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Background: Alzheimer’s Disease (AD) is a progressive neurodegenerative 
disorder characterized by amyloid-beta (Aβ) plaques and tau protein aggregates 
in the brain. These pathological features manifest in specific regions, but 
mechanisms rendering some areas more susceptible to early AD-related 
changes remain poorly understood. To address this, we developed predictive 
gene expression signatures to explore molecular mechanisms underlying 
regional vulnerability to AD pathology.
Methods: Post-mortem brain tissues from participants of the Religious Orders 
Study and Memory and Aging Project (ROSMAP), Mayo Clinic, and Mount Sinai 
Brain Bank (MSBB) were used to derive gene expression signatures from six 
brain regions affected at varying stages of AD progression. Differential gene 
expression analysis identified genes with altered expression patterns which were 
used to develop predictive gene signatures using Adaptive Signature Selection 
and InteGratioN (ASSIGN) to predict pathway activity. Predictions of AD activity 
were validated against known AD status across clinical markers of AD pathology, 
including Aβ plaque deposition, tau aggregates, cognitive assessments, and 
clinical diagnoses. Dysregulation of key biological pathways was then analyzed 
using g: Profiler and ClueGO. Additionally, genetic and sociodemographic 
factors impacting AD prediction were assessed, and potential drug repurposing 
candidates identified using Connectivity Map (CMAP).
Results: Predictive gene expression signatures from six AD-affected brain 
regions distinguished AD activity in control and AD post-mortem brain 
tissue, corresponding to clinical markers of disease severity. The signatures 
revealed common underlying mechanisms of regional vulnerability, including 
upregulation of extracellular matrix (ECM)-related processes and downregulation 
of hormonal signaling pathways. Notably, S100A4 was consistently upregulated 
across all regions, while CRH expression was downregulated except in the 
cerebellum. Additionally, findings underscored the influence of APOE genotype 
(e3/e4) and sex on disease progression. Drug repurposing analysis identified 
FGFR inhibitors, specifically orantinib and bromodomain inhibitors, as promising 
therapeutic candidates.
Conclusion: Molecular signatures underlying regional vulnerability to AD 
provide a framework for understanding genetic and systemic factors in disease 
progression. Findings highlight specific molecular pathways, including ECM-
related processes and hormonal regulation, as key drivers of susceptibility. 
Finally, identified drug repurposing candidates present promising therapeutic 
avenues for further investigation.
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Introduction

Alzheimer’s disease (AD) is a complex neurodegenerative disorder 
that affects various brain regions at varying stages of progression 
(Monteiro et al., 2023). The hippocampus is among the earliest regions 
impacted, while the frontal cortex is affected in later stages (Monteiro 
et  al., 2023). This regional variability is a hallmark of AD and 
contributes to the heterogeneity in cognitive decline and clinical 
outcomes. Investigating gene expression changes across brain regions 
throughout disease progression can provide crucial insights into the 
molecular mechanisms underlying AD.

To study these AD-related changes across brain regions, this study 
aims to capture region-specific gene expression signatures from post-
mortem brain (PMB) tissue using differential gene expression (DGE) 
analysis. Furthermore, the predictive ability of these signatures to 
detect AD-related changes will be validated by comparing them with 
established clinical markers of AD, such as cognitive assessments, 
amyloid-beta (Aβ) plaque deposition, and tau protein aggregates, 
measured through the Consortium to Establish a Registry for 
Alzheimer’s Disease (CERAD) scoring, Thal phases, Braak staging 
systems, and clinical diagnoses. This combined approach enhances 
our understanding of the molecular underpinnings of AD and could 
provide more reliable biomarker for diagnosis.

Previous studies successfully identified gene expression signatures 
related to inflammation, immune response, synaptic function, and 
neural signaling (Kodam et al., 2023). However, the ability of these 
signatures to predict AD status and progression across independent 
datasets and validate those predictions with known AD markers 
remains underexplored. This highlights a critical gap in our ability to 
predict the extent of disease progression from gene expression data 
and validate these predictions using known clinical and 
pathological markers.

This study addresses this gap by developing region-specific gene 
expression signatures that are not only predictive of AD but also 
validated against established clinical markers, ensuring that the 
predictions correspond to clinical AD diagnosis. Although the region-
specific signatures are developed using PMB tissue, our goal is to 
capture the most severe gene expression changes which will allow us 
to use the signature to predict less severe cases effectively.

Moreover, imaging and CSF analysis for Alzheimer’s diagnosis 
such as PET scans and CSF tests remain expensive, invasive, and 
inaccessible for many patients. Gene expression signatures from PMB 
tissue could pave the way for developing more accessible biomarkers, 
enabling earlier and potentially real-time AD predictions from blood 
or other bodily fluids. Thus, by identifying molecular signatures that 
mirror disease progression, we  aim to create predictive tools that 
complement current diagnostic approaches.

To perform this analysis, three distinct studies were utilized 
including the Religious Orders Study and Memory and Aging Project 
(ROSMAP), Mayo Clinic, and Mount Sinai Brain Bank (MSBB). These 
studies provide comprehensive gene expression data from various 
brain regions affected by AD allowing us to investigate how AD-related 
changes in gene expression vary by region. This offers an opportunity 

to predict disease status based on these molecular signatures. By 
comparing gene expression signatures between early-affected regions 
(e.g., hippocampus), mid-affected regions (e.g., association cortices) 
and later-affected regions (e.g., frontal lobe), we aim to capture the 
progression of AD across the brain.

This approach will also quantify the magnitude of AD’s impact 
across different brain regions. For example, it is hypothesized that 
certain brain regions, like the hippocampus, will exhibit more 
pronounced gene expression changes early in the disease, while others, 
such as the frontal cortex, will show more significant changes in later 
stages. These region-specific gene signatures could provide insights into 
the differential vulnerability of brain areas to AD pathology. Although 
the PMB tissue is not ideal in assessing real-time gene expression 
changes, these available datasets can be used to identify the extent of 
changes from terminal AD in each brain region. Furthermore, by 
validating the predicted AD status with clinical markers, this study aims 
to ensure that these gene expression signatures are not only reflective of 
molecular changes but also predictive of clinical diagnosis.

Thus, this study seeks to develop predictive gene expression 
signatures from PMB tissues that are region-specific and validated by 
clinical markers of AD (Figure 1). Through comprehensive analysis of 
multiple datasets, we aim to provide robust tools for predicting AD 
status, quantifying the magnitude of disease impact across brain regions, 
and ultimately improving early diagnosis and therapeutic intervention.

Materials and methods

Data and preprocessing

Bulk RNA-seq gene count data of PMB tissue samples were 
collected from The RNAseq Harmonization study, aimed to uniformly 
process gene expression data generated by the Accelerating Medicines 
Partnership for Alzheimer’s Disease (AMP-AD) cohort studies 
including ROSMAP (Bennett et al., 2018), MSBB (Wang et al., 2018), 
and the Mayo Clinic RNA Sequencing Study (Allen et  al., 2016). 
ROSMAP provided 632 samples from the dorsolateral prefrontal 
cortex (DLPFC), MSBB contributed 160 samples from the 
parahippocampal gyrus (PHG, BM36), 187 from the inferior frontal 
gyrus (IFG, BM44), and 191 from the superior temporal gyrus (STG, 
BM22). Mayo supplied 262 samples from the temporal cortex (TCX) 
and 261 from the cerebellum (CER). Additionally, bulk RNA-seq 
FPKM expression data was obtained from the Aging, Dementia, and 
Traumatic Brain Injury Study (Accession GSE104687) through Gene 
Expression Omnibus (GEO). This included 98 TCX and 94 
hippocampus samples, used for external validation of region-specific 
signatures. Respective meta data was acquired for each dataset.

To ensure consistency across the ROSMAP, MSBB, Mayo, and 
GSE104687 datasets for downstream analysis, CERAD scores (neuritic 
plaque density) and Braak stages (neurofibrillary tangle severity) were 
standardized (Mock et al., 2020; Supplementary Table 1). Datasets 
were further refined by excluding genes not common across all 
datasets or those with fewer than 10 counts per sample, across all 
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samples. Next, samples were excluded based on RNA Integrity 
Number (RIN) thresholds, missing metadata, or outlier identification 
via Principal Component Analysis (PCA). Batch effects, such as 
sequencing batches, were then corrected using sva package (version 
3.50.0; Zhang et al., 2020; Supplementary Table 2). All analysis steps 
were performed using R version 4.3.3 (Team, 2024).

Differential gene expression analysis

Control and AD training groups were determined for each region 
using a combination of CERAD scores, Braak stages and study-
specific diagnostic criteria (Supplementary Table 3). Patient cohort 
demographics were also assessed between control and AD groups to 
evaluate potential confounding differences (Supplementary Table 4). 

Control and AD samples were compared to identify differentially 
expressed genes (DEGs) using DESeq2 (version 1.42.1; Love et al., 
2014). Statistically significant DEGs were identified using the 
Benjamini–Hochberg procedure to control for false positives, with a 
p adjusted (p-adj) ≤ 0.05, and region-specific log2 fold change (LFC) 
thresholds to optimize the downstream predictive performance 
(Supplementary Table 5).

Development of gene expression signature 
predictions

Next, the DESeq2-normalized data was log2-transformed to 
stabilize variance and improve interpretability. The Adaptive Signature 
Selection and Integration (ASSIGN; version 1.38.0) toolkit was then 

FIGURE 1

Study overview. (A) Healthy and AD PMB tissue samples collected from six regions sourced from three major studies. (B) Identification of significant 
DEGs in each region comparing AD vs. control using clinical and pathological markers. (C) Development of predictive signatures from DEGs to 
predict AD activity, validated against clinical and neuropathological AD status. (D) Regional profiling and pathway analysis to explore regional 
variability in AD involvement. Created in BioRender (Duche, 2025).
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used to develop predictive gene expression signatures for each region 
using their DEGs (Shen et al., 2015). This required region-specific 
control and AD training groups using stricter criteria than in DGE 
analysis (Supplementary Table 6). These training sets were used to train 
the ASSIGN model to improve prediction accuracy. Finally, the DEGs 
from each region were used to estimate AD activity on a scale from 0 
(no activity) to 1 (highest activity) on the remaining samples.

Validation of signature predictions across 
neuropathological and clinical measures

To validate each signature’s ability to predict AD status, predicted 
AD activity was compared to known AD status across meta categories 
including Braak stages, Aβ plaque measures (e.g., CERAD scores, Thal 
phases), and dataset-specific diagnoses (e.g., Cogdx, CDR, Diagnosis). 
Additionally, for the DLPFC (ROSMAP), Mini-Mental State 
Examination (MMSE) scores were used as an additional measure to 
assess cognitive impairment on a scale of 0–30 (0–12: Severe; 13–19: 
Moderate; 20–24: Mild; 25–30: Normal; Truong et al., 2024). For PHG, 
IFG, and STG, plaque mean was applied as a continuous measure of 
the average Aβ plaque density on a scale of 0–28 (higher scores 
represent higher plaque burden). Independent Student’s t-tests were 
used to determine significant differences in mean predicted AD activity 
levels between control and most severe AD groups, across all meta 
categories while Pearson’s correlation was applied for plaque mean with 
significance determined using p < 0.05 for all validation.

Identifying key predictors of AD status 
using generalized linear modeling

A binomial generalized linear model (GLM) was constructed for 
each region using stats package (version 4.3.3; Team, 2024). This was 
used to quantify the influence of tissue-specific effects and external 
variables on predicting AD status. Models included region-specific 
signature predictions along with known associated factors such as age 
of death, sex, APOE genotype, and race (if available). Odds ratios 
(ORs) were calculated to assess the strength and direction of each 
predictor’s effect on AD status while the best-fit model was selected 
based on the lowest Akaike Information Criterion (AIC) using the 
stats package (version 4.3.3).

The goodness-of-fit of the predictive model was assessed using 
McFadden pseudo-R2, which represents the proportion of variability 
explained by all factors. This was computed using the pscl package 
(version 1.5.9) where pseudo-R2 values between 0.2–0.4 were 
moderate, 0.4–0.5 was strong, and > 0.5 was very strong model fit 
(Zeileis et al., 2008). This analysis helped identify which brain regions 
and clinical factors most effectively predict AD status.

To further evaluate the model’s predictive accuracy and reduce the 
risk of overfitting, Leave-One-Out Cross-Validation (LOOCV) was 
performed using the caret package (version 6.0.94; Kuhn, 2008). 
LOOCV was set up for binary classification (No AD or AD) with class 
probabilities, and the area under the Receiver Operating Characteristic 
(ROC) curve (AUC) was used as the primary performance metric. 
Models with AUC > 0.7 were considered to have acceptable predictive 
performance. This step ensured the reliability of the predictive 
signatures and factors included in the best-fit models.

External validation of signatures

TCX and hippocampus FPKM datasets from the Aging, Dementia, 
and TBI study (GSE104687) was filtered to retain genes common 
across all signature development datasets, excluding samples with 
RIN < 5 or reported traumatic brain injury (TBI), and including only 
those diagnosed with “Alzheimer’s Disease Type” or “No Dementia,” 
followed by log2-normalization (Supplementary Table 2). Control and 
AD training sets for each region were defined using CERAD scores, 
Braak stages, and DSM-IV clinical diagnosis (Supplementary Table 5). 
Signature performance in predicting AD status from ASSIGN was 
validated using independent Student’s t-tests to compare control and 
severe AD groups.

Gene and connectivity analysis

Genes included in the region-specific signatures were compared 
across regions to identify overlapping genes revealing common 
molecular patterns and region-specific differences.

Next, gene co-expression networks were generated for each brain 
region using GeneMANIA (Montojo et  al., 2010) in Cytoscape 
(Shannon et al., 2003). Genes were ranked by degree, betweenness, 
and closeness centrality via CytoHubba (Chin et al., 2014). The top 10 
genes for each measure were identified, and those overlapping across 
all three were classified as hub genes, representing key coordinators of 
molecular interactions.

Connectivity Map (CMAP) was then used to compare region-
specific signature genes with expression profiles from various 
perturbations, including drugs, gene overexpression, knockdowns, 
and CMAP classes (Subramanian et  al., 2017). Upregulated and 
downregulated gene lists from each region were queried to compute 
connectivity scores (CS; −100 to 100), with values above 90 indicating 
similarity and below −90 indicating dissimilarity. This allowed the 
identification of potential drug repurposing candidates.

Pathway and network analysis

Gene Set Enrichment Analysis (GSEA) was conducted separately 
for each region using the full signature gene list, with analyses 
performed independently on upregulated and downregulated genes 
to identify enriched functional annotations and pathways. Analysis 
was performed using g: Profiler, which integrates data from Gene 
Ontology (GO), KEGG, Reactome, WikiPathways, CORUM, and 
Human Phenotype Ontology (Raudvere et  al., 2019). Statistically 
significant pathways (p < 0.05) were identified and compared to 
determine shared and unique molecular mechanisms upregulated or 
downregulated across regions.

Next, using the gene co-expression networks in Cytoscape, MCODE 
(version 2.0.3) was used to identify tightly interconnected groups of genes, 
referred to as functional modules, using default parameters (Bader and 
Hogue, 2003). Functional modules identified with higher MCODE scores 
indicate more densely clustered and interconnected genes that may 
participate in critical biological processes or functions. A higher number 
of functional clusters indicates greater dysregulation in a region, providing 
a quantitative measure of the extent and coordination of changes 
occurring across regions.
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ClueGO (version 2.5.10) in Cytoscape was then used for 
functional enrichment analysis of genes from functional module 
clusters from each region. ClueGO also integrates GO, KEGG, 
Reactome, WikiPathways, and CORUM data sources (Bindea et al., 
2009). Results were then visualized as networks with nodes 
representing enriched annotations, and processes connected by edges 
and grouped by color based on gene overlap revealing functionally 
related processes. A p ≤ 0.05 was used for all regions, except PHG, 
which used p ≤ 0.01 to improve interpretability of dysregulated 
processes. A two-sided hypergeometric test with Bonferroni step-
down correction was applied.

Results

Differential gene expression across 
AD-affected brain regions

To better understand the mechanisms driving AD pathology, this 
analysis captured gene expression changes across brain regions 

affected at different stages of the disease using PMB tissue 
(Supplementary Tables 7A–F). This revealed the highest dysregulation 
occurring in early-affected regions such as the PHG which 
we identified 176 DEGs (154 upregulated and 22 downregulated). This 
was followed by mid-affected regions including STG with 127 DEGs 
(119 upregulated, 8 downregulated), and TCX with 53 DEGs (39 
upregulated, 14 downregulated). While mid-to-late affected regions 
showed less dysregulation, including the IFG with 44 DEGs (29 
upregulated, 15 downregulated), DLPFC with 53 DEGs (40 
upregulated, 13 downregulated), and CER with 55 DEGS (42 
upregulated, 13 downregulated). Using these DEGs, predictive gene 
expression signatures were developed for each region representative 
of AD activity (Figure 2).

Development of gene expression 
signatures predictive of AD status

These region-specific gene expression signatures were then used 
to predict the extent of AD, i.e., AD activity, in their respective PMB 

FIGURE 2

Predictive gene expression signatures developed from region-specific DEGs. (A) PHG 176 gene signature (B) TCX 53 gene signature (C) STG 127 gene 
signature (D) IFG 44 gene signature (E) DLPFC 53 gene signature (F) CER 55 gene signature. The horizontal red bar represents AD samples, while the 
horizontal black bar represents control samples for each region. Genes are rows with upregulated expression shown in red, and downregulated 
expression in blue, with deeper colors indicating greater levels of upregulation or downregulation, respectively.
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tissue. Predictions of AD were validated against the known AD 
status of established neuropathological, clinical, and cognitive 
assessments (Table  1; Supplementary Figure  1). Specifically, 
we  assessed the biological relevance of our gene expression 
signatures with postmortem neuropathological measures, including 
Braak staging—which captures the distribution and severity of 
neurofibrillary tangles composed of hyperphosphorylated tau—and 
CERAD scores, which quantify the density of neuritic amyloid 
plaques. Both are widely recognized as robust markers of AD 
pathology. The observed alignment between our predictive 
signatures and these independent, pathology-based indicators 
underscores the disease relevance of the captured transcriptional 
changes. Notably, mean predicted AD activity levels in control 
groups were significantly different than in severe AD groups 
(Table  1). Additionally, a significant positive association was 
observed between predicted AD activity and plaque burden in PHG 
(Pearson r = 0.560, p-adj < 0.005, 95% CI [0.322, 0.731]), IFG 
(Pearson r = 0.566, p-adj < 0.005, 95% CI [0.366, 0.715]), and STG 
(Pearson r = 0.387, p-adj < 0.005, 95% CI [0.0495, 0.644]). These 
measures reflect the expected Aβ and tau burden at different stages 
of the disease, along with cognitive scores and clinical diagnoses, 
offering a comprehensive view of how the predicted AD activity 
aligns with the expected progression of real-world AD.

External validation of our gene expression signatures was 
performed using an independent dataset from the Aging, Dementia, 
and TBI study (GSE104687). The PHG signature successfully 
distinguished AD activity levels between control and severe AD 
groups in hippocampal PMB tissue across neuropathological and 
clinical measures (Table 2). However, external validation was restricted 
to these two regions due to unavailability of match PMB tissue to 
other regions. Although the TCX signature detected higher AD 
activity in the AD samples compared to control samples, the difference 
was not statistically significant.

Influence of sociodemographic factors on 
disease progression

Signature predictions, along with genetic and sociodemographic 
factors, were evaluated for their influence on AD status 
(Supplementary Table 8). Signature predictions were the strongest AD 
predictors across all regions, except TCX where significance was 
limited by a small sample size (n = 23) after filtering for required 
meta-criteria.

In PHG, CER, and IFG, male sex was associated with a lower 
likelihood of AD compared to females, reaching significance in IFG 
(OR = 0.092, 95% CI [15.9, 1.49 × 104], p < 0.001) but not in PHG 
or CER. In later-affected regions, APOE e3/e4 significantly 
increased AD likelihood compared to e2/e3 in DLPFC (OR = 9.58, 
95% CI [1.89, 56.5], p < 0.01) and CER (OR = 27.9, 95% CI [14.4, 
1.30 × 103], p < 0.05). However, APOE genotype in TCX and age of 
death in DLPFC were not a statistically significant predictor of 
AD status.

Next, McFadden’s pseudo-R2 was calculated to assess model fit for 
predicting AD status (Supplementary Table 8). PHG showed the best 
model fit among significant predictors (very strong fit). TCX had the 
highest pseudo-R2 but should be  interpreted with caution, as its 
predictors were not statistically significant in the GLM analysis. CER 

and IFG demonstrated strong fit, while STG and DLPFC had a 
moderate fit, suggesting external influences may still be contributing 
that is not explained by variables in the model. Despite this variation, 
all models demonstrated at least moderate fit, with LOOCV-
confirmed AUCs ranging from 0.729 to 0.995 confirming their 
accuracy in predicting AD status.

Unraveling shared gene networks and 
potential therapeutics

To further understand molecular changes underlying 
dysregulation across regions, this analysis examined overlapping 
signature genes revealing notable commonalities, as shown in 
Figure  3A (Supplementary Figure  2; Supplementary Table  9). 
Specifically, the S100A4 gene was consistently overexpressed in all 
six evaluated regions, indicating its potential universal role in the 
pathogenesis of AD. Additionally, five genes were found across 
five of the six regions including upregulation of ANGPT2, 
LINC03082, and downregulation of CRH, LINC01007, and PPEF1, 
suggesting their significant but less ubiquitous involvement. Next, 
fourteen other genes were found across four of the six brain 
regions with upregulation of KCNE4, GEM, HSPA1A, SPN, 
LINC01736, CD44 and downregulation of FRMPD2B and 
NEUROD6 (Figure 3; Supplementary Table 10). Notably, CRH, 
ANGPT2, S100A4, and PPEF1 showed overlap with hub genes 
identified across regions further supporting their importance in 
dysregulation (Supplementary Table 10).

CMAP analysis was then conducted to identify potential drug 
repurposing candidates (Figures 3B,C). The results revealed the class 
of FGFR inhibitors shared across all regions except PHG and CER with 
orantinib emerging as a notable compound shared amongst these 
regions. As shown in Figure 3B, 17 compounds were found in common 
across TCX, STG, IFG, and DLPFC. Bromodomain inhibitors were 
another common class shared across TCX, STG, and DLPFC. While 
no specific bromodomain inhibitor was identified, knockdown of 
bromodomain targets like BRD2 and BRD4 reversed the AD expression 
captured in our signatures, suggesting their potential to reverse 
AD-specific effects in the TCX, STG and DLPFC. Lastly, the PHG 
returned only two compounds, while the CER yielded six, though 
neither region returned associated CMAP classes highlighting 
potentially tailored treatment approaches for PHG and CER.

Comprehensive characterization of 
network dysregulation across brain regions

Pathway enrichment analysis also identified significant variability 
across regions (Supplementary Tables 11A–F). The STG had 663 
enriched pathways, while the DLPFC had only 22. This stark contrast 
suggests possible differences in underlying biological or pathological 
mechanisms influencing AD progression and regional susceptibility. 
Despite this, extracellular matrix (ECM)-related processes were 
consistently upregulated across all regions, particularly in the 
extracellular matrix, external encapsulating structure, and collagen-
containing ECM.

Similarly, network analysis identified functional modules 
revealing early-to-mid affected regions (PHG, TCX, STG) 
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TABLE 1  Validation of region-specific signatures by comparing predicted AD activity with known AD status using neuropathological, cognitive, and 
clinical data.

Study Region Criteria Comparison 
groups (control vs. 

AD)

Sample 
size (N)

Mean Standard 
deviation 

(SD)

Adjusted 
p-value 
(p-adj)

95% 
Confidence 
interval (CI)

ROSMAP DLPFC Braak 0 5 0.0223 0.050
<0.005 [−1.03, −0.389]

VI 5 0.733 0.261

CERAD No AD 47 0.203 0.271
<0.005 [−0.478, −0.236]

Definite AD 58 0.560 0.354

Cogdx NCI (1) 64 0.204 0.259
<0.005 [−0.422, −0.235]

AD (NINCDSADRDA) (4) 95 0.532 0.338

MMSE Normal (25−30) 65 0.197 0.259
<0.005 [-0.520, −0.267]

Severe CI (0−12) 44 0.590 0.362

MSBB PHG Braak ≤ I 8 0.0632 0.131
<0.005 [−0.842, −0.488]

VI 13 0.728 0.255

CERAD No AD 22 0.161 0.219
<0.005 [−0.708, −0.364]

Definite AD 16 0.697 0.279

CDR NCD/Questionable (≤0.5) 27 0.164 0.219
<0.005 [−0.799, −0.363]

Severe to terminal (≥3) 10 0.744 0.290

IFG Braak ≤I 12 0.0994 0.233
<0.005 [−0.601, −0.250]

≥V 36 0.525 0.313

CERAD No AD 29 0.0752 0.186
<0.005 [−0.626, −0.360]

Definite AD 7 0.568 0.335

CDR NCD/Questionable (≤0.5) 36 0.0753 0.185
<0.005 [−0.857, −0.372]

Severe to terminal (5) 8 0.690 0.287

STG Braak ≤I 12 0.107 0.178
<0.005 [−0.797, −0.433]

VI 23 0.727 0.337

CERAD No AD 17 0.141 0.202
<0.005 [−0.748, −0.409]

Definite AD 27 0.720 0.355

CDR NCD (0) 10 0.246 0.274
<0.005 [−0.826, 0.325]

Severe to terminal (≥4) 8 0.821 0.227

Mayo TCX Braak I 9 1.13×10−5 2.18×10−5

<0.005 [−0.881, 0.705]
VI 20 0.793 0.189

Diagnosis "Control" 34 0.0559 0.156
<0.005 [−0.814, −0.617]

"Alzheimer’s Disease" 34 0.771 0.240

Thal No Aβ plaques (0) 21 0.0526 0.164
<0.005 [−0.836, −0.618]

Pons and cerebellum (5) 32 0.779 0.231

CER Braak ≤I 12 1.15×10−4 2.79×10−4

<0.005 [−0.782, −0.490]
VI 22 0.636 0.329

Diagnosis "Control" 37 0.0844 0.197
<0.005 [−0.621, −0.352]

"Alzheimer’s Disease" 38 0.571 0.362

Thal No Aβ plaques (0) 24 0.112 0.228
<0.005 [−0.608, −0.299]

Pons and cerebellum (5) 36 0.565 0.370

Independent Student’s t-tests showed significant differences in mean predicted AD activity between control and severe AD groups, confirming their ability to distinguish AD in PMB brain 
tissue. AD, Alzheimer’s Disease; ROSMAP, The Religious Orders Study and Memory and Aging Project; DLPFC, Dorsolateral prefrontal cortex; CERAD, Consortium to Establish a Registry 
for Alzheimer’s Disease; Cogdx, Final consensus cognitive diagnosis; NCI, No cognitive impairment; MSBB, Mount Sinai Brain Bank; PHG, parahippocampal gyrus; IFG, Inferior frontal 
gyrus; STG, Superior temporal gyrus; CDR, Clinical Dementia Rating; NCD, No cognitive Deficits; TCX, Temporal cortex; Aβ, Amyloid-beta; CER, Cerebellum.

https://doi.org/10.3389/fnagi.2025.1591946
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Duche et al.� 10.3389/fnagi.2025.1591946

Frontiers in Aging Neuroscience 08 frontiersin.org

showing greater network dysregulation than mid-to-late affected 
regions (IFG, DLPFC, CER; Supplementary Table  12). For 
example, PHG had six functional clusters (MCODE score = 7.8), 
while DLPFC had two (MCODE score = 4.2), quantifying reduced 
dysregulation in later-affected regions. ClueGO functional 
enrichment further confirmed ECM upregulation across all 
regions and revealed downregulation of neuropeptide hormone 
activity and hormonal-related signaling in all regions except the 
CER. This may suggest a possible protective mechanism 
(Supplementary Tables 13A–F).

Notably, the PHG and STG exhibited overlapping cytokine and 
immune defense responses, but PHG showed predominant 
neuroinflammatory upregulation, aligning with early AD pathology 
(Figure  4; Supplementary Tables 13A,B). In contrast, STG was 
upregulated for mainly immune effector activity, indicative of a later-
stage neurodegenerative response. This may also be related to the 
upregulation of CD44 gene expressed on immune cells observed 
across all regions except the DLPFC and CER (Wang et al., 2022). 
Next, in the TCX, downregulation of glutamate decarboxylase and 
upregulation of collagen fibril organization was revealed which could 
impair inhibitory neurotransmission, contributing to excitotoxicity, 
while altering the ECM structure may increase regional vulnerability 
(Supplementary Figure 3; Supplementary Table 13C; Ali et al., 2023).

As shown in Figure 5, the IFG and DLPFC were predominately 
enriched for hormonal-related activity (Supplementary Tables 13D,E). 
This captured dysregulation from PMB tissue in mid-to-late affected 
regions may have highlighted downregulation of hormonal-related 
processes as a source of susceptibility for regions to AD pathology. This 
is supported by the consistent downregulation of hormonal signaling 
observed across all brain regions studied, except for the CER 
(Supplementary Table  13F). Finally, the CER showed heightened 
immune and inflammatory responses, including Toll-like receptor 4 
upregulation, potentially driving increased chemotaxis and angiogenesis 
regulation (Supplementary Figure 4; Supplementary Table 13F).

Discussion

Predictive gene expression signatures representative of AD for 
early-to-late affected regions were developed using PMB tissues. These 
signatures not only distinguished AD pathology from healthy controls 
but also correlated with key disease markers, including Aβ and tau 
burden, cognitive impairment (MMSE scores), and clinical diagnoses. 
Notably, our gene expression signatures were validated against Braak 
staging and CERAD scores. These metrics are widely used to quantify 
tau and amyloid pathology, respectively, and their alignment with our 
signatures reinforces the biological validity of the transcriptional 
patterns we identified as reflective of AD processes.

In addition to these findings, earlier affected regions, PHG and 
STG, exhibited the greatest dysregulation, reflected by the highest 
number of DEGs and functional clusters. From functional enrichment 
of these clusters, it was revealed that the PHG was dominated by 
neuroinflammatory processes while STG was enriched for immune 
responses, with both regions exhibiting overlapping processes. TCX 
followed with more limited dysregulation, primarily in ECM-related 
processes, which were upregulated across all regions, supported by the 
consistent upregulation of S100A4. IFG and DLPFC displayed even 
fewer molecular alterations, primarily affecting hormonal processes, 
a pattern observed across all regions except CER, where CRH 
downregulation was absent.

These findings align with the current understanding of the pattern 
of progression associated with AD pathology characterized by the 
accumulation of Aβ and tau phosphorylation first impacting regions 
such as the PHG followed by TCX and STG in temporal regions 
(Oostveen et al., 2021). As the disease progresses, pathology extends 
to mid-to-late affected regions, including IFG, eventually impacting 
DLPFC and CER in late stages (Oostveen et al., 2021). While this 
pattern of progression is well-characterized in AD, the molecular 
mechanisms underlying the differential susceptibility of specific 
regions remain elusive.

TABLE 2  External validation of PHG and TCX signatures for predicting AD activity in matched PMB tissue from an independent cohort of aging, 
dementia and traumatic brain injury patients (GSE104687).

Region Criteria Comparison groups 
(control vs. AD)

Sample size 
(N)

Mean Standard 
deviation (SD)

p-value 95% 
Confidence 
interval (CI)

PHG

Braak
≤ I 6 0.0252 0.0538

<0.05 [−0.900, −0.386]
≥ V 8 0.668 0.306

CERAD
No AD/Possible AD 23 0.193 0.327

<0.05 [−0.711, −0.279]
Definite AD 8 0.688 0.219

DSM-IV
“No Dementia” 28 0.216 0.336

<0.05 [−0.836, −0.618]
“Alzheimer Disease Type” 11 0.551 0.348

TCX

Braak
≤ I 6 0.134 0.302

0.301 [−0.614, 0.208]
≥ V 7 0.337 0.372

CERAD
No AD/Possible AD 23 0.247 0.320

0.609 [−0.162, 0.272]
Probable AD/Definite AD 16 0.192 0.333

DSM-IV
“No Dementia” 23 0.184 0.313

0.268 [−0.369, 0.108]
“Alzheimer Disease Type” 16 0.315 0.337

Mean predicted activity was compared between control and severe AD groups using Student’s t-tests. The PHG signature was validated across all measures, while TCX showed no significant 
differences. AD, Alzheimer’s Disease; CERAD, Consortium to Establish a Registry for Alzheimer’s Disease; PHG, parahippocampal gyrus; TCX, Temporal cortex; DSM-IV, Diagnostic and 
Statistical Manual of Mental Disorders-Fourth Edition.
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To characterize these molecular mechanisms, recent 
transcriptomic and single-cell studies have identified gene regulators 
consistent with our findings. One of the most interesting overlaps is 
CRH, which we  found consistently downregulated in five of six 
regions, which was also shown to have reduced expression across 
multiple neuronal populations (Li and Larsen, 2023). This aligns with 
CRH’s role as a stress-related neuropeptide in early-affected regions 
like the entorhinal cortex (Li and Larsen, 2023). Additional work has 
also reported widespread CRH loss alongside glial overactivation and 
depletion of immune-regulatory neuropeptides in the 

parahippocampal and temporal cortices, mirroring the inflammatory 
profiles we observed in these same regions (Li et al., 2024). Beyond 
individual genes, our pathway enrichment results align with prior 
reviews identifying ECM remodeling as a driver of neuroinflammation 
and impaired Aβ clearance (Sun et  al., 2021). Likewise, regional 
analyses of MSBB data support our findings by identifying the PHG 
as a hotspot of immune dysregulation and transcriptional activity 
during early AD progression (Neff et al., 2021). However, while these 
studies provide insights into AD’s molecular underpinnings, many fail 
to translate findings to clinical utility and are often limited to single 

FIGURE 3

Signature gene analysis. (A) Upset plot displaying overlapping genes identified across four or more regions highlighting the number of genes shared 
between different combinations of regions. Vertical bars highlight the number of genes shared across the specified regions mentioned below, while 
horizontal bars represent how many genes from each individual region contribute to the overlapping gene sets. (B) Summary of CMAP analysis 
highlighting 17 compounds shared across TCX, STG, IFG, and DLPFC. Larger and darker blue bubbles indicate lower connectivity scores, representing a 
stronger reversal of the AD signature expression. (C) Sankey plot illustrating the drug class descriptions for the 17 shared compounds across TCX, STG, 
IFG, and DLPFC, along with their returned gene targets from CMAP.
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regions or lacking correlation with disease severity or 
progression markers.

To address this gap, this study validated the predictive gene 
expression signatures from each region against established measures 
of AD pathology, as previously mentioned. The ability of these 
signatures to correlate with real-world measures of AD and distinguish 
AD activity in PMB tissue, highlights their potential clinical utility as 
diagnostic and prognostic tools, complementing current clinical 
assessments and improving our understanding of AD pathology.

Additionally, a hallmark of AD pathology is the persistent 
influence of Aβ and tau aggregates on affected brain regions 
throughout disease progression, driving the accumulation of 
molecular changes in these areas (Cai et al., 2023). This persistent 
dysregulation reinforces a cycle of neurodegeneration, with different 
brain regions undergoing various stages of disruption based on their 
involvement in AD progression. Our analysis captured this evolving 
molecular landscape, showing earlier affected regions such as the PHG 

and STG, showing extensive dysregulation exhibited by their number 
of DEGs and functional clusters, reflecting a greater extent of 
molecular changes. This aligns with their role as some of the first sites 
of Aβ and tau accumulation along with neurodegeneration (Aksman 
et al., 2023).

The predictive strength of our gene expression signatures in these 
regions further highlights their role as key markers of AD pathology, 
suggesting that the molecular changes are primarily driven by AD 
pathology. However, in the STG, some variability was captured in our 
gene expression but was not accounted for sociodemographic or 
genetic factors included in our predictive model. This may indicate 
that the variability captured in our signature reflects STG’s response 
to AD pathology in neighboring regions rather than intrinsic 
dysregulation alone. Supporting this, Mitra et al., (2024) found that 
STG gene expression patterns closely align with those of adjacent areas 
like the PHG and entorhinal cortex, suggesting that molecular changes 
in the STG are influenced by disease progression in these 

FIGURE 4

ClueGO functional enrichment analysis of dysregulated processes in earlier affected regions: (A) PHG and (B) STG. Both show overlap in stress and 
immune responses, but PHG is enriched for neuroinflammatory processes, while STG is enriched for immune effector processes. Nodes, color-coded 
by functional similarity, represent enriched pathways, with edges indicating gene-based functional relationships. The most significant terms are 
highlighted based on gene involvement, and the bar chart shows the proportion of each dysregulated term within the network.
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interconnected regions. Similarly, Wang et al., (2016) demonstrated 
that STG alterations align with broader pathological interactions in 
the brain, reinforcing the idea that its molecular variability reflects the 
regional spread of AD pathology. These findings suggest that while 
PHG and STG exhibit early molecular disruption, the STG’s gene 
expression changes may be  shaped by its proximity to other 
affected regions.

Notably, these region-specific signatures exhibited similar 
dysregulation reflected by their overlap in affected processes. 
However, the PHG was predominantly enriched for 
neuroinflammatory processes while STG showed dysregulation in 
immune effector processes. This supports evidence that early 
neuroinflammation, particularly microglial activation, accelerates 
neurodegeneration in vulnerable cortical areas (Frigerio et al., 
2019; Keren-Shaul et  al., 2017). Additionally, these shared 
molecular alterations suggest immune activation in AD is not 
isolated but part of a broader interconnected response across 
affected cortical regions.

In contrast, the TCX, a mid-affected region in AD, exhibited 
limited dysregulation, primarily marked by downregulation of 
glutamate decarboxylase activity, consistent with decreased GABA 
and glutamate levels in AD patients. However, the interpretability of 
the TCX signature’s influence on AD status is constrained by inflated 
ORs, SE, and CIs in the predictive model due to the small sample size 
(n = 23), resulting in perfect separation within subcategories such as 

APOE genotype — this limitation affects the model’s predictive 
accuracy. While LOOCV confirmed the model’s ability to predict AD, 
the lack of statistically significant variables necessitates cautious 
interpretation. Moreover, the perfect separation of AD status based on 
APOE genotype suggests that APOE alone may drive prediction in the 
TCX region. This also explains why the TCX signature was not 
validated in the independent dataset, as the limited availability of 
representative control and AD samples compromised model 
robustness and external predictive performance.

Nevertheless, as AD spreads to mid-to-late affected regions such 
as IFG and DLPFC, a shift in dysregulation was observed exhibiting 
less diversity in dysregulated processes compared to early-affected 
regions. This likely reflects the later impact of AD pathology on these 
regions capturing their involvement at an earlier stage of molecular 
disruption compared to PHG and STG. This was highlighted by the 
predominant downregulation of hormone-related processes in both 
regions which has been implicated in early AD-related dysfunction. 
This may suggest these pathways serve as an early vulnerability to 
AD pathology.

Interestingly, our analysis suggests that AD may affect the IFG 
differently in males compared to females. This was highlighted from 
our predictive model that revealed males were less likely to develop 
AD than females, indicating higher AD susceptibility in females, 
consistent with other studies (Zhu et al., 2021). This may be due to 
estrogen decline, which has been linked to an increased risk of AD by 

FIGURE 5

ClueGO functional enrichment analysis revealing dysregulated processes in mid-to-late affected regions (A) IFG and (B) DLPFC. Here, these regions 
show downregulation in hormonal-related signaling with limited diversity in dysregulated processes. For details on the network representation, node 
color-coding, and enrichment analysis, see Figure 4.
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disrupting hormone-related processes (Wang et  al., 2024). These 
findings suggest that hormonal differences between sexes could play 
a key role in IFG vulnerability to AD.

Meanwhile, genetic predisposition played a larger role in DLPFC 
and CER, where APOE genotype significantly influenced development 
of AD supporting previous studies (Klyubin et al., 2022). Specifically, 
APOE e3/e4 carriers showed a heightened risk of AD compared to e2/
e3, particularly in CER, where genetic influence appeared even more 
pronounced. This supports APOE e4 association with increased 
amyloid accumulation and neuroinflammatory responses in later-
affected cortical and cerebellar regions (Klyubin et al., 2022).

While these findings reinforce that as AD progresses, molecular 
dysregulation shifts from being primarily tissue-specific to 
increasingly shaped by genetic and systemic influences. Common 
mechanisms were found across brain regions with upregulation of 
ECM remodeling, specifically in collagen-containing ECM 
components and structural organization. This suggests widespread 
alterations in brain architecture, further supported by the upregulation 
of S100A4 across all regions in this study. This gene is a critical 
regulator of ECM turnover which modulates matrix degradation, 
remodeling, and cellular interactions, implicating it in pathological 
ECM remodeling (Gonzalez et al., 2020). This dysregulation likely 
leads to excessive collagen deposition, resulting in extracellular 
stiffening negatively impacting synaptic plasticity and compromising 
BBB integrity. Ultimately, dysregulation in these processes further 
exacerbate disease progression by impairing the clearance of Aβ and 
tau aggregates due to increased matrix rigidity. Alongside these 
structural changes, ANGPT2, a key regulator of blood vessel 
remodeling, was upregulated in all regions except the PHG (Van Hulle 
et al., 2024). Studies suggest ANGPT2 is linked to vascular dysfunction 
in AD, contributing to BBB breakdown, inflammation, and impaired 
blood flow. Its widespread increase may reflect ongoing vascular 
instability, further compounding ECM-related disruptions (Van Hulle 
et al., 2024).

In parallel with the observed vascular and structural alterations, a 
consistent downregulation of neuropeptide hormone activity and 
hormonal regulatory processes was evident across all regions except 
for the CER. Notably, the gene CRH (corticotropin-releasing 
hormone), a key regulator of the hypothalamic–pituitary–adrenal 
(HPA) axis, exhibited widespread downregulation across all regions 
except the CER (Sukhareva, 2021). Given the role of CRH in stress 
adaptation and neuronal resilience, its downregulation suggests a 
weakened ability to regulate neuroinflammatory responses, leaving 
neurons more vulnerable to degeneration. This aligns with findings 
that HPA axis dysfunction in AD disrupts stress-response 
mechanisms, leading to hypothalamic atrophy causing increased 
susceptibility of amyloid-β accumulation (Sukhareva, 2021).

Interestingly, while many brain regions exhibit hormonal 
dysregulation in AD, the CER appears resistant, maintaining structural 
and functional integrity despite widespread cortical pathology. This 
resilience may stem from its preserved hormonal regulation, as studies 
suggest stable endocrine signaling contributes to neuroprotection 
(Radaghdam et al., 2021). In contrast, the hypothalamus, a region 
responsible for regulating hormones, metabolism, and stress 
responses, is one of the earliest regions affected in AD, showing 
dysfunction before cognitive impairment. As a key modulator of CRH, 
its breakdown disrupts HPA axis regulation, exacerbating stress-
related neurodegeneration (Watermeyer et  al., 2021). This early 

hormonal imbalance may destabilize other brain regions, increasing 
their susceptibility to AD pathology, while the CER’s preserved 
hormonal landscape could underlie its resistance.

Finally, the identification of region-specific therapeutic targets 
through CMAP analysis highlights promising avenues for AD 
intervention. Notably, FGFR inhibitors like orantinib, linked to TCX, 
STG, IFG, and DLPFC, target FGF signaling to potentially restore ECM 
integrity and reduce inflammation, aligning with disruptions observed 
in these regions (Alam et al., 2022). Bromodomain inhibitors were also 
shared across multiple regions which is a modulator of transcriptional 
regulation and neuroimmune activity, offering potential to counteract 
widespread epigenetic and inflammatory dysfunction (Rosenthal et al., 
2024). While these drugs have been explored in other conditions, their 
potential in AD warrants further investigation, particularly considering 
their alignment with region-specific transcriptomic changes. Moreover, 
limited BBB permeability by these drugs remains a challenge, 
necessitating improved delivery strategies.

While this study provides key insights into region-specific 
molecular disruptions in AD, several limitations should 
be acknowledged. The use of PMB tissue primarily reflects late-
stage disease changes, potentially overlooking early molecular 
alterations that could be  better captured in longitudinal 
transcriptomic studies. Additionally, to ensure direct comparability 
across datasets, genes not shared across each study were excluded, 
which may have resulted in the omission of biologically significant 
signals. Another limitation was the signature generation and 
validation cohorts were constrained by publicly available gene 
expression and clinical data, and drug treatment information, 
limiting the ability to account for potential confounding factors 
such as comorbidities and drugs that may influence gene expression 
in PMB tissues. Variability in tissue collection and analysis across 
the three studies introduces methodological inconsistencies, 
impacting the precision of dysregulation quantification across 
regions. External validation of gene expression signatures was 
feasible only for the PHG and TCX due to the limited availability of 
matched PMB tissues from other regions, underscoring the need for 
larger, more diverse datasets to enhance robustness. Furthermore, 
CMAP-based drug predictions rely on transcriptional signatures 
rather than direct functional validation, necessitating further 
studies to confirm therapeutic relevance. Although our predictions 
offer promising therapeutic direction, their clinical applicability 
remains dependent on validation in early-stage or longitudinal 
cohorts to support utility in identifying at-risk individuals before 
clinical symptoms emerge. Despite these limitations, this study 
provides a strong foundation for understanding region-specific 
molecular alterations in AD and highlights potential therapeutic 
targets. Future studies leveraging PMB tissues from the same 
patients across multiple brain regions could offer a more 
comprehensive molecular landscape of AD pathogenesis.

Conclusion

This study identified predictive gene expression signatures that 
correlate with real-world AD pathology, providing reliable biomarkers 
that could complement current diagnostic approaches. Using these 
signatures, dysregulated processes shared across regions were 
highlighted as potential drivers for regional vulnerability revealing 
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potential therapeutic targets while quantifying regional impact of AD 
across brain regions. While our gene expression signatures were 
derived from PMB tissues, future studies should investigate whether 
these signatures—or functionally relevant subsets—can be detected in 
blood-derived RNA samples.
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