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This study explores the use of formal verification techniques to evaluate the
efficacy of suggestions made by the Runway Configuration Assistance (RCA) tool,
a machine learning-based decision support system that our group developed
independently. By using model-checking approaches, in particular Computation
Tree Logic (CTL), this study verifies the compliance of the RCA tool with
predefined safety regulations under different conditions of surface winds. By
simulating a range of scenarios at three major US airports, Charlotte Douglas
International Airport (CLT), Denver International Airport (DEN), and Dallas-Fort
Worth International Airport (DFW), we thoroughly test the predictions of the tool
to ensure that they meet strict safety margins with respect to crosswind and
tailwind. The application of formal verification methods provides a strict analysis
of the RCA tool, enhancing its validity and utility for possible implementation in an
operational environment. Initially, a Monte Carlo simulation is carried out to
analyze all possible wind conditions both velocity-wise and direction-wise. This
part is intended to rigorously test the model against extreme, worst-case
conditions to evaluate its performance. Second, we improve our methodology
by performing simulations driven by realistic scenarios informed by actual
historical data. This approach allows for a more accurate reflection of typical
wind conditions (seen in the test airport) and provides a robust assessment of the
model’s effectiveness in maintaining safety standards under realistic
environmental conditions. The model-checking reveals that overall 70% and
94% of the predictions satisfy the safety criteria in worst-case and realistic wind
scenarios, respectively.
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1 Introduction

Runway Configuration Management (RCM) is the task of selecting appropriate
runways for arriving and departing aircraft at an airport. It is a complex task that
involves multiple stakeholders and must take into consideration air traffic services
(ATS), weather, and other contributing factors at an airport. Typically, it involves either
switching the runway direction for takeoff and landing or switching between different
(combinations of) runways available on the airport surface. Most airports, depending on the
surface geometry, capacity, and local weather patterns, have multiple configurations that
can be used. Many factors, including incoming/outgoing traffic load, wind direction and
speed, convective weather, cloud ceiling, and other environmental or noise-related factors,
can affect the choice of runway configuration. In current practice, air traffic controllers
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(ATC) select the runway configuration based on information
(weather, traffic, and other forecast) available to them at the time
of decision making. As a general rule, it is preferred that the aircraft
take off and land into the wind (for maximal lift and braking,
respectively). So, the surface wind (speed and direction) is the
dominant feature that determines the runway configuration.
However, the human decision making process is subjective based
on training and expertise, which can be impacted by bias and can
sometimes lead to poor outcomes. In particular, for airports with
multiple available configurations, dynamic traffic and weather
patterns can make it difficult for humans to compute optimal
solutions in near real time (Memarzadeh et al., 2023).

In recent years, automated approaches based on Artificial
Intelligence (AI) and Machine Learning (ML) have been
proposed to solve the RCM problem (Razzaghi et al., 2024). A
popular approach used in this context is online Reinforcement
Learning (RL) and variants such as discrete choice modeling
(Avery and Balakrishnan, 2016), dynamic programming (Li et al.,
2009), and queueing theory (Jacquillat et al., 2017; Badrinath et al.,
2019) have been proposed. The goal is to model the dynamics of
surface operations at an airport and use a simulator to learn a near-
optimal policy for the runway configuration selection problem.
However, building an accurate simulator (and/or learning
accurate models for the surface dynamics) is hard. On the other
hand, model-free RL approaches such as Monte Carlo Tree Search
(MCTS) (Browne et al., 2012) can be used to learn a near-optimal
policy by interacting directly in the operational environment.
However, this interaction is not possible in safety-critical
environments, since the model tends to make mistakes at the
early stages of learning, which we cannot afford to do. So, in the
absence of a good model (simulator) and difficulties in learning in
the real-world environment, we turn our attention to offline
model-free RL.

To go into the evaluation of our approach, this paragraph
introduces the verification method applied to the RL model.
Model-checking is a formal verification method used to assess
whether a system’s finite-state model satisfies specified
requirements. The underlying verification mechanism is based on
the popular model-checking technique called temporal logic (Bérard
et al., 2013). Specifications, typically articulated through temporal
logic, that is, Linear Temporal Logic (Vardi, 1996) or Signal
Temporal Logic (Baheri et al., 2022), or Computation Tree Logic
(CTLogic) (Li et al., 2015), define properties over time, including
safety properties. The algorithm then systematically explores the
state space of the model to check if the specification is valid. Upon
detecting a specification breach, a counterexample showcasing the
fault is provided. Although model-checking streamlines the
verification process through automation and ensures thorough
system examination, it faces the challenge of managing the
rapidly expanding state space associated with complex systems.
Also, a recent trend in formal verification of AI systems is
including hybrid system verification and runtime monitoring
(AlSobeh, 2024; Paul et al., 2023), which makes this more
challenging. Despite these challenges, our study employs the
CTLogic process to validate the RCM model, which does not
have a large and complex state space and can be deployed in an
offline manner.

In previous work, we adopted an offline model-free RL
methodology, known as Conservative Q-Learning (CQL) (Kumar
et al., 2020), to successfully tackle the RCM problem (Memarzadeh
et al., 2023; Nethi et al., 2024). The tool we developed to provide
runway recommendations is referred to as the Runway
Configuration Assistance (RCA) tool - for details, see
(Memarzadeh et al., 2023; Nethi et al., 2024). The offline nature
of the tool removes the need for interactions with the operational
environment. Instead, the RCA tool relies only on historical data
which includes all relevant system state, input (human decisions),
and output (traffic flow) to identify a near-optimal policy.

Given the safety critical nature of the problem, it is crucial that a
thorough verification and validation of the RCA tool is performed.
As a first step in this direction, we investigate a verification process
to ensure that the outcomes of the RCA tool adhere to predefined
safety criteria. It is important to note that the safety criteria discussed
here relate only to the wind conditions under which runway
operations are regarded safe. The verification method used
ensures that the recommendations made by the RCA tool
comply with these conditions. Ultimately, airport controllers
guarantee the overall safety of the system by applying their
expertise to ensure that all operational guidelines and safety
standards are rigorously upheld.

In the first part of the verification process, we randomly sample
wind conditions (both speed and direction) and pipe them into the
RL model (RCA tool) and assess whether the output,
i.e., recommended runway configuration, meets the safety
standards. Specifically, we are performing an experiment as
follows: for the selected wind speed and direction and the
recommended runway configuration (RCA tool output), is it safe
for aircraft to takeoff and land as stipulated by the tailwind and
crosswind safety criteria? We then record the response to this
question to compute the validation performance metrics. In the
second part, the verification process will be repeated by more
realistic scenarios coming from real data. The process will
identify the boundaries within the input ranges where the system
remains safe. The approach will be performed using data from three
major US airports, Charlotte Douglas International Airport (CLT),
Denver International Airport (DEN), and Dallas-Fort Worth
International Airport (DFW).

2 Model-checking

Model-checking, a formal and automated verification method, is
widely used in various fields, including computer software, hardware
systems, communication protocols, control systems, and security
authentication protocols (Baier and Katoen, 2008). When verifying
complex concurrent systems, it is typical to come across uncertain
and inconsistent information. For example, intelligent autonomous
transport systems often generate complex computing tasks for
autonomous vehicles (Gao et al., 2022). Model-checking is a
technique to verify whether a given system model satisfies a
specified property, typically expressed in temporal logic such as
CTLogic, which is branching-time logic. This means that it allows
one to express properties over trees of possible execution paths
(states) rather than linear paths.

Frontiers in Aerospace Engineering frontiersin.org02

Razzaghi et al. 10.3389/fpace.2025.1463425

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2025.1463425


2.1 System model

First, let us define the system model as a tuple
M � (S,R, L), where:

• S is a set of states.
• R ⊆ S × S is a state transition relation.
• L: S → 2|AP| is a labeling function that maps each state to a set
of Atomic Propositions (AP) that are true in that state.

2.2 CTLogic syntax

The CTLogic formulas are built from APs, boolean operators,
and path quantifiers along with temporal operators. Some common
CTLogic operators include:

• EXϕ: There exists a next state such that ϕ as the required
condition, holds.

• AXϕ: For all next states, ϕ holds.
• EFϕ: There exists a path where ϕ eventually holds.
• AFϕ: On all paths, ϕ eventually holds.
• EGϕ: There exists a path where ϕ always holds.
• AGϕ: On all paths, ϕ always holds.

2.3 Basic model-checking algorithm

This section includes previously developed material,
reintroduced here to enhance clarity and ensure completeness of
the discussion. A high-level approach to the CTLogic model-
checking algorithm is provided below:

1. Labeling states withAPs: Each state in S is labeled with theAPs
that are true in that state based on the function L.

2. Recursive Check: For each subformula ϕ of the
CTLogic formula:
• If ϕ is an AP, return the set of states for which ϕ is true.
• For Boolean operations (AND, OR, NOT), compute the
result based on the results of the operands.

• For temporal operations involving path quantifiers (E or A
combined with X, F, G), compute the set of states that satisfy
these formulas by:
□ EXϕ: Return states for which there exists a transition to a
state satisfying ϕ.

□ AXϕ: Return states for which all transitions lead to states
satisfying ϕ.

□ EF, EG, AF, AG: Use fixpoint computations. For instance:
□ EFϕ starts with the set of states satisfying ϕ and iteratively
adds states that can reach this set until no more states can
be added.

3. Evaluate the main formula: The root of the CTLogic
formula (or the main property to check) is evaluated
last, utilizing the results from the evaluations of its
subformulas.

4. Interpret results: The algorithm returns whether the initial
state (or any specified state) of the model satisfies the
CTLogic formula.

2.4 Model-checking algorithm for an
ML system

Using model-checking to verify properties of an ML model
involves a fairly abstract and theoretical approach, as CTLogic is
traditionally used to check logical properties in systems described by
state-transition models. However, we can conceptualize how this
might be approached by considering the ML model as a dynamic
system where each state represents a set of parameters or decisions,
and transitions reflect changes or iterations in the learning process,
or the final outcomes of the model.

2.4.1 Steps to conceptualize CTLogic model-
checking for ML models
1. Define the System Model:

• States: In the context of an ML model, states could represent
specific configurations or snapshots of the model during
training (e.g., after each epoch), testing, or/and validating.

• Transitions: Transitions between states could represent the
update steps of model parameters.

2. Specify Properties in CTLogic: You would need to define the
properties you want to verify in CTLogic. For an ML model,
these might involve convergence, stability over epochs, or
fairness metrics, depending on the interpretability of the ML
model’s operations as logical transitions.

3. Labeling States: Each state must be labeled with APs that are
true in that state. For an ML model, these labels could be
derived from the performance metrics, error rates, or other
measurable output of the model at each point.

4. Build the Transition System: Construct a transition system
where each node corresponds to a state of the ML model at a
given point, and directed edges represent transitions due
to steps.

5. Run CTLogic model-checking: Using a model-checking tool or
library that supports CTLogic (e.g., NuSMV, SPIN), run the
model-checking process on the constructed transition system
with the CTLogic properties defined in Step 2.

6. Interpret Results: Analyze the results from the model checker
to understand whether the ML model satisfies the specified
properties.

We should note that the formal model-checking is conducted
after training to verify the safety constraint satisfaction of the RCA
tool for both synthetic and real wind condition scenarios. Training
in offline reinforcement learning is separate from verification. The
RCA tool is first trained using historical data via CQL. Then, the
verification module uses CTLogic-based model-checking to check if
the output of the trained model satisfies operational safety
constraints for a range of wind conditions.

2.5 Model-checking algorithm on RCA tool

In this section, we will present the model-checking algorithm for
the RCA tool and check the basic CTLogic formulas, i.e., (EF, EG)ϕ,
where ϕ is the safety criteria for selecting the runway configuration.
It is important to note that we employ these formulas because the
computation of the criteria occurs at a fixed point within the system,
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where states are fixed and the criteria are checked at this point. This
means that in the preceding nodes in the search tree, there are fixed-
in-time states. The formulas can be described as follows.

• EFϕ: There is at least one path in themodel such that the safety
criteria are always satisfied.

• EGϕ: For each path, the safety criteria are always satisfied.

We should note that here model-checking was performed using
the NuSMV tool due to its support for CTL logic. Simulations and
policy inference are executed using Python 3.9 and NumPy/Pandas
for data manipulation. Historical wind transitions are modeled
using custom-built probabilistic transition matrices derived
from datasets.

2.5.1 Safety criteria
The criteria that ensure safe runway selection are based on

crosswind and tailwind limits. These limits are determined
according to the active runway and state that wind components
must not exceed specified thresholds. These thresholds are typically
derived from aircraft performance manuals or operational
regulations, which stipulate the maximum allowable values for
crosswind and tailwind. For instance, for a Boeing 737–300 on a
dry runway, the maximum permitted crosswind and tailwind speeds
are 29 and 10 knots, respectively. If the surface wind speed exceeds
these limits during takeoff or landing, the structural safety of the
aircraft could be compromised. Both the Federal Aviation
Administration (FAA) and the International Civil Aviation

Organization (ICAO) recommend these maximum limits of the
wind component to ensure safe flight operations. According to FAA
Order 8400.9 (FAA, 1981), the safety standards are as follows:

• Maximum crosswind component (including gust)
1. Dry Runway: 25 kts
2. Wet Runway: 15 kts
3. Contaminated Runway: 15 kts

• Maximum tailwind component (including gust)
1. Dry Runway: 10 kts
2. Wet Runway: 10 kts
3. Contaminated Runway (< 8000 ft): < 3 kts (reported

as calm)
4. Contaminated Runway (> 8000 ft): 5 kts

A contaminated runway is one that has standing water, ice,
snow, slush, or any material that will reduce braking ability. The
FAA defines certain values of the wind component for contaminated
surfaces due to increased risk during takeoff and landing. Before
establishing the crosswind and tailwind criteria, it is essential to
define the coordinate system used in aviation. This system, as
illustrated in Figure 1, is a right-hand Cartesian system where
the x-axis points north and the y-axis points east, and the z-axis
points down into the earth as the NED (north-east-down)
convention.

In this framework, variables θ and α represent the runway
direction, and the wind direction respect to the north axis,
respectively. The direction of the runway is determined by the

FIGURE 1
Tailwind and crosswind components and their corresponding criterias in the coordinate system. α is the angle between the wind vector and the
north axis.
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direction of the aircraft during landing or takeoff. In contrast, the
direction of the wind indicates where the wind originates. Both
angles are measured from the true north, with their values ranging
from 0 to 360°. In Figure 1, the runway is represented by a solid green
line marked with an arrow that indicates the direction of the runway.
Additionally, a solid red line segment is used to represent the wind
vector, with its length and orientation indicating the wind’s strength
and direction, respectively.

Let V represent the wind magnitude, with Lcross and Ltail being
the limits for the crosswind and tailwind, respectively. The criteria
for crosswind and tailwind are then defined on the basis of these
parameters (Equation 1) as follows:

Vtail

Vcross
[ ] � cos θ −sin θ

sin θ cos θ
[ ] V cos α

V sin α
[ ]

� V cos θ cos α − V sin θ sin α
V sin θ cos α + V cos θ sin α

[ ] � V cos θ + α( )
V sin θ + α( )[ ]

(1)

Vtail < Ltail (2)
Vcross < Lcross (3)

where,Vtail andVcross are the tailwind and crosswind components of
the wind in the runway direction. In Figure 1, the area to the right of
the line perpendicular to the runway encompasses all wind vectors
that comply with Equation 2, related to tailwind criteria. Likewise,
the space between the two parallel lines with runway direction
visually represents all wind velocities that meet the criteria
outlined in Equation 3, which pertains to crosswind. Therefore,
the intersecting region of these two areas indicates all wind vectors
that fulfill both sets of criteria, indicating that the runway in question
is operable under wind conditions depicted by the overlapping area.

2.5.2 Definitions of model-checking steps
Building on the concept introduced in Section 2.4.1, we now

define wind states (wind speed and direction (V, α)) for an airport
with multiple runways. For an airport with Nr runways, we
introduce an indicator function for each runway. This function
determines whether a runway is operational under specific wind
conditions shown in Equation 4.

Ii V, α, θi( )
∀i�1,2,...,Nr

� 1 runway ri is active for wind condition set V, α( )
0 runway ri is inactive

{
(4)

All wind conditions that produce identical values for all
indicator functions collectively form a wind state, denoted ωj.
Essentially, a wind state corresponds to a specific combination of
active runways Rj ⊆ R (See Equations 5, 6), where R represents the
complete set of runways at the airport and NW is the length of the
wind state vector.

Rj
∀j�1,...,NW

: rj|if Ii V, α, θi( ) � 1,∀i � 1, . . . , Nr{ } (5)

ωj
∀j�1,...,NW

: V, α( )|Ii V, α, θi( ) � 1,∀ri ∈ Rj and Ii � 0,∀ri ∉ Rj{ }
(6)

Transitions, in the context of this research, are changes over time
in environmental conditions, namely, wind speed and direction,
rather than alterations to the static set of runway configurations. The
system transitions through various wind states and, at any given

point, the RCA tool determines an appropriate configuration.
Verification checks whether these configurations remain
compliant with all temporal changes in wind conditions.

By these definitions, we establish a one-to-one mapping
transition between runway configuration and wind state. We
select two CTLogic properties to verify the safe selection decision
made by the RCA tool. These properties are (EF, EG)ϕ, where ϕ is
the safety criteria to select the runway configuration defined by
Equations 2, 3. We calculate the properties in each state transition
explained above and check the safety at each point.

To place the use of CTLogic in the context of this research, it
is important to redefine the terms “path” and “transition” as they
apply to the dynamics of changing runway configurations.
Although runway configurations are static by definition (in
that each configuration represents a stable operating state),
the transitions of interest in this research are defined as
changes in environmental conditions, namely, changes in
wind speed and direction, over a particular temporal frame.
These wind conditions influence the RCA tool’s decisions at
different time steps. Thus, a path in CTLogic corresponds to a
trajectory of wind state changes throughout a day or simulation
time interval, with the RCA tool making a configuration choice
at every time step.

We utilize two temporal logic formulas to check the safety of
model outputs:

• EFϕ: This expression calculates if there exists at least one path
(i.e., series of wind conditions) in which the RCA tool suggests
a configuration that satisfies the safety constraints ϕ (i.e., the
crosswind and tailwind limits).

• EGϕ: This finer property demands that throughout the entire
trajectory, for each discrete time step, the configuration of the
RCA tool satisfies ϕ. With this condition, the safety retention
can be assessed in the face of changing dynamic conditions.

Accordingly, while a static logic verification might ensure that a
particular configuration is safe under given wind conditions, the
CTLogic-based model-checking framework utilized here allows us
to assess safety temporally—ensuring that the RCA tool always
produces safe choices under varying operational conditions. This is a
requirement in safety-critical systems, where ongoing compliance
over time, not just at a moment, is a basic requirement. Let us
consider a smaller example: an airport having two runways, A and B.
Suppose that under wind direction α � 30° and velocity V � 20
knots, Runway A is safe, Runway B is not. For EFϕ, the model
checker verifies if there is at least one such safe wind condition under
which RCA selects Runway A. For EGϕ, it verifies that for all hourly
wind conditions during the day, RCA never recommends Runway B.
Experimental results are presented in the next section. For a formal
summary of the RCA-to-CTLogic model-checking procedure, please
see Appendix A.

3 Results

The results section is divided into two main parts that examine
the verification process in three different airports CLT, DEN, and
DFW. The first part of our analysis involves a Monte Carlo
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simulation, which comprehensively evaluates the tool under all
possible wind conditions. In these simulations, we rigorously
assess the safety criteria to determine how the model performs
under worst-case conditions. In the second part, we refine our
approach by conducting simulations based on more realistic
scenarios that are informed by actual historical data. This two-
pronged strategy allows us not only to test against worst-case wind
profiles (which may or may not occur in the real world for the
specified airport), but also validate model performance against
real-world conditions. All runway configurations and the usage
frequency (how often each configuration is used historically) for
all three airports are reported in Table 1. Here, N/N means that
the north configuration is used for both arrivals and departures,
and an example runway identifier: 36R/C/L means runway 36
(which is oriented 360° from true North) and R/C/L stands for
Right/Center/Left. Figure 2 shows the CLT airport diagram FAA
(2024) with pictorial details of the runways with the
corresponding labels.

3.1 Monte Carlo random wind condition
simulation

In the first part of our analysis, we randomly generate wind
conditions to serve as input for the RCA tool. Wind conditions are
sampled uniformly within the ranges of 0 knots to the maximum
wind speed specified in Table 2 and 0–360° for wind direction. For
each wind condition, we utilize the RCA tool to determine the
recommended runway configuration. We then evaluate whether the
tool output satisfied the established safety criteria, specifically
focusing on crosswind and tailwind limits. This procedure is
repeated 100,000 times for each airport (CLT, DEN, and DFW)
to ensure a comprehensive analysis.

To clarify this procedure, we look at three examples of runway
configurations in different airports with random wind conditions.
Figure 3 represents different wind conditions in three selected
runways of different airports. The colored boxes indicate the
safety criteria for the chosen runway configurations, each labeled

TABLE 1 The runway configurations for all three airports.

Config. [Arr/Dep] Arrival runways Departure runways Usage frequency (%)

CLT

N/N 36R/C/L 36R/C 60.8

S/S 18R/C/L 18C/L 39.2

DEN

SE/SE 16R/L, 17R/L, 7, 8 16R/L, 17R/L, 7, 8 18.8

S/S 16R/L, 17R/L 16R/L, 17R/L 15

N/NEW 34R/L, 35 R/L 34R/L, 35 R/L 8, 25 14.5

S/SEW 16R/L, 17R/L 16R/L, 17R/L, 8, 25 12.6

N/N 34R/L, 35R/L 34R/L, 35R/L 12.3

NE/NE 34R/L, 35R/L, 7, 8 34R/L, 35R/L, 7, 8 11.7

NW/NW 34R/L, 35R/L, 25,26 34R/L, 35R/L, 25,26 8.6

SW/SW 16R/L, 17R/L, 25, 26 16R/L, 17R/L, 25, 26 3.4

E/E 7,8 7,8 1.6

NS/EW 34R/L, 35R/L, 16R/L, 17R/L 8,25 1.2

W/W 25, 26 25, 26 0.3

DFW

SSE/S 13R, 17R/C/L, 18R 17R, 18R/L 61.5

NNW/NNW 31R, 35R/C/L, 36R/L 31L, 35C/L, 36R/L 21.3

S/S 17R/C/L, 18R 17R, 18R/L 7.6

N/NNW 35R/C/L, 36R/L 31R, 35R/C/L, 36R/L 5.1

NNW/N 31R, 35R/C/L, 36R/L 35R/C/L, 36R/L 3

N/N 35R/C/L, 36R/L 35R/C/L, 36R/L 1.1

SSE/NNW 13R, 17C/L, 18R 31R, 35R/C/L, 36R/L 0.2

NNW/S 31R, 35R/C/L, 36R/L 17R, 18L 0.1

NW/NW 31R/L 31R/L 0.1
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in a format divided by dashes. The first segment of the label displays
the takeoff configuration—N representing north for CLT and DEN,
and SSE indicates south-southeast for DFW. The second segment
details the landing configuration. If the wind vector is shown in
green, it indicates that the runway selection is safe for both takeoff

and landing. If the wind vector appears red, it signifies that the
runway selection is unsafe and should not be used for aircraft
operations for this wind condition, and when the wind vector is
yellow, it denotes that the runway is safe for either takeoff or landing
but not both. A safe (feasible) runway configuration selection
indicates that the operating runway complies with the safety
criteria for the current wind conditions. Also, the tool’s efficiency
is assessed by how frequently each configuration is deemed optimal
under varying wind conditions. In the following, we show the
validation results of the RCA tool in the Monte Carlo
simulations. Additionally, as detailed in Table 1, the most
efficient preferred runway configurations based on their
frequency of use are N/N for CLT and SSE/S for DFW.

Table 2 shows the results of randomly generated wind condition
simulation procedure. The results are calculated based on EGϕ
values on all configurations. The RCA tool demonstrates an
overall effectiveness of above 70% in selecting safe runway
configurations under simulated wind conditions for all airports.
In both CLT and DFW, the tool identifies efficient and preferred
runway configurations. In scenarios where multiple runways are

FIGURE 2
Charlotte douglas international airport surface diagram.

TABLE 2 Safety criteria of RCA tool prediction through randomly generated
wind conditions.

Airport CLT DEN DFW

Max wind speed (kts) 30 40 40

Tailwind violation (%) 0 15 20.3

Crosswind violation (%) 4.7 16.7 6.2

Safe RCA prediction (%) 100 70.5 84.5

Safe arrival prediction (%) — 69 86.6

Safe departure prediction (%) — 99 78.7

Efficient runway prediction (%) 63 — 74
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viable, the RCA tool successfully selects the optimal configuration
63% of the time for CLT and 74% for DFW. These figures
underscore the tool’s capability to effectively prioritize safety
while accommodating varying airport layouts and conditions.
The results highlight the RCA tool’s robust performance in
ensuring compliance with established safety criteria. This
performance is especially noteworthy given the complexity of
managing multiple variables, including varying wind conditions
and airport-specific runway configurations. The tool’s success in
these areas suggests it could serve as a valuable asset in enhancing
operational safety and efficiency in dynamic airport environments.
The objective of this analysis was to assess how well the model’s
predictions aligned with safety standards in a wide variety of wind
scenarios. The results were analyzed to identify the safe versus
unsafe predictions faced with the worst-case scenarios.

3.2 Simulated daily wind transitions

In the second part of the analysis, we utilize actual weather data
for years 2018 and 2019 to construct a transition matrix that
describes changes in wind conditions throughout a day. This
transition matrix provides a probabilistic framework for
simulating realistic changes in wind conditions over time.

We estimate reasonable changes on an hourly basis in wind and
meteorological conditions and simulate realistic operations (based
on historical data), each multiple times to consider random
variations. In each episode, the wind speed and direction, the
hour of the day, and the meteorological conditions are sampled,
and the RCA tool predicts the runway configuration.

3.2.1 Procedure
1. Random Day Selection: A day is randomly selected from

the dataset.
2. Initial Condition: A random wind condition is chosen as the

starting point for the simulation.
3. Simulation Process:

• Using the transition matrix, we simulate the evolution of the
wind conditions for the entire day.

• This process is repeated 100 times for each selected day to
capture a broad spectrum of possible wind condition
transitions.

• The tool predicts the runway configuration
4. Safety Evaluation:

• For each simulated day, the output of the ML model is
evaluated against the safety criteria.

• This entire procedure was repeated for 100 different days to
ensure the robustness and reliability of the results.

We showcase a series of figures depicting the simulated days in
various scenarios. For CLT, we chose a randomly selected day.
Similarly, for DEN and DFW, we selected and analyzed the most
challenging scenarios involving random cases of tailwind and
crosswind violations. We then compared these realistic scenario
outcomes with those generated by Monte Carlo simulations. Each
figure provides detailed information, displaying the mean and
standard deviations calculated from 100 simulation iterations.
This approach offers a comprehensive view of the variability of
each scenario and the robustness of our simulation methodology in
capturing the dynamics of runway safety under different wind
conditions. Figure 4 illustrates a realistic simulation of a whole
day in CLT. It captures fluctuations in wind speed and direction
throughout the day, along with instances of tailwind violations. The
depicted tailwind violation data represent the mean of 100 values,
each coded as 0 or 1, where 0 indicates a safe scenario and 1 denotes
an unsafe scenario. This provides a clear visual representation of the
frequency and distribution of tailwind violations
throughout the day.

Figures 5, 6 show three different scenarios, worst-case scenarios
of tailwind and crosswind violation, and a random one for DEN and
DFW, respectively. The worst-case scenarios highlight instances of
maximum safety violations within the system. By adjusting the
predictions made by the RCA tool, we can effectively address
and mitigate these violations. The tailwind and crosswind

FIGURE 3
Safe and unsafe wind conditions on selected runway configurations for different airports. Each colored boxes represents the area satisfying the
safety criteria. Two boxes in the middle and right subfigures show two different configurations for takeoff and landing. The first part in the box’s label
represents the takeoff configuration and second one is for the landing. If the wind vector is shown in green, the selected runway configuration is safe for
both takeoff and landing. A red vector indicates that the configuration is unsafe for both operations. A yellow vector signifies partial safety—safe for
either takeoff or landing, but not both.
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violations sub figures show that the model predictions decrease the
safety violation throughout the day. The random scenario sub-
figures also show significant low violations among
100 simulations during a day. The dashed line indicates the
mean value, and the colored boundary shows the standard deviation.

Table 3 shows the instances in which safety criteria are violated
during both types of simulation. Notably, there is a significant
reduction in the percentage of violations when comparing the
results of Monte Carlo simulations to those from realistic
scenarios. This indicates a marked improvement in the adherence
to safety standards under more realistic operating conditions. This
notable discrepancy between the two simulation scenarios, Monte
Carlo and realistic, underscores the robustness and adaptability of
our realistic simulation method, particularly in its superior ability to
capture and respond to dynamic environmental variables when
compared to the Monte Carlo simulations. This suggests that
realistic simulation provides a more effective framework for

understanding and managing complex real-world scenarios. The
goal was to evaluate the performance of the model in predicting safe
outputs over extended periods, reflecting realistic daily variations in
wind conditions. This approach helps us understand how temporal
changes in wind conditions impact the safety and reliability of the
model’s predictions.

4 Conclusion

The application of formal verification methods to the RCA tool
helps us validate the tool’s output in adhering to crucial safety
criteria in air traffic control. This study underscores the value of
using formal methods, such as model-checking, to rigorously
assess the safety of machine learning algorithms within a safety
critical operational setting. By validating the RCA tool’s
compliance with safety criteria in various simulated wind

FIGURE 4
Realistic scenario simulation of CLT airport.
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conditions, the research highlights the potential of formal
verification to enhance the trustworthiness of automated
decision-support systems. The results of the Monte Carlo

random wind condition simulations provided insight into the
model’s ability to handle a wide range of wind speeds and
directions, highlighting potential biases or limitations in

FIGURE 5
Realistic scenario simulation of DEN airport.

FIGURE 6
Realistic scenario simulation of DFW airport.

TABLE 3 Comparison between Monte Carlo (MC) and realistic simulations for all airports.

Airport CLT DEN DFW

Sim. MC Realistic MC Realistic MC Realistic

Crosswind violation (%) 4.7 0.4 16.7 3.7 6.2 1.3

Tailwind violation (%) 0 0 15 5.8 20.3 2.6
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handling extreme conditions. In addition, the simulations based on
the (historical data-based) transition matrix offered a detailed view
of the model’s performance in realistic and dynamic wind
scenarios, revealing how well the model maintains safety
standards throughout typical daily wind fluctuations.

It is worth to mention that while the RCA tool currently uses
CQL with tabular representation and function approximators,
future extensions to deep RL architectures could leverage
abstractions or symbolic encodings (e.g., decision trees, BDDs) to
preserve tractability in model-checking. Existing approaches in
neural-symbolic verification (e.g., abstraction-refinement) could
support scalability.
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Appendix A. RCA-CTLogic
Verification Algorithm

To complement the formal definitions and theoretical model-
checking framework described above, Algorithm 1 outlines the
complete verification procedure used to assess the safety of RCA
tool outputs under varying wind conditions. The algorithm receives
historical or simulated wind data as input, applies the RCA model to
generate runway configuration decisions, and evaluates each decision
against established crosswind and tailwind safety thresholds. The
results are then analyzed using CTLogic to determine whether the
model satisfies the temporal safety properties EFφ and EGφ.

Require: RCA_model, Wind_Data, Runway_Set, Safety_

Limits, Transition_Matrix (optional)

Ensure: EFφ and EGφ satisfaction results

1: Initialize CTL_State_Set ← [ ]

2: for each (V, α) in Wind_Data do

3: config ← RCA_model.predict(V, α)
4: (Vtail ,Vcross) ← compute_components(V, α,config)
5: is_safe ← (Vtail <Ltail) ∧ (Vcross <Lcross)
6: Append (V, α,config,is_safe) to CTL_State_Set

7: end for

8: Build Transition_Graph from CTL_State_Set using

temporal ordering

9: EFφ ← EXISTS_PATH(CTL_State_Set, λs: s.is_safe)

10: EGφ ← ALL_PATHS_ALWAYS(CTL_State_Set, λs: s.is_safe)

11: return EFφ, EGφ

Algorithm 1. RCA-CTLogic Model Checking Algorithm.
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