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Predictive gene expression
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University of California, Irvine, Irvine, CA, United States

Background: Alzheimer’'s Disease (AD) is a progressive neurodegenerative
disorder characterized by amyloid-beta (Ap) plaques and tau protein aggregates
in the brain. These pathological features manifest in specific regions, but
mechanisms rendering some areas more susceptible to early AD-related
changes remain poorly understood. To address this, we developed predictive
gene expression signatures to explore molecular mechanisms underlying
regional vulnerability to AD pathology.

Methods: Post-mortem brain tissues from participants of the Religious Orders
Study and Memory and Aging Project (ROSMAP), Mayo Clinic, and Mount Sinai
Brain Bank (MSBB) were used to derive gene expression signatures from six
brain regions affected at varying stages of AD progression. Differential gene
expression analysis identified genes with altered expression patterns which were
used to develop predictive gene signatures using Adaptive Signature Selection
and InteGratioN (ASSIGN) to predict pathway activity. Predictions of AD activity
were validated against known AD status across clinical markers of AD pathology,
including Ap plague deposition, tau aggregates, cognitive assessments, and
clinical diagnoses. Dysregulation of key biological pathways was then analyzed
using g: Profiler and ClueGO. Additionally, genetic and sociodemographic
factors impacting AD prediction were assessed, and potential drug repurposing
candidates identified using Connectivity Map (CMAP).

Results: Predictive gene expression signatures from six AD-affected brain
regions distinguished AD activity in control and AD post-mortem brain
tissue, corresponding to clinical markers of disease severity. The signatures
revealed common underlying mechanisms of regional vulnerability, including
upregulation of extracellular matrix (ECM)-related processes and downregulation
of hormonal signaling pathways. Notably, SI00A4 was consistently upregulated
across all regions, while CRH expression was downregulated except in the
cerebellum. Additionally, findings underscored the influence of APOE genotype
(e3/e4) and sex on disease progression. Drug repurposing analysis identified
FGFR inhibitors, specifically orantinib and bromodomain inhibitors, as promising
therapeutic candidates.

Conclusion: Molecular signatures underlying regional vulnerability to AD
provide a framework for understanding genetic and systemic factors in disease
progression. Findings highlight specific molecular pathways, including ECM-
related processes and hormonal regulation, as key drivers of susceptibility.
Finally, identified drug repurposing candidates present promising therapeutic
avenues for further investigation.
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Introduction

Alzheimer’s disease (AD) is a complex neurodegenerative disorder
that affects various brain regions at varying stages of progression
(Monteiro et al,, 2023). The hippocampus is among the earliest regions
impacted, while the frontal cortex is affected in later stages (Monteiro
et al., 2023). This regional variability is a hallmark of AD and
contributes to the heterogeneity in cognitive decline and clinical
outcomes. Investigating gene expression changes across brain regions
throughout disease progression can provide crucial insights into the
molecular mechanisms underlying AD.

To study these AD-related changes across brain regions, this study
aims to capture region-specific gene expression signatures from post-
mortem brain (PMB) tissue using differential gene expression (DGE)
analysis. Furthermore, the predictive ability of these signatures to
detect AD-related changes will be validated by comparing them with
established clinical markers of AD, such as cognitive assessments,
amyloid-beta (Ap) plaque deposition, and tau protein aggregates,
measured through the Consortium to Establish a Registry for
Alzheimer’s Disease (CERAD) scoring, Thal phases, Braak staging
systems, and clinical diagnoses. This combined approach enhances
our understanding of the molecular underpinnings of AD and could
provide more reliable biomarker for diagnosis.

Previous studies successfully identified gene expression signatures
related to inflammation, immune response, synaptic function, and
neural signaling (Kodam et al., 2023). However, the ability of these
signatures to predict AD status and progression across independent
datasets and validate those predictions with known AD markers
remains underexplored. This highlights a critical gap in our ability to
predict the extent of disease progression from gene expression data
and validate these predictions using known clinical and
pathological markers.

This study addresses this gap by developing region-specific gene
expression signatures that are not only predictive of AD but also
validated against established clinical markers, ensuring that the
predictions correspond to clinical AD diagnosis. Although the region-
specific signatures are developed using PMB tissue, our goal is to
capture the most severe gene expression changes which will allow us
to use the signature to predict less severe cases effectively.

Moreover, imaging and CSF analysis for Alzheimer’s diagnosis
such as PET scans and CSF tests remain expensive, invasive, and
inaccessible for many patients. Gene expression signatures from PMB
tissue could pave the way for developing more accessible biomarkers,
enabling earlier and potentially real-time AD predictions from blood
or other bodily fluids. Thus, by identifying molecular signatures that
mirror disease progression, we aim to create predictive tools that
complement current diagnostic approaches.

To perform this analysis, three distinct studies were utilized
including the Religious Orders Study and Memory and Aging Project
(ROSMAP), Mayo Clinic, and Mount Sinai Brain Bank (MSBB). These
studies provide comprehensive gene expression data from various
brain regions affected by AD allowing us to investigate how AD-related
changes in gene expression vary by region. This offers an opportunity
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to predict disease status based on these molecular signatures. By
comparing gene expression signatures between early-affected regions
(e.g., hippocampus), mid-affected regions (e.g., association cortices)
and later-affected regions (e.g., frontal lobe), we aim to capture the
progression of AD across the brain.

This approach will also quantify the magnitude of AD’s impact
across different brain regions. For example, it is hypothesized that
certain brain regions, like the hippocampus, will exhibit more
pronounced gene expression changes early in the disease, while others,
such as the frontal cortex, will show more significant changes in later
stages. These region-specific gene signatures could provide insights into
the differential vulnerability of brain areas to AD pathology. Although
the PMB tissue is not ideal in assessing real-time gene expression
changes, these available datasets can be used to identify the extent of
changes from terminal AD in each brain region. Furthermore, by
validating the predicted AD status with clinical markers, this study aims
to ensure that these gene expression signatures are not only reflective of
molecular changes but also predictive of clinical diagnosis.

Thus, this study seeks to develop predictive gene expression
signatures from PMB tissues that are region-specific and validated by
clinical markers of AD (Figure 1). Through comprehensive analysis of
multiple datasets, we aim to provide robust tools for predicting AD
status, quantifying the magnitude of disease impact across brain regions,
and ultimately improving early diagnosis and therapeutic intervention.

Materials and methods
Data and preprocessing

Bulk RNA-seq gene count data of PMB tissue samples were
collected from The RNAseq Harmonization study, aimed to uniformly
process gene expression data generated by the Accelerating Medicines
Partnership for Alzheimer’s Disease (AMP-AD) cohort studies
including ROSMAP (Bennett et al., 2018), MSBB (Wang et al., 2018),
and the Mayo Clinic RNA Sequencing Study (Allen et al., 2016).
ROSMAP provided 632 samples from the dorsolateral prefrontal
cortex (DLPFC), MSBB contributed 160 samples from the
parahippocampal gyrus (PHG, BM36), 187 from the inferior frontal
gyrus (IFG, BM44), and 191 from the superior temporal gyrus (STG,
BM22). Mayo supplied 262 samples from the temporal cortex (TCX)
and 261 from the cerebellum (CER). Additionally, bulk RNA-seq
FPKM expression data was obtained from the Aging, Dementia, and
Traumatic Brain Injury Study (Accession GSE104687) through Gene
Expression Omnibus (GEO). This included 98 TCX and 94
hippocampus samples, used for external validation of region-specific
signatures. Respective meta data was acquired for each dataset.

To ensure consistency across the ROSMAP, MSBB, Mayo, and
GSE104687 datasets for downstream analysis, CERAD scores (neuritic
plaque density) and Braak stages (neurofibrillary tangle severity) were
standardized (Mock et al., 2020; Supplementary Table 1). Datasets
were further refined by excluding genes not common across all
datasets or those with fewer than 10 counts per sample, across all
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variability in AD involvement. Created in BioRender (Duche, 2025).
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FIGURE 1

Study overview. (A) Healthy and AD PMB tissue samples collected from six regions sourced from three major studies. (B) Identification of significant
DEGs in each region comparing AD vs. control using clinical and pathological markers. (C) Development of predictive signatures from DEGs to
predict AD activity, validated against clinical and neuropathological AD status. (D) Regional profiling and pathway analysis to explore regional

samples. Next, samples were excluded based on RNA Integrity
Number (RIN) thresholds, missing metadata, or outlier identification
via Principal Component Analysis (PCA). Batch effects, such as
sequencing batches, were then corrected using sva package (version
3.50.0; Zhang et al., 2020; Supplementary Table 2). All analysis steps
were performed using R version 4.3.3 (Team, 2024).

Differential gene expression analysis

Control and AD training groups were determined for each region
using a combination of CERAD scores, Braak stages and study-
specific diagnostic criteria (Supplementary Table 3). Patient cohort
demographics were also assessed between control and AD groups to
evaluate potential confounding differences (Supplementary Table 4).
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Control and AD samples were compared to identify differentially
expressed genes (DEGs) using DESeq2 (version 1.42.1; Love et al.,
2014). Statistically significant DEGs were identified using the
Benjamini-Hochberg procedure to control for false positives, with a
p adjusted (p-adj) < 0.05, and region-specific log2 fold change (LFC)
thresholds to optimize the downstream predictive performance
(Supplementary Table 5).

Development of gene expression signature
predictions
Next, the DESeq2-normalized data was log2-transformed to

stabilize variance and improve interpretability. The Adaptive Signature
Selection and Integration (ASSIGN; version 1.38.0) toolkit was then
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used to develop predictive gene expression signatures for each region
using their DEGs (Shen et al., 2015). This required region-specific
control and AD training groups using stricter criteria than in DGE
analysis (Supplementary Table 6). These training sets were used to train
the ASSIGN model to improve prediction accuracy. Finally, the DEGs
from each region were used to estimate AD activity on a scale from 0
(no activity) to 1 (highest activity) on the remaining samples.

Validation of signature predictions across
neuropathological and clinical measures

To validate each signature’s ability to predict AD status, predicted
AD activity was compared to known AD status across meta categories
including Braak stages, AP plaque measures (e.g., CERAD scores, Thal
phases), and dataset-specific diagnoses (e.g., Cogdx, CDR, Diagnosis).
Additionally, for the DLPFC (ROSMAP), Mini-Mental State
Examination (MMSE) scores were used as an additional measure to
assess cognitive impairment on a scale of 0-30 (0-12: Severe; 13-19:
Moderate; 20-24: Mild; 25-30: Normal; Truong et al., 2024). For PHG,
IFG, and STG, plaque mean was applied as a continuous measure of
the average AP plaque density on a scale of 0-28 (higher scores
represent higher plaque burden). Independent Student’s t-tests were
used to determine significant differences in mean predicted AD activity
levels between control and most severe AD groups, across all meta
categories while Pearson’s correlation was applied for plaque mean with
significance determined using p < 0.05 for all validation.

Identifying key predictors of AD status
using generalized linear modeling

A binomial generalized linear model (GLM) was constructed for
each region using stats package (version 4.3.3; Team, 2024). This was
used to quantify the influence of tissue-specific effects and external
variables on predicting AD status. Models included region-specific
signature predictions along with known associated factors such as age
of death, sex, APOE genotype, and race (if available). Odds ratios
(ORs) were calculated to assess the strength and direction of each
predictor’s effect on AD status while the best-fit model was selected
based on the lowest Akaike Information Criterion (AIC) using the
stats package (version 4.3.3).

The goodness-of-fit of the predictive model was assessed using
McFadden pseudo-R? which represents the proportion of variability
explained by all factors. This was computed using the pscl package
(version 1.5.9) where pseudo-R* values between 0.2-0.4 were
moderate, 0.4-0.5 was strong, and > 0.5 was very strong model fit
(Zeileis et al., 2008). This analysis helped identify which brain regions
and clinical factors most effectively predict AD status.

To further evaluate the model’s predictive accuracy and reduce the
risk of overfitting, Leave-One-Out Cross-Validation (LOOCV) was
performed using the caret package (version 6.0.94; Kuhn, 2008).
LOOCYV was set up for binary classification (No AD or AD) with class
probabilities, and the area under the Receiver Operating Characteristic
(ROC) curve (AUC) was used as the primary performance metric.
Models with AUC > 0.7 were considered to have acceptable predictive
performance. This step ensured the reliability of the predictive
signatures and factors included in the best-fit models.
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External validation of signatures

TCX and hippocampus FPKM datasets from the Aging, Dementia,
and TBI study (GSE104687) was filtered to retain genes common
across all signature development datasets, excluding samples with
RIN < 5 or reported traumatic brain injury (TBI), and including only
those diagnosed with “Alzheimer’s Disease Type” or “No Dementia,”
followed by log2-normalization (Supplementary Table 2). Control and
AD training sets for each region were defined using CERAD scores,
Braak stages, and DSM-IV clinical diagnosis (Supplementary Table 5).
Signature performance in predicting AD status from ASSIGN was
validated using independent Student’s t-tests to compare control and
severe AD groups.

Gene and connectivity analysis

Genes included in the region-specific signatures were compared
across regions to identify overlapping genes revealing common
molecular patterns and region-specific differences.

Next, gene co-expression networks were generated for each brain
region using GeneMANIA (Montojo et al, 2010) in Cytoscape
(Shannon et al., 2003). Genes were ranked by degree, betweenness,
and closeness centrality via CytoHubba (Chin et al., 2014). The top 10
genes for each measure were identified, and those overlapping across
all three were classified as hub genes, representing key coordinators of
molecular interactions.

Connectivity Map (CMAP) was then used to compare region-
specific signature genes with expression profiles from various
perturbations, including drugs, gene overexpression, knockdowns,
and CMAP classes (Subramanian et al., 2017). Upregulated and
downregulated gene lists from each region were queried to compute
connectivity scores (CS; —100 to 100), with values above 90 indicating
similarity and below —90 indicating dissimilarity. This allowed the
identification of potential drug repurposing candidates.

Pathway and network analysis

Gene Set Enrichment Analysis (GSEA) was conducted separately
for each region using the full signature gene list, with analyses
performed independently on upregulated and downregulated genes
to identify enriched functional annotations and pathways. Analysis
was performed using g: Profiler, which integrates data from Gene
Ontology (GO), KEGG, Reactome, WikiPathways, CORUM, and
Human Phenotype Ontology (Raudvere et al., 2019). Statistically
significant pathways (p < 0.05) were identified and compared to
determine shared and unique molecular mechanisms upregulated or
downregulated across regions.

Next, using the gene co-expression networks in Cytoscape, MCODE
(version 2.0.3) was used to identify tightly interconnected groups of genes,
referred to as functional modules, using default parameters (Bader and
Hogue, 2003). Functional modules identified with higher MCODE scores
indicate more densely clustered and interconnected genes that may
participate in critical biological processes or functions. A higher number
of functional clusters indicates greater dysregulation in a region, providing
a quantitative measure of the extent and coordination of changes
occurring across regions.
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ClueGO (version 2.5.10) in Cytoscape was then used for
functional enrichment analysis of genes from functional module
clusters from each region. ClueGO also integrates GO, KEGG,
Reactome, WikiPathways, and CORUM data sources (Bindea et al.,
2009). Results were then visualized as networks with nodes
representing enriched annotations, and processes connected by edges
and grouped by color based on gene overlap revealing functionally
related processes. A p < 0.05 was used for all regions, except PHG,
which used p <0.01 to improve interpretability of dysregulated
processes. A two-sided hypergeometric test with Bonferroni step-
down correction was applied.

Results

Differential gene expression across
AD-affected brain regions

To better understand the mechanisms driving AD pathology, this
analysis captured gene expression changes across brain regions

10.3389/fnagi.2025.1591946

affected at different stages of the disease using PMB tissue
(Supplementary Tables 7A-F). This revealed the highest dysregulation
occurring in early-affected regions such as the PHG which
we identified 176 DEGs (154 upregulated and 22 downregulated). This
was followed by mid-affected regions including STG with 127 DEGs
(119 upregulated, 8 downregulated), and TCX with 53 DEGs (39
upregulated, 14 downregulated). While mid-to-late affected regions
showed less dysregulation, including the IFG with 44 DEGs (29
upregulated, 15 downregulated), DLPFC with 53 DEGs (40
upregulated, 13 downregulated), and CER with 55 DEGS (42
upregulated, 13 downregulated). Using these DEGs, predictive gene
expression signatures were developed for each region representative
of AD activity (Figure 2).

Development of gene expression
signatures predictive of AD status

These region-specific gene expression signatures were then used
to predict the extent of AD, i.e., AD activity, in their respective PMB

[
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FIGURE 2
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Predictive gene expression signatures developed from region-specific DEGs. (A) PHG 176 gene signature (B) TCX 53 gene signature (C) STG 127 gene
signature (D) IFG 44 gene signature (E) DLPFC 53 gene signature (F) CER 55 gene signature. The horizontal red bar represents AD samples, while the
horizontal black bar represents control samples for each region. Genes are rows with upregulated expression shown in red, and downregulated
expression in blue, with deeper colors indicating greater levels of upregulation or downregulation, respectively.
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tissue. Predictions of AD were validated against the known AD
status of established neuropathological, clinical, and cognitive
assessments (Table 1; Supplementary Figure 1). Specifically,
we assessed the biological relevance of our gene expression
signatures with postmortem neuropathological measures, including
Braak staging—which captures the distribution and severity of
neurofibrillary tangles composed of hyperphosphorylated tau—and
CERAD scores, which quantify the density of neuritic amyloid
plaques. Both are widely recognized as robust markers of AD
pathology. The observed alignment between our predictive
signatures and these independent, pathology-based indicators
underscores the disease relevance of the captured transcriptional
changes. Notably, mean predicted AD activity levels in control
groups were significantly different than in severe AD groups
(Table 1). Additionally, a significant positive association was
observed between predicted AD activity and plaque burden in PHG
(Pearson r = 0.560, p-adj < 0.005, 95% CI [0.322, 0.731]), IFG
(Pearson r = 0.566, p-adj < 0.005, 95% CI [0.366, 0.715]), and STG
(Pearson r = 0.387, p-adj < 0.005, 95% CI [0.0495, 0.644]). These
measures reflect the expected AP and tau burden at different stages
of the disease, along with cognitive scores and clinical diagnoses,
offering a comprehensive view of how the predicted AD activity
aligns with the expected progression of real-world AD.

External validation of our gene expression signatures was
performed using an independent dataset from the Aging, Dementia,
and TBI study (GSE104687). The PHG signature successfully
distinguished AD activity levels between control and severe AD
groups in hippocampal PMB tissue across neuropathological and
clinical measures (Table 2). However, external validation was restricted
to these two regions due to unavailability of match PMB tissue to
other regions. Although the TCX signature detected higher AD
activity in the AD samples compared to control samples, the difference
was not statistically significant.

Influence of sociodemographic factors on
disease progression

Signature predictions, along with genetic and sociodemographic

factors, were evaluated for their influence on AD status
(Supplementary Table 8). Signature predictions were the strongest AD
predictors across all regions, except TCX where significance was
limited by a small sample size (n = 23) after filtering for required
meta-criteria.

In PHG, CER, and IFG, male sex was associated with a lower
likelihood of AD compared to females, reaching significance in IFG
(OR = 0.092, 95% CI [15.9, 1.49 x 10%], p < 0.001) but not in PHG
or CER. In later-affected regions, APOE e3/e4 significantly
increased AD likelihood compared to e2/e3 in DLPFC (OR = 9.58,
95% CI [1.89, 56.5], p < 0.01) and CER (OR = 27.9, 95% CI [14.4,
1.30 x 10%], p < 0.05). However, APOE genotype in TCX and age of
death in DLPFC were not a statistically significant predictor of
AD status.

Next, McFadden's pseudo-R? was calculated to assess model fit for
predicting AD status (Supplementary Table 8). PHG showed the best
model fit among significant predictors (very strong fit). TCX had the
highest pseudo-R?* but should be interpreted with caution, as its

predictors were not statistically significant in the GLM analysis. CER
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and IFG demonstrated strong fit, while STG and DLPFC had a
moderate fit, suggesting external influences may still be contributing
that is not explained by variables in the model. Despite this variation,
all models demonstrated at least moderate fit, with LOOCV-
confirmed AUCs ranging from 0.729 to 0.995 confirming their
accuracy in predicting AD status.

Unraveling shared gene networks and
potential therapeutics

To further understand molecular changes underlying
dysregulation across regions, this analysis examined overlapping
signature genes revealing notable commonalities, as shown in
Figure 3A (Supplementary Figure 2; Supplementary Table 9).
Specifically, the S100A4 gene was consistently overexpressed in all
six evaluated regions, indicating its potential universal role in the
pathogenesis of AD. Additionally, five genes were found across
five of the six regions including upregulation of ANGPT2,
LINC03082, and downregulation of CRH, LINC01007, and PPEF]I,
suggesting their significant but less ubiquitous involvement. Next,
fourteen other genes were found across four of the six brain
regions with upregulation of KCNE4, GEM, HSPAIA, SPN,
LINC01736, CD44 and downregulation of FRMPD2B and
NEURODG6 (Figure 3; Supplementary Table 10). Notably, CRH,
ANGPT2, S100A4, and PPEFI showed overlap with hub genes
identified across regions further supporting their importance in
dysregulation (Supplementary Table 10).

CMAP analysis was then conducted to identify potential drug
repurposing candidates (Figures 3B,C). The results revealed the class
of FGFR inhibitors shared across all regions except PHG and CER with
orantinib emerging as a notable compound shared amongst these
regions. As shown in Figure 3B, 17 compounds were found in common
across TCX, STG, IFG, and DLPFC. Bromodomain inhibitors were
another common class shared across TCX, STG, and DLPFC. While
no specific bromodomain inhibitor was identified, knockdown of
bromodomain targets like BRD2 and BRD4 reversed the AD expression
captured in our signatures, suggesting their potential to reverse
AD-specific effects in the TCX, STG and DLPFC. Lastly, the PHG
returned only two compounds, while the CER yielded six, though
neither region returned associated CMAP classes highlighting
potentially tailored treatment approaches for PHG and CER.

Comprehensive characterization of
network dysregulation across brain regions

Pathway enrichment analysis also identified significant variability
across regions (Supplementary Tables 11A-F). The STG had 663
enriched pathways, while the DLPFC had only 22. This stark contrast
suggests possible differences in underlying biological or pathological
mechanisms influencing AD progression and regional susceptibility.
Despite this, extracellular matrix (ECM)-related processes were
consistently upregulated across all regions, particularly in the
extracellular matrix, external encapsulating structure, and collagen-
containing ECM.

Similarly, network analysis identified functional modules
revealing early-to-mid affected regions (PHG, TCX, STG)
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TABLE 1 Validation of region-specific signatures by comparing predicted AD activity with known AD status using neuropathological, cognitive, and
clinical data.

Study Region Criteria Comparison Sample Mean Standard = Adjusted 95%
groups (controlvs.  size (N) deviation = p-value @ Confidence
AD) (SD) (p-adj) interval (Cl)
ROSMAP DLPFC Braak 0 5 0.0223 0.050
<0.005 [-1.03, -0.389]
VI 5 0.733 0.261
CERAD No AD 47 0.203 0.271
<0.005 [~0.478, -0.236]
Definite AD 58 0.560 0.354
Cogdx NCI (1) 64 0.204 0.259
<0.005 [~0.422, —0.235]
AD (NINCDSADRDA) (4) 95 0.532 0.338
MMSE Normal (25-30) 65 0.197 0.259
<0.005 [-0.520, -0.267]
Severe CI (0-12) 44 0.590 0.362
MSBB PHG Braak <I 8 0.0632 0.131
<0.005 [-0.842, —0.488]
VI 13 0.728 0.255
CERAD No AD 22 0.161 0.219
<0.005 [-0.708, —0.364]
Definite AD 16 0.697 0.279
CDR NCD/Questionable (<0.5) 27 0.164 0.219
<0.005 [~0.799, -0.363]
Severe to terminal (>3) 10 0.744 0.290
IFG Braak <I 12 0.0994 0.233
<0.005 [~0.601, -0.250]
>V 36 0.525 0.313
CERAD No AD 29 0.0752 0.186
<0.005 [-0.626, —0.360]
Definite AD 7 0.568 0.335
CDR NCD/Questionable (<0.5) 36 0.0753 0.185
<0.005 [-0.857, -0.372]
Severe to terminal (5) 8 0.690 0.287
STG Braak <I 12 0.107 0.178
<0.005 [~0.797, 0.433]
VI 23 0.727 0.337
CERAD No AD 17 0.141 0.202
<0.005 [~0.748, —0.409]
Definite AD 27 0.720 0.355
CDR NCD (0) 10 0.246 0.274
<0.005 [~0.826, 0.325]
Severe to terminal (>4) 8 0.821 0.227
Mayo TCX Braak 1 9 1.13x10°° 2.18x10~°
<0.005 [~0.881, 0.705]
VI 20 0.793 0.189
Diagnosis "Control" 34 0.0559 0.156
<0.005 [~0.814, -0.617]
"Alzheimer’s Disease" 34 0.771 0.240
Thal No A plaques (0) 21 0.0526 0.164
<0.005 [~0.836, -0.618]
Pons and cerebellum (5) 32 0.779 0.231
CER Braak <I 12 1.15x10™* 2.79x107*
<0.005 [-0.782, —0.490]
VI 22 0.636 0.329
Diagnosis "Control" 37 0.0844 0.197
<0.005 [-0.621, -0.352]
"Alzheimer’s Disease" 38 0.571 0.362
Thal No Ap plaques (0) 24 0.112 0.228
<0.005 [-0.608, —0.299]
Pons and cerebellum (5) 36 0.565 0.370

Independent Student’s ¢-tests showed significant differences in mean predicted AD activity between control and severe AD groups, confirming their ability to distinguish AD in PMB brain
tissue. AD, Alzheimer’s Disease; ROSMAP, The Religious Orders Study and Memory and Aging Project; DLPFC, Dorsolateral prefrontal cortex; CERAD, Consortium to Establish a Registry
for Alzheimer’s Disease; Cogdx, Final consensus cognitive diagnosis; NCI, No cognitive impairment; MSBB, Mount Sinai Brain Bank; PHG, parahippocampal gyrus; IFG, Inferior frontal
gyrus; STG, Superior temporal gyrus; CDR, Clinical Dementia Rating; NCD, No cognitive Deficits; TCX, Temporal cortex; AP, Amyloid-beta; CER, Cerebellum.
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TABLE 2 External validation of PHG and TCX signatures for predicting AD activity in matched PMB tissue from an independent cohort of aging,
dementia and traumatic brain injury patients (GSE104687).

Region Criteria Comparison groups = Sample size Mean Standard p-value 95%
(control vs. AD) ()] deviation (SD) Confidence
interval (Cl)
<1 6 0.0252 0.0538
Braak <0.05 [—0.900, —0.386]
>V 8 0.668 0.306
No AD/Possible AD 23 0.193 0.327
PHG CERAD <0.05 [-0.711, —0.279]
Definite AD 8 0.688 0.219
“No Dementia” 28 0.216 0.336
DSM-IV <0.05 [—0.836, —0.618]
“Alzheimer Disease Type” 11 0.551 0.348
<I 6 0.134 0.302
Braak 0.301 [—0.614, 0.208]
>V 7 0.337 0.372
No AD/Possible AD 23 0.247 0.320
TCX CERAD 0.609 [-0.162, 0.272]
Probable AD/Definite AD 16 0.192 0.333
“No Dementia” 23 0.184 0.313
DSM-IV 0.268 [~0.369, 0.108]
“Alzheimer Disease Type” 16 0.315 0.337

Mean predicted activity was compared between control and severe AD groups using Student’s t-tests. The PHG signature was validated across all measures, while TCX showed no significant
differences. AD, Alzheimer’s Disease; CERAD, Consortium to Establish a Registry for Alzheimer’s Disease; PHG, parahippocampal gyrus; TCX, Temporal cortex; DSM-IV, Diagnostic and

Statistical Manual of Mental Disorders-Fourth Edition.

showing greater network dysregulation than mid-to-late affected
regions (IFG, DLPFC, CER; Supplementary Table 12). For
example, PHG had six functional clusters (MCODE score = 7.8),
while DLPFC had two (MCODE score = 4.2), quantifying reduced
dysregulation in later-affected regions. ClueGO functional
enrichment further confirmed ECM upregulation across all
regions and revealed downregulation of neuropeptide hormone
activity and hormonal-related signaling in all regions except the
CER. This may suggest a possible protective mechanism
(Supplementary Tables 13A-F).

Notably, the PHG and STG exhibited overlapping cytokine and
immune defense responses, but PHG showed predominant
neuroinflammatory upregulation, aligning with early AD pathology
(Figure 4; Supplementary Tables 13A,B). In contrast, STG was
upregulated for mainly immune effector activity, indicative of a later-
stage neurodegenerative response. This may also be related to the
upregulation of CD44 gene expressed on immune cells observed
across all regions except the DLPFC and CER (Wang et al., 2022).
Next, in the TCX, downregulation of glutamate decarboxylase and
upregulation of collagen fibril organization was revealed which could
impair inhibitory neurotransmission, contributing to excitotoxicity,
while altering the ECM structure may increase regional vulnerability
(Supplementary Figure 3; Supplementary Table 13C; Ali et al., 2023).

As shown in Figure 5, the IFG and DLPFC were predominately
enriched for hormonal-related activity (Supplementary Tables 13D,E).
This captured dysregulation from PMB tissue in mid-to-late affected
regions may have highlighted downregulation of hormonal-related
processes as a source of susceptibility for regions to AD pathology. This
is supported by the consistent downregulation of hormonal signaling
observed across all brain regions studied, except for the CER
(Supplementary Table 13F). Finally, the CER showed heightened
immune and inflammatory responses, including Toll-like receptor 4
upregulation, potentially driving increased chemotaxis and angiogenesis
regulation (Supplementary Figure 4; Supplementary Table 13F).
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Discussion

Predictive gene expression signatures representative of AD for
early-to-late affected regions were developed using PMB tissues. These
signatures not only distinguished AD pathology from healthy controls
but also correlated with key disease markers, including Ap and tau
burden, cognitive impairment (MMSE scores), and clinical diagnoses.
Notably, our gene expression signatures were validated against Braak
staging and CERAD scores. These metrics are widely used to quantify
tau and amyloid pathology, respectively, and their alignment with our
signatures reinforces the biological validity of the transcriptional
patterns we identified as reflective of AD processes.

In addition to these findings, earlier affected regions, PHG and
STG, exhibited the greatest dysregulation, reflected by the highest
number of DEGs and functional clusters. From functional enrichment
of these clusters, it was revealed that the PHG was dominated by
neuroinflammatory processes while STG was enriched for immune
responses, with both regions exhibiting overlapping processes. TCX
followed with more limited dysregulation, primarily in ECM-related
processes, which were upregulated across all regions, supported by the
consistent upregulation of SI00A4. IFG and DLPFC displayed even
fewer molecular alterations, primarily affecting hormonal processes,
a pattern observed across all regions except CER, where CRH
downregulation was absent.

These findings align with the current understanding of the pattern
of progression associated with AD pathology characterized by the
accumulation of AP and tau phosphorylation first impacting regions
such as the PHG followed by TCX and STG in temporal regions
(Oostveen et al,, 2021). As the disease progresses, pathology extends
to mid-to-late affected regions, including IFG, eventually impacting
DLPFC and CER in late stages (Oostveen et al., 2021). While this
pattern of progression is well-characterized in AD, the molecular
mechanisms underlying the differential susceptibility of specific
regions remain elusive.
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these molecular mechanisms, recent

transcriptomic and single-cell studies have identified gene regulators

To characterize

consistent with our findings. One of the most interesting overlaps is
CRH, which we found consistently downregulated in five of six
regions, which was also shown to have reduced expression across
multiple neuronal populations (Li and Larsen, 2023). This aligns with
CRH’s role as a stress-related neuropeptide in early-affected regions
like the entorhinal cortex (Li and Larsen, 2023). Additional work has
also reported widespread CRH loss alongside glial overactivation and
depletion  of the

immune-regulatory  neuropeptides in
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parahippocampal and temporal cortices, mirroring the inflammatory
profiles we observed in these same regions (Li et al., 2024). Beyond
individual genes, our pathway enrichment results align with prior
reviews identifying ECM remodeling as a driver of neuroinflammation
and impaired AP clearance (Sun et al, 2021). Likewise, regional
analyses of MSBB data support our findings by identifying the PHG
as a hotspot of immune dysregulation and transcriptional activity
during early AD progression (Neff et al., 2021). However, while these
studies provide insights into AD’s molecular underpinnings, many fail
to translate findings to clinical utility and are often limited to single
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ClueGO functional enrichment analysis of dysregulated processes in earlier affected regions: (A) PHG and (B) STG. Both show overlap in stress and
immune responses, but PHG is enriched for neuroinflammatory processes, while STG is enriched for immune effector processes. Nodes, color-coded
by functional similarity, represent enriched pathways, with edges indicating gene-based functional relationships. The most significant terms are
highlighted based on gene involvement, and the bar chart shows the proportion of each dysregulated term within the network.

regions or lacking correlation with disease severity or
progression markers.

To address this gap, this study validated the predictive gene
expression signatures from each region against established measures
of AD pathology, as previously mentioned. The ability of these
signatures to correlate with real-world measures of AD and distinguish
AD activity in PMB tissue, highlights their potential clinical utility as
diagnostic and prognostic tools, complementing current clinical
assessments and improving our understanding of AD pathology.

Additionally, a hallmark of AD pathology is the persistent
influence of AP and tau aggregates on affected brain regions
throughout disease progression, driving the accumulation of
molecular changes in these areas (Cai et al., 2023). This persistent
dysregulation reinforces a cycle of neurodegeneration, with different
brain regions undergoing various stages of disruption based on their
involvement in AD progression. Our analysis captured this evolving

molecular landscape, showing earlier affected regions such as the PHG
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and STG, showing extensive dysregulation exhibited by their number
of DEGs and functional clusters, reflecting a greater extent of
molecular changes. This aligns with their role as some of the first sites
of A and tau accumulation along with neurodegeneration (Aksman
etal., 2023).

The predictive strength of our gene expression signatures in these
regions further highlights their role as key markers of AD pathology,
suggesting that the molecular changes are primarily driven by AD
pathology. However, in the STG, some variability was captured in our
gene expression but was not accounted for sociodemographic or
genetic factors included in our predictive model. This may indicate
that the variability captured in our signature reflects STG’s response
to AD pathology in neighboring regions rather than intrinsic
dysregulation alone. Supporting this, Mitra et al., (2024) found that
STG gene expression patterns closely align with those of adjacent areas
like the PHG and entorhinal cortex, suggesting that molecular changes
in the STG are influenced by disease progression in these
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ClueGO functional enrichment analysis revealing dysregulated processes in mid-to-late affected regions (A) IFG and (B) DLPFC. Here, these regions
show downregulation in hormonal-related signaling with limited diversity in dysregulated processes. For details on the network representation, node

interconnected regions. Similarly, Wang et al., (2016) demonstrated
that STG alterations align with broader pathological interactions in
the brain, reinforcing the idea that its molecular variability reflects the
regional spread of AD pathology. These findings suggest that while
PHG and STG exhibit early molecular disruption, the STG’s gene
expression changes may be shaped by its proximity to other
affected regions.

Notably, these region-specific signatures exhibited similar
dysregulation reflected by their overlap in affected processes.
the PHG was enriched for
neuroinflammatory processes while STG showed dysregulation in

However, predominantly
immune effector processes. This supports evidence that early
neuroinflammation, particularly microglial activation, accelerates
neurodegeneration in vulnerable cortical areas (Frigerio et al.,
2019; Keren-Shaul et al., 2017). Additionally, these shared
molecular alterations suggest immune activation in AD is not
isolated but part of a broader interconnected response across
affected cortical regions.

In contrast, the TCX, a mid-affected region in AD, exhibited
limited dysregulation, primarily marked by downregulation of
glutamate decarboxylase activity, consistent with decreased GABA
and glutamate levels in AD patients. However, the interpretability of
the TCX signature’s influence on AD status is constrained by inflated
ORs, SE, and Cls in the predictive model due to the small sample size
(n = 23), resulting in perfect separation within subcategories such as
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APOE genotype — this limitation affects the model’s predictive
accuracy. While LOOCV confirmed the model’s ability to predict AD,
the lack of statistically significant variables necessitates cautious
interpretation. Moreover, the perfect separation of AD status based on
APOE genotype suggests that APOE alone may drive prediction in the
TCX region. This also explains why the TCX signature was not
validated in the independent dataset, as the limited availability of
representative control and AD samples compromised model
robustness and external predictive performance.

Nevertheless, as AD spreads to mid-to-late affected regions such
as IFG and DLPFC, a shift in dysregulation was observed exhibiting
less diversity in dysregulated processes compared to early-affected
regions. This likely reflects the later impact of AD pathology on these
regions capturing their involvement at an earlier stage of molecular
disruption compared to PHG and STG. This was highlighted by the
predominant downregulation of hormone-related processes in both
regions which has been implicated in early AD-related dysfunction.
This may suggest these pathways serve as an early vulnerability to
AD pathology.

Interestingly, our analysis suggests that AD may affect the IFG
differently in males compared to females. This was highlighted from
our predictive model that revealed males were less likely to develop
AD than females, indicating higher AD susceptibility in females,
consistent with other studies (Zhu et al., 2021). This may be due to
estrogen decline, which has been linked to an increased risk of AD by
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disrupting hormone-related processes (Wang et al., 2024). These
findings suggest that hormonal differences between sexes could play
a key role in IFG vulnerability to AD.

Meanwhile, genetic predisposition played a larger role in DLPFC
and CER, where APOE genotype significantly influenced development
of AD supporting previous studies (Klyubin et al., 2022). Specifically,
APOE e3/e4 carriers showed a heightened risk of AD compared to €2/
e3, particularly in CER, where genetic influence appeared even more
pronounced. This supports APOE e4 association with increased
amyloid accumulation and neuroinflammatory responses in later-
affected cortical and cerebellar regions (Klyubin et al., 2022).

While these findings reinforce that as AD progresses, molecular
dysregulation shifts from being primarily tissue-specific to
increasingly shaped by genetic and systemic influences. Common
mechanisms were found across brain regions with upregulation of
ECM remodeling,
components and structural organization. This suggests widespread

specifically in collagen-containing ECM

alterations in brain architecture, further supported by the upregulation
of S100A4 across all regions in this study. This gene is a critical
regulator of ECM turnover which modulates matrix degradation,
remodeling, and cellular interactions, implicating it in pathological
ECM remodeling (Gonzalez et al., 2020). This dysregulation likely
leads to excessive collagen deposition, resulting in extracellular
stiffening negatively impacting synaptic plasticity and compromising
BBB integrity. Ultimately, dysregulation in these processes further
exacerbate disease progression by impairing the clearance of Ap and
tau aggregates due to increased matrix rigidity. Alongside these
structural changes, ANGPT2, a key regulator of blood vessel
remodeling, was upregulated in all regions except the PHG (Van Hulle
etal., 2024). Studies suggest ANGPT2 is linked to vascular dysfunction
in AD, contributing to BBB breakdown, inflammation, and impaired
blood flow. Its widespread increase may reflect ongoing vascular
instability, further compounding ECM-related disruptions (Van Hulle
etal., 2024).

In parallel with the observed vascular and structural alterations, a
consistent downregulation of neuropeptide hormone activity and
hormonal regulatory processes was evident across all regions except
for the CER. Notably, the gene CRH (corticotropin-releasing
hormone), a key regulator of the hypothalamic-pituitary-adrenal
(HPA) axis, exhibited widespread downregulation across all regions
except the CER (Sukhareva, 2021). Given the role of CRH in stress
adaptation and neuronal resilience, its downregulation suggests a
weakened ability to regulate neuroinflammatory responses, leaving
neurons more vulnerable to degeneration. This aligns with findings
that HPA axis dysfunction in AD disrupts stress-response
mechanisms, leading to hypothalamic atrophy causing increased
susceptibility of amyloid-f accumulation (Sukhareva, 2021).

Interestingly, while many brain regions exhibit hormonal
dysregulation in AD, the CER appears resistant, maintaining structural
and functional integrity despite widespread cortical pathology. This
resilience may stem from its preserved hormonal regulation, as studies
suggest stable endocrine signaling contributes to neuroprotection
(Radaghdam et al., 2021). In contrast, the hypothalamus, a region
responsible for regulating hormones, metabolism, and stress
responses, is one of the earliest regions affected in AD, showing
dysfunction before cognitive impairment. As a key modulator of CRH,
its breakdown disrupts HPA axis regulation, exacerbating stress-
related neurodegeneration (Watermeyer et al., 2021). This early
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hormonal imbalance may destabilize other brain regions, increasing
their susceptibility to AD pathology, while the CER’s preserved
hormonal landscape could underlie its resistance.

Finally, the identification of region-specific therapeutic targets
through CMAP analysis highlights promising avenues for AD
intervention. Notably, FGFR inhibitors like orantinib, linked to TCX,
STG, IFG, and DLPFC, target FGF signaling to potentially restore ECM
integrity and reduce inflammation, aligning with disruptions observed
in these regions (Alam et al., 2022). Bromodomain inhibitors were also
shared across multiple regions which is a modulator of transcriptional
regulation and neuroimmune activity, offering potential to counteract
widespread epigenetic and inflammatory dysfunction (Rosenthal et al.,
2024). While these drugs have been explored in other conditions, their
potential in AD warrants further investigation, particularly considering
their alignment with region-specific transcriptomic changes. Moreover,
limited BBB permeability by these drugs remains a challenge,
necessitating improved delivery strategies.

While this study provides key insights into region-specific
should
be acknowledged. The use of PMB tissue primarily reflects late-

molecular disruptions in AD, several limitations
stage disease changes, potentially overlooking early molecular
alterations that could be better captured in longitudinal
transcriptomic studies. Additionally, to ensure direct comparability
across datasets, genes not shared across each study were excluded,
which may have resulted in the omission of biologically significant
signals. Another limitation was the signature generation and
validation cohorts were constrained by publicly available gene
expression and clinical data, and drug treatment information,
limiting the ability to account for potential confounding factors
such as comorbidities and drugs that may influence gene expression
in PMB tissues. Variability in tissue collection and analysis across
the three studies introduces methodological inconsistencies,
impacting the precision of dysregulation quantification across
regions. External validation of gene expression signatures was
feasible only for the PHG and TCX due to the limited availability of
matched PMB tissues from other regions, underscoring the need for
larger, more diverse datasets to enhance robustness. Furthermore,
CMAP-based drug predictions rely on transcriptional signatures
rather than direct functional validation, necessitating further
studies to confirm therapeutic relevance. Although our predictions
offer promising therapeutic direction, their clinical applicability
remains dependent on validation in early-stage or longitudinal
cohorts to support utility in identifying at-risk individuals before
clinical symptoms emerge. Despite these limitations, this study
provides a strong foundation for understanding region-specific
molecular alterations in AD and highlights potential therapeutic
targets. Future studies leveraging PMB tissues from the same
patients across multiple brain regions could offer a more
comprehensive molecular landscape of AD pathogenesis.

Conclusion

This study identified predictive gene expression signatures that
correlate with real-world AD pathology, providing reliable biomarkers
that could complement current diagnostic approaches. Using these
signatures, dysregulated processes shared across regions were
highlighted as potential drivers for regional vulnerability revealing
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potential therapeutic targets while quantifying regional impact of AD
across brain regions. While our gene expression signatures were
derived from PMB tissues, future studies should investigate whether
these signatures—or functionally relevant subsets—can be detected in
blood-derived RNA samples.
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