expression values and SHAP impacts 
(Figure 11E) revealed that APP and MAX had positive correlations 
with AD classification, while STT3A demonstrated a negative 
correlation. MGAT3 exhibited a non-linear trend, highlighting its 

Frontiers in Aging Neuroscience 13 frontiersin.org 

https://doi.org/10.3389/fnagi.2025.1597511
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1597511 November 10, 2025 Time: 18:15 # 14

Zhang et al. 10.3389/fnagi.2025.1597511 

FIGURE 9 

Optimization of diagnostic models. (A–C) Analyze the GSE5281 dataset: a radar plot compares key performance metrics across algorithms (A), with 
logistic regression demonstrating superior accuracy; AUC stability is assessed through boxplots (B), further validating logistic regression and SVM 
linear; a performance matrix heatmap (C) underscores logistic regression’s efficiency, achieving an AUC of 0.947 with three genes (MAX, APP, MLEC). 
(D–F) Shift to the GSE48350 dataset: Naive Bayes achieves the highest mean AUC of 0.723 using five genes (D); algorithm stability is highlighted (E); 
performance across gene combinations is shown in heatmap matrices (F). 

complex role in AD pathology. Interaction analyses uncovered 

significant synergies between molecular pairs. The interaction 

between MAX and MGAT1 (Figure 11G) showed a strong positive 

eect (P = 0.0016, β = 7.7), while the interaction between MGAT3 

and STT3A (Figure 11I) demonstrated a highly significant negative 

eect (P < 0.001, β = –6.864). The interaction between MGAT3 

and MGAT1 (Figure 11H) also showed a near-significant eect 
(P = 0.0775, β = 2.767). Other interactions, such as APP × MGAT3 

(Figure 11K) and MAX × STT3A (Figure 11J), showed limited 

or non-significant eects (P = 0.1743, β = –2.298 and P = 0.4841, 
β = –1.745, respectively). 

4 Discussion 

AD is a devastating neurodegenerative disorder 
characterized by progressive cognitive decline and memory 
impairment, predominantly aecting the elderly population 
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FIGURE 10 

Key molecular features and interactions. (A–K) Focus on the GSE5281 dataset: ROC curves demonstrate Random Forest and XGBoost achieving 
perfect AUC values of 1.0 (A); SHAP value distribution (B) and feature importance analysis (C) identify MAX, APP, MLEC, and TMEM59 as top 
predictors; a force plot (D) emphasizes their dominant roles in driving prediction scores. (E–K) Explore nonlinear relationships and significant 
interactions: interactions include a positive effect between MLEC and TMEM59 (p = 0.00019) and a negative effect between MAX and MGAT3 
(p = 0.0288). 

(Rampa et al., 2013). Its pathophysiology is marked by the 
accumulation of amyloid-beta plaques and neurofibrillary tangles, 
which lead to synaptic dysfunction and neuronal loss (Han and 
Shi, 2016). As the leading cause of dementia globally, AD poses 
significant challenges to aected individuals, their families, and 
healthcare systems (Lozupone et al., 2025). With its prevalence 
on the rise, understanding the underlying mechanisms of AD and 
identifying reliable biomarkers for early diagnosis have become 
critical priorities in the development of eective therapeutic 
strategies (Wu et al., 2021). 

This investigation explores the role of N-glycosylation 
in AD pathology, highlighting its potential as a key factor 
in disease progression. By integrating gene expression data 
from the multiple datasets with advanced machine learning 
techniques, we identified several N-glycosylation-associated 
genes that may serve as promising biomarkers for early 
detection. These findings underscore the importance of these 
biomarkers in improving diagnostic accuracy and guiding 
future therapeutic interventions, thereby advancing our 
understanding of AD mechanisms and paving the way for 
targeted treatment approaches. 

In-depth analysis of gene expression profiles in the GSE5281 
dataset revealed a substantial set of DEGs. Notably, TMEM59 was 
markedly downregulated, while MLEC and MAX were significantly 
upregulated. This observation aligns with transcriptomic studies 
indicating widespread alterations in glycosylation-related genes in 
the brains of individuals with AD, where nearly 80% of such genes 
were reported to be dierentially expressed in at least one brain 
region (Tang et al., 2023). The downregulation of TMEM59 may 
disrupt glycoprotein maturation and traÿcking, impairing protein-
folding quality control mechanisms and exacerbating proteostatic 
stress—a phenomenon previously linked to AD pathology (Meng 
et al., 2020). Conversely, the upregulation of MLEC, which encodes 
malectin, an ER-resident lectin involved in the recognition of 
misfolded glycoproteins, could reflect a compensatory response 
to the increased burden of unfolded proteins or aberrant 
N-glycan structures in the AD brain (Chen et al., 2011). MAX, 
a transcriptional regulator implicated in cellular responses to 
metabolic stress, may be associated with the metabolic alterations 
observed in AD neurons (Hsieh and Dang, 2016). These expression 
patterns diverge from those seen in other neurodegenerative 
conditions, underscoring a potential disease-specific adaptation in 
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FIGURE 11 

N-glycosylation-related molecular features. (A–K) Analyze the GSE48350 dataset: ROC curves highlight Random Forest’s perfect AUC of 1.0 (A); 
SHAP value distribution (B) and feature importance analysis (C) underscore APP and MAX as top predictors. (D–F) Detail feature contributions: a 
force plot (D) and waterfall plot (F) detail feature contributions to prediction scores. (G–K) Explore significant interactions: relationships include a 
positive effect between MAX and MGAT1 (p = 0.0016) and a negative effect between MGAT3 and STT3A (p < 0.001). 

N-glycosylation pathways. Thus, the coordinated dysregulation of 
TMEM59, MLEC, and MAX highlights a mechanistic nexus linking 
glycoprotein homeostasis, ER stress, and metabolic reprogramming 
in AD. 

The application of machine learning algorithms enabled 
the identification of 5 N-glycosylation-associated genes with 
potential diagnostic relevance for AD. Feature selection methods 
such as Lasso, Elastic-Net, and Adaptive Lasso were employed 
to address concerns raised in previous literature regarding the 
limitations of single-method feature selection, particularly in 
high-dimensional, collinear “omics” data. Recent biomarker 
studies have emphasized the importance of integrating multiple 
selection strategies to enhance the robustness and interpretability 
of candidate biomarkers, especially when dataset shift and cohort 
heterogeneity pose significant translational challenges. Unlike the 
reliance on univariate or standard regression-based selections, 
the present methodology combines penalized regression with 
ensemble learning, thereby mitigating overfitting and improving 
out-of-sample predictive performance. This integrative analytic 
framework surpasses previous approaches by systematically 

accounting for correlation structures among glycosylation 
genes and accommodating the biological complexity inherent 
to AD. Importantly, the genes prioritized by this approach 
show minimal overlap with those identified by conventional 
dierential expression analysis alone, demonstrating the capacity 
of machine learning to uncover non-obvious biomarker candidates 
in the context of multifactorial disease etiology (Abbas and 
El-Manzalawy, 2020). 

The observed correlation between MLEC and TMEM59 
suggests a functional interplay within the N-glycosylation pathway, 
which may be pivotal for maintaining glycoprotein quality 
control in neural tissue. Previous glycomic investigations have 
identified enhanced or aberrant glycan biosynthesis as a hallmark 
of AD, wherein genetic or dietary modulation of glycosylation 
enzymes directly impacts cognitive and behavioral phenotypes 
(Hawkinson et al., 2025). The concurrent upregulation of 
MLEC alongside the downregulation of TMEM59 could indicate 
an adaptive but ultimately insuÿcient cellular response to 
glycoprotein misfolding and aggregation. Mechanistically, MLEC 
may facilitate the recognition and retention of misfolded 
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glycoproteins in the endoplasmic reticulum, whereas TMEM59 is 
implicated in the traÿcking and processing of these substrates 
(Boada-Romero et al., 2013). The linkage between MLEC and 
TMEM59 thus provides a molecular rationale for the dysfunction 
in protein quality control and aberrant glycosylation characterizing 
AD neuropathology. 

The identification of eight TFs—including MAX, ZBTB7A, 
BRD9, RXRA, MBD4, ARID2, FLI1, and TRIM24—as regulators 
of MLEC, TMEM59, GFAP, and FOS expands our understanding 
of the gene regulatory networks that orchestrate glycosylation 
and neuroinflammatory responses in AD. Prior computational 
studies have highlighted the centrality of specific TFs, such 
as STAT1 and HSF5, in controlling glycosyltransferase gene 
expression in the AD brain (Tang et al., 2023), and these 
regulatory axes are predicted to alter glycan biosynthesis in a 
cell-type and region-specific manner. The selection of MAX as 
a pivotal regulator is particularly noteworthy, as its role extends 
beyond classic metabolic regulation, implicating it in neural stress 
responses and possibly in the modulation of microglial and 
astrocytic activation states (McFerrin and Atchley, 2011). Notably, 
this regulatory constellation diverges from previously established 
transcriptional landscapes in other neurodegenerative disorders, 
suggesting a unique transcriptional architecture underpinning 
AD-specific glycosylation and glial responses. These findings not 
only corroborate the significance of transcriptional modulation 
in AD pathogenesis but also reveal novel candidate regulators 
that may serve as intervention points for modulating disease 
trajectory. 

The comparative evaluation of diagnostic algorithms 
demonstrated that logistic regression exhibited superior accuracy 
and stability for classifying AD status based on gene expression 
signatures, outperforming ensemble methods such as random 
forest and XGBoost in this context. This result stands in 
partial contrast to recent meta-analyses of machine learning 
in medical diagnostics, which often report that ensemble models 
provide enhanced performance, especially when handling high-
dimensional or nonlinear data. However, the relatively modest 
sample sizes and stringent feature selection employed in this 
study may favor the generalizability and interpretability of 
linear models, aligning with reports that logistic regression 
can outperform more complex algorithms when the number 
of predictors is tightly controlled and the risk of overfitting is 
minimized (Hu and Hu, 2014). Furthermore, the consistent 
performance of logistic regression across external validation 
datasets underscores its practical utility in clinical biomarker 
development for AD, particularly when transparency and 
reproducibility are paramount. This methodological insight 
supports a nuanced approach to model selection, emphasizing 
context-dependent optimization over blanket preference for 
algorithmic complexity. 

The limitations of this study are primarily reflected in the 
absence of wet lab validation and the relatively small sample 
size, which restricts the generalizability of the findings. The 
reliance on publicly available datasets may introduce batch 
eects that could skew the results, potentially impacting the 
robustness of the identified biomarkers (Carry et al., 2023). 
Additionally, while machine learning techniques were employed 
to enhance the identification of N-glycosylation-related genes, 
the interpretability of complex models remains a challenge, 

necessitating further validation to establish clinical relevance. These 
aspects highlight the need for larger, multi-center studies that 
integrate both computational and experimental approaches to 
bolster the reliability of the findings. 

In summary, this investigation identified several genes 
associated with N-glycosylation and AD, demonstrating their 
potential as biomarkers for early diagnosis. The innovative 
application of machine learning methods underscores the 
significance of these findings in advancing our understanding of 
AD pathology and facilitating early intervention strategies. Future 
research should prioritize larger cohorts and clinical validation of 
these biomarkers, as well as exploring their mechanistic roles in 
disease progression. The integration of these insights into clinical 
practice may pave the way for improved diagnostic and therapeutic 
frameworks in AD management. 

5 Conclusion 

This study bridges bibliometric and bioinformatics approaches 
to elucidate the role of N-glycosylation in AD. Bibliometric analysis 
highlights a growing focus on molecular mechanisms in AD 
research, with N-glycosylation emerging as a key area of interest. 
Bioinformatics identified critical genes such as TMEM59, MLEC, 
and MAX, which are implicated in glycoprotein homeostasis 
and neuroinflammatory processes. Machine learning models, 
particularly logistic regression, demonstrated strong diagnostic 
potential using minimal gene panels. Additionally, TFs like 
MAX and BRD9 were linked to glycosylation regulation and 
glial activation. These findings advance our understanding of 
N-glycosylation’s role in AD pathogenesis and provide promising 
targets for early diagnosis and therapeutic intervention. 

Data availability statement 

The datasets presented in this study can be found in 
online repositories. The names of the repository/repositories 
and accession number(s) can be found in this 
article/Supplementary material. 

Ethics statement 

This study is based on published experimental research and is 
not currently applicable to medical ethics. 

Author contributions 

HZ: Writing – review & editing, Formal analysis, Software, 
Writing – original draft, Data curation, Methodology, 
Visualization. WC: Data curation, Visualization, Funding 
acquisition, Software, Methodology, Writing – review & editing, 
Formal analysis, Writing – original draft. SY: Visualization, 
Methodology, Writing – original draft, Writing – review & 
editing, Formal analysis, Software. BC: Software, Data curation, 

Frontiers in Aging Neuroscience 17 frontiersin.org 

https://doi.org/10.3389/fnagi.2025.1597511
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1597511 November 10, 2025 Time: 18:15 # 18

Zhang et al. 10.3389/fnagi.2025.1597511 

Writing – review & editing, Visualization, Writing – original 
draft, Methodology. SD: Writing – original draft, Visualization, 
Data curation, Software, Writing – review & editing. HB: 
Writing – original draft, Visualization, Writing – review 
& editing, Software. JS: Supervision, Writing – review & 
editing, Conceptualization, Project administration, Resources, 
Writing – original draft, Investigation, Funding acquisition. WL: 
Supervision, Conceptualization, Resources, Writing – original 
draft, Writing – review & editing, Project administration, 
Investigation. HGZ: Writing – review & editing, Conceptualization, 
Investigation, Resources, Writing – original draft, Project 
administration, Supervision. 

Funding 

The author(s) declare financial support was received for the 
research and/or publication of this article. This work was supported 
by four grants awarded to Hao Zhang: the Wuxi Science and 
Technology Development Fund (Award No. Y20232005), the 2025 
Open Project of the Provincial Key Laboratory for Integrative 
Chinese-Western Prevention and Treatment of Geriatric Diseases 
at Yangzhou University (Award No. 202528), the 2025 Wuxi 
Aging Research Project (Award No. WXLN25-A-24), and the 
2025 Annual Scientific Research Project of the Jiangsu Provincial 
Association of Geriatrics (Award No. JGS2025ZDM010). 

Acknowledgments 

We thank HaoGang Zhu and Wei Lu for discussions and 
generous support. 

Conflict of interest 

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest. 

Generative AI statement 

The authors declare that no Generative AI was used in the 
creation of this manuscript. 

Any alternative text (alt text) provided alongside figures in 
this article has been generated by Frontiers with the support of 
artificial intelligence and reasonable eorts have been made to 
ensure accuracy, including review by the authors wherever possible. 
If you identify any issues, please contact us. 

Publisher’s note 

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their aÿliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher. 

Supplementary material 

The Supplementary Material for this article can be found 
online at: https://www.frontiersin.org/articles/10.3389/fnagi.2025. 
1597511/full#supplementary-material 

References 

Abbas, M., and El-Manzalawy, Y. (2020). Machine learning based refined dierential 
gene expression analysis of pediatric sepsis. BMC Med. Genom. 13:122. doi: 10.1186/ 
s12920-020-00771-4 

Boada-Romero, E., Letek, M., Fleischer, A., Pallauf, K., Ramón-Barros, C., and 
Pimentel-Muiños, F. X. (2013). TMEM59 defines a novel ATG16L1-binding motif that 
promotes local activation of LC3. EMBO J. 32, 566–582. doi: 10.1038/emboj.2013.8 

Carry, P. M., Vigers, T., Vanderlinden, L. A., Keeter, C., Dong, F., Buckner, T., et al. 
(2023). Propensity scores as a novel method to guide sample allocation and minimize 
batch eects during the design of high throughput experiments. BMC Bioinform. 
24:86. doi: 10.1186/s12859-023-05202-6 

Cha, H. M., Lim, J. H., Yeon, J. H., Hwang, J. M., and Kim, D. I. (2017). 
Co-overexpression of Mgat1 and Mgat4 in CHO cells for production of highly 
sialylated albumin-erythropoietin. Enzyme Microb. Technol. 103, 53–58. doi: 10.1016/ 
j.enzmictec.2017.04.010 

Chen, Y., Hu, D., Yabe, R., Tateno, H., Qin, S. Y., Matsumoto, N., et al. (2011). Role 
of malectin in Glc(2)Man(9)GlcNAc(2)-dependent quality control of α1-antitrypsin. 
Mol. Biol. Cell 22, 3559–3570. doi: 10.1091/mbc.E11-03-0201 

Dos Santos Silva, P. M., de Oliveira, W. F., Albuquerque, P. B. S., Dos Santos 
Correia, M. T., and Coelho, L. C. B. B. (2019). Insights into anti-pathogenic activities 
of mannose lectins. Int. J. Biol. Macromol. 140, 234–244. doi: 10.1016/j.ijbiomac.2019. 
08.059 

Dünser, K., and Schoberer, J. (2025). Traÿcking and localization of Golgi-resident 
N-glycan processing enzymes in plants. Front. Plant Sci. 16:1624949. doi: 10.3389/fpls. 
2025.1624949 

Fang, S., Zhang, K., Liu, D., Yang, Y., Xi, H., Xie, W., et al. (2024). Polyphenol-
based polymer nanoparticles for inhibiting amyloid protein aggregation: Recent 
advances and perspectives. Front. Nutr. 11:1408620. doi: 10.3389/fnut.2024.140 
8620 

Giesen, K., Lammel, U., Langehans, D., Krukkert, K., Bunse, I., and Klämbt, C. 
(2003). Regulation of glial cell number and dierentiation by ecdysone and Fos 
signaling. Mech. Dev. 120, 401–413. doi: 10.1016/s0925-4773(03)00009-1 

Han, P., and Shi, J. A. (2016). Theoretical analysis of the synergy of amyloid 
and tau in Alzheimer’s disease. J. Alzheimers Dis. 52, 1461–1470. doi: 10.3233/JAD-
151206 

Hawkinson, T. R., Liu, Z., Ribas, R. A., Medina, T., Nielsen, R. S., Clarke, H. A., 
et al. (2025). Hyper-Glycosylation as a central metabolic driver of Alzheimer’s disease. 
bioRxiv [Preprint] doi: 10.1101/2025.04.30.651461 

Hou, X., Wang, Y., Bu, D., Wang, Y., and Sun, S. (2023). EMNGly: Predicting 
N-linked glycosylation sites using the language models for feature extraction. 
Bioinformatics 39:btad650. doi: 10.1093/bioinformatics/btad650 

Hsieh, A. L., and Dang, C. V. (2016). MYC, metabolic synthetic lethality, and cancer. 
Recent Results Cancer Res. 207, 73–91. doi: 10.1007/978-3-319-42118-6_4 

Hu, W., and Hu, J. (2014). Prediction of siRNA potency using sparse logistic 
regression. J. Comput. Biol. 21, 420–427. doi: 10.1089/cmb.2009.0115 

Huang, H. C., and Jiang, Z. F. (2009). Accumulated amyloid-beta peptide and 
hyperphosphorylated tau protein: Relationship and links in Alzheimer’s disease. 
J. Alzheimers Dis. 16, 15–27. doi: 10.3233/JAD-2009-0960 

Frontiers in Aging Neuroscience 18 frontiersin.org 

https://doi.org/10.3389/fnagi.2025.1597511
https://www.frontiersin.org/articles/10.3389/fnagi.2025.1597511/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnagi.2025.1597511/full#supplementary-material
https://doi.org/10.1186/s12920-020-00771-4
https://doi.org/10.1186/s12920-020-00771-4
https://doi.org/10.1038/emboj.2013.8
https://doi.org/10.1186/s12859-023-05202-6
https://doi.org/10.1016/j.enzmictec.2017.04.010
https://doi.org/10.1016/j.enzmictec.2017.04.010
https://doi.org/10.1091/mbc.E11-03-0201
https://doi.org/10.1016/j.ijbiomac.2019.08.059
https://doi.org/10.1016/j.ijbiomac.2019.08.059
https://doi.org/10.3389/fpls.2025.1624949
https://doi.org/10.3389/fpls.2025.1624949
https://doi.org/10.3389/fnut.2024.1408620
https://doi.org/10.3389/fnut.2024.1408620
https://doi.org/10.1016/s0925-4773(03)00009-1
https://doi.org/10.3233/JAD-151206
https://doi.org/10.3233/JAD-151206
https://doi.org/10.1101/2025.04.30.651461
https://doi.org/10.1093/bioinformatics/btad650
https://doi.org/10.1007/978-3-319-42118-6_4
https://doi.org/10.1089/cmb.2009.0115
https://doi.org/10.3233/JAD-2009-0960
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1597511 November 10, 2025 Time: 18:15 # 19

Zhang et al. 10.3389/fnagi.2025.1597511 

Kaye, A. D., Islam, R. K., Tong, V. T., Tynes, B. E., Sala, K. R., Abbott, B. et al. 
(2024). Transcutaneous electrical nerve stimulation for prevention and treatment of 
post-herpetic neuralgia: A narrative review. Cureus. 16:e74416. doi: 10.7759/cureus. 
74416 

Kawaharada, R., Sugimoto, T., Matsuda, N., Tsuboi, Y., Sakurai, T., and Ono, R. 
(2019). Impact of loss of independence in basic activities of daily living on caregiver 
burden in patients with Alzheimer’s disease: A retrospective cohort study. Geriatr 
Gerontol Int. 19, 1243–1247. doi: 10.1111/ggi.13803 

Khan, T. K. (2018). An algorithm for preclinical diagnosis of Alzheimer’s disease. 
Front. Neurosci. 12:275. doi: 10.3389/fnins.2018.00275 

Knee, R., Ahsan, I., Mesaeli, N., Kaufman, R. J., and Michalak, M. (2003). 
Compromised calnexin function in calreticulin-deficient cells. Biochem. Biophys. Res. 
Commun. 304, 661–666. doi: 10.1016/s0006-291x(03)00643-0 

Lee, J. H., Jeong, Y. R., Kim, Y. G., and Lee, G. M. (2017). Understanding of 
decreased sialylation of Fc-fusion protein in hyperosmotic recombinant Chinese 
hamster ovary cell culture: N-glycosylation gene expression and N-linked glycan 
antennary profile. Biotechnol. Bioeng. 114, 1721–1732. doi: 10.1002/bit.26284 

Lozupone, M., Dibello, V., Resta, E., Sardone, R., Castellana, F., Zupo, R., et al. 
(2025). Uncertainties in anti-amyloid monoclonal antibody therapy for Alzheimer’s 
disease: The challenges ahead. Exp. Rev. Neurother. 25, 649–659. doi: 10.1080/ 
14737175.2025.2500752 

Lu, H., Fermaintt, C. S., Cherepanova, N. A., Gilmore, R., Yan, N., and 
Lehrman, M. A. (2018). Mammalian STT3A/B oligosaccharyltransferases segregate 
N-glycosylation at the translocon from lipid-linked oligosaccharide hydrolysis. Proc. 
Natl. Acad. Sci. U. S. A. 115, 9557–9562. doi: 10.1073/pnas.1806034115 

Marques, A. R. A., Di Spiezio, A., Thießen, N., Schmidt, L., Grötzinger, J., 
Lüllmann-Rauch, R., et al. (2020). Enzyme replacement therapy with recombinant 
pro-CTSD (cathepsin D) corrects defective proteolysis and autophagy in neuronal 
ceroid lipofuscinosis. Autophagy 16, 811–825. doi: 10.1080/15548627.2019.1637200 

McFerrin, L. G., and Atchley, W. R. (2011). Evolution of the Max and Mlx networks 
in animals. Genome Biol. Evol. 3, 915–937. doi: 10.1093/gbe/evr082 

Meng, J., Han, L., Zheng, N., Xu, H., Liu, Z., Zhang, X., et al. (2020). TMEM59 
haploinsuÿciency ameliorates the pathology and cognitive impairment in the 5xFAD 
mouse model of Alzheimer’s disease. Front. Cell Dev. Biol. 8:596030. doi: 10.3389/fcell. 
2020.596030 

Migliore, L., and Coppedè, F. (2022). Gene-environment interactions in Alzheimer 
disease: The emerging role of epigenetics. Nat. Rev. Neurol. 18, 643–660. doi: 10.1038/ 
s41582-022-00714-w 

Rampa, A., Gobbi, S., Belluti, F., and Bisi, A. (2013). Emerging targets in 
neurodegeneration: New opportunities for Alzheimer’s disease treatment? Curr. Top. 
Med. Chem. 13, 1879–1904. doi: 10.2174/15680266113139990143 

Sebastian, A., Cistulli, P. A., Cohen, G., and Chazal, P. (2020). Characterisation of 
upper airway collapse in OSA patients using snore signals: A cluster analysis approach. 
Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2020, 5124–5127. doi: 10.1109/EMBC44109. 
2020.9175591 

Tang, X., Tena, J., Di Lucente, J., Maezawa, I., Harvey, D. J., Jin, L. W., 
et al. (2023). Transcriptomic and glycomic analyses highlight pathway-specific 
glycosylation alterations unique to Alzheimer’s disease. Sci. Rep. 13:7816. doi: 10.1038/ 
s41598-023-34787-4 

Wu, W., Lee, I., Spratt, H., Fang, X., and Bao, X. (2021). tRNA-Derived fragments in 
Alzheimer’s Disease: Implications for new disease biomarkers and neuropathological 
mechanisms. J. Alzheimers Dis. 79, 793–806. doi: 10.3233/JAD-200917 

Xu, X., Tan, H., Yin, K., Xu, S., Wang, Z., Serrano, G. E., et al. (2025a). 
Comprehensive and site-specific characterization of protein N-Glycosylation in AD 
samples reveals its potential roles in protein aggregation and synaptic dysfunction. 
Anal. Chem. 97, 21873–21882. doi: 10.1021/acs.analchem.5c02455 

Xu, Y., Liu, S., Zhou, Z., Qin, H., Zhang, Y., Zhang, G., et al. (2025b). Integrated 
multi-omics analysis revealed the molecular networks and potential targets of cellular 
senescence in Alzheimer’s disease. Hum. Mol. Genet. 34, 381–391. doi: 10.1093/hmg/ 
ddae189 

You, W. (2025). Global patterns linking total meat supply to dementia incidence: 
A population-based ecological study. AIMS Neurosci. 12, 203–221. doi: 10.3934/ 
Neuroscience.2025012 

Zhang, Q., Chen, B., Yang, P., Wu, J., Pang, X., and Pang, C. (2022). Bioinformatics-
based study reveals that AP2M1 is regulated by the circRNA-miRNA-mRNA 
interaction network and aects Alzheimer’s disease. Front. Genet. 13:1049786. doi: 
10.3389/fgene.2022.1049786 

Zhou, S. C., Dong, Y. X., Tian, J., Che, G. W., and Lai, Y. (2025). Advancing the 
understanding of alveolar regeneration: Global research trends, thematic evolution, 
and emerging frontiers. Regen. Ther. 30, 778–794. doi: 10.1016/j.reth.2025.09.005 

Frontiers in Aging Neuroscience 19 frontiersin.org 

https://doi.org/10.3389/fnagi.2025.1597511
https://doi.org/10.7759/cureus.74416
https://doi.org/10.7759/cureus.74416
https://doi.org/10.1111/ggi.13803
https://doi.org/10.3389/fnins.2018.00275
https://doi.org/10.1016/s0006-291x(03)00643-0
https://doi.org/10.1002/bit.26284
https://doi.org/10.1080/14737175.2025.2500752
https://doi.org/10.1080/14737175.2025.2500752
https://doi.org/10.1073/pnas.1806034115
https://doi.org/10.1080/15548627.2019.1637200
https://doi.org/10.1093/gbe/evr082
https://doi.org/10.3389/fcell.2020.596030
https://doi.org/10.3389/fcell.2020.596030
https://doi.org/10.1038/s41582-022-00714-w
https://doi.org/10.1038/s41582-022-00714-w
https://doi.org/10.2174/15680266113139990143
https://doi.org/10.1109/EMBC44109.2020.9175591
https://doi.org/10.1109/EMBC44109.2020.9175591
https://doi.org/10.1038/s41598-023-34787-4
https://doi.org/10.1038/s41598-023-34787-4
https://doi.org/10.3233/JAD-200917
https://doi.org/10.1021/acs.analchem.5c02455
https://doi.org/10.1093/hmg/ddae189
https://doi.org/10.1093/hmg/ddae189
https://doi.org/10.3934/Neuroscience.2025012
https://doi.org/10.3934/Neuroscience.2025012
https://doi.org/10.3389/fgene.2022.1049786
https://doi.org/10.3389/fgene.2022.1049786
https://doi.org/10.1016/j.reth.2025.09.005
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/

	Integrated analysis of N-glycosylation and Alzheimer's disease: identifying key biomarkers and mechanisms
	1 Introduction
	2 Materials and methods
	2.1 Data sources and retrieval strategy for N-glycosylation and AD bibliometrics
	2.2 Analytical methods and tools for bibliometric analysis
	2.3 Identification of N-glycosylation-related genes in AD via differential expression and machine learning
	2.4 Identification of diagnostic biomarkers in DEGs via machine learning analysis
	2.5 Identification of N-glycosylation-related genes associated with TMEM59 in AD
	2.6 Discovering transcription factors linked to MLEC, TMEM59, and glial activation in AD
	2.7 Investigating the diagnostic value of transcription factors associated with MLEC, TMEM59, and microglial activation in AD
	2.8 Machine learning and SHAP analysis of N-glycosylation-related molecular features in AD

	3 Results
	3.1 Thematic evolution and research trends
	3.2 Keyword analysis and research focus
	3.3 Key differentially expressed and N-glycosylation-related genes in Alzheimer's disease identified via machine learning
	3.4 Validation of gene biomarkers in DEGs and nomogram development for Alzheimer's disease diagnosis
	3.5 Characterization of N-glycosylation-related genes correlated with TMEM59 in Alzheimer's disease pathology
	3.6 Uncovering transcription factors that regulate MLEC, TMEM59, and glial activation in Alzheimer's disease
	3.7 Evaluating the diagnostic potential of transcription factors linked to MLEC, TMEM59, and microglial activation in Alzheimer's disease
	3.8 Optimizing diagnostic accuracy with key molecules (MAX, MLEC, TMEM59) and N-glycosylation-related genes across different algorithms
	3.9 Key molecular features and interactions in Alzheimer's disease revealed by machine learning and SHAP analysis

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References




