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This study explores the use of formal verification techniques to evaluate the efficacy of suggestions made by the Runway Configuration Assistance (RCA) tool, a machine learning-based decision support system that our group developed independently. By using model-checking approaches, in particular Computation Tree Logic (CTL), this study verifies the compliance of the RCA tool with predefined safety regulations under different conditions of surface winds. By simulating a range of scenarios at three major US airports, Charlotte Douglas International Airport (CLT), Denver International Airport (DEN), and Dallas-Fort Worth International Airport (DFW), we thoroughly test the predictions of the tool to ensure that they meet strict safety margins with respect to crosswind and tailwind. The application of formal verification methods provides a strict analysis of the RCA tool, enhancing its validity and utility for possible implementation in an operational environment. Initially, a Monte Carlo simulation is carried out to analyze all possible wind conditions both velocity-wise and direction-wise. This part is intended to rigorously test the model against extreme, worst-case conditions to evaluate its performance. Second, we improve our methodology by performing simulations driven by realistic scenarios informed by actual historical data. This approach allows for a more accurate reflection of typical wind conditions (seen in the test airport) and provides a robust assessment of the model’s effectiveness in maintaining safety standards under realistic environmental conditions. The model-checking reveals that overall 70% and 94% of the predictions satisfy the safety criteria in worst-case and realistic wind scenarios, respectively.
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1 INTRODUCTION
Runway Configuration Management (RCM) is the task of selecting appropriate runways for arriving and departing aircraft at an airport. It is a complex task that involves multiple stakeholders and must take into consideration air traffic services (ATS), weather, and other contributing factors at an airport. Typically, it involves either switching the runway direction for takeoff and landing or switching between different (combinations of) runways available on the airport surface. Most airports, depending on the surface geometry, capacity, and local weather patterns, have multiple configurations that can be used. Many factors, including incoming/outgoing traffic load, wind direction and speed, convective weather, cloud ceiling, and other environmental or noise-related factors, can affect the choice of runway configuration. In current practice, air traffic controllers (ATC) select the runway configuration based on information (weather, traffic, and other forecast) available to them at the time of decision making. As a general rule, it is preferred that the aircraft take off and land into the wind (for maximal lift and braking, respectively). So, the surface wind (speed and direction) is the dominant feature that determines the runway configuration. However, the human decision making process is subjective based on training and expertise, which can be impacted by bias and can sometimes lead to poor outcomes. In particular, for airports with multiple available configurations, dynamic traffic and weather patterns can make it difficult for humans to compute optimal solutions in near real time (Memarzadeh et al., 2023).
In recent years, automated approaches based on Artificial Intelligence (AI) and Machine Learning (ML) have been proposed to solve the RCM problem (Razzaghi et al., 2024). A popular approach used in this context is online Reinforcement Learning (RL) and variants such as discrete choice modeling (Avery and Balakrishnan, 2016), dynamic programming (Li et al., 2009), and queueing theory (Jacquillat et al., 2017; Badrinath et al., 2019) have been proposed. The goal is to model the dynamics of surface operations at an airport and use a simulator to learn a near-optimal policy for the runway configuration selection problem. However, building an accurate simulator (and/or learning accurate models for the surface dynamics) is hard. On the other hand, model-free RL approaches such as Monte Carlo Tree Search (MCTS) (Browne et al., 2012) can be used to learn a near-optimal policy by interacting directly in the operational environment. However, this interaction is not possible in safety-critical environments, since the model tends to make mistakes at the early stages of learning, which we cannot afford to do. So, in the absence of a good model (simulator) and difficulties in learning in the real-world environment, we turn our attention to offline model-free RL.
To go into the evaluation of our approach, this paragraph introduces the verification method applied to the RL model. Model-checking is a formal verification method used to assess whether a system’s finite-state model satisfies specified requirements. The underlying verification mechanism is based on the popular model-checking technique called temporal logic (Bérard et al., 2013). Specifications, typically articulated through temporal logic, that is, Linear Temporal Logic (Vardi, 1996) or Signal Temporal Logic (Baheri et al., 2022), or Computation Tree Logic (CTLogic) (Li et al., 2015), define properties over time, including safety properties. The algorithm then systematically explores the state space of the model to check if the specification is valid. Upon detecting a specification breach, a counterexample showcasing the fault is provided. Although model-checking streamlines the verification process through automation and ensures thorough system examination, it faces the challenge of managing the rapidly expanding state space associated with complex systems. Also, a recent trend in formal verification of AI systems is including hybrid system verification and runtime monitoring (AlSobeh, 2024; Paul et al., 2023), which makes this more challenging. Despite these challenges, our study employs the CTLogic process to validate the RCM model, which does not have a large and complex state space and can be deployed in an offline manner.
In previous work, we adopted an offline model-free RL methodology, known as Conservative Q-Learning (CQL) (Kumar et al., 2020), to successfully tackle the RCM problem (Memarzadeh et al., 2023; Nethi et al., 2024). The tool we developed to provide runway recommendations is referred to as the Runway Configuration Assistance (RCA) tool - for details, see (Memarzadeh et al., 2023; Nethi et al., 2024). The offline nature of the tool removes the need for interactions with the operational environment. Instead, the RCA tool relies only on historical data which includes all relevant system state, input (human decisions), and output (traffic flow) to identify a near-optimal policy.
Given the safety critical nature of the problem, it is crucial that a thorough verification and validation of the RCA tool is performed. As a first step in this direction, we investigate a verification process to ensure that the outcomes of the RCA tool adhere to predefined safety criteria. It is important to note that the safety criteria discussed here relate only to the wind conditions under which runway operations are regarded safe. The verification method used ensures that the recommendations made by the RCA tool comply with these conditions. Ultimately, airport controllers guarantee the overall safety of the system by applying their expertise to ensure that all operational guidelines and safety standards are rigorously upheld.
In the first part of the verification process, we randomly sample wind conditions (both speed and direction) and pipe them into the RL model (RCA tool) and assess whether the output, i.e., recommended runway configuration, meets the safety standards. Specifically, we are performing an experiment as follows: for the selected wind speed and direction and the recommended runway configuration (RCA tool output), is it safe for aircraft to takeoff and land as stipulated by the tailwind and crosswind safety criteria? We then record the response to this question to compute the validation performance metrics. In the second part, the verification process will be repeated by more realistic scenarios coming from real data. The process will identify the boundaries within the input ranges where the system remains safe. The approach will be performed using data from three major US airports, Charlotte Douglas International Airport (CLT), Denver International Airport (DEN), and Dallas-Fort Worth International Airport (DFW).
2 MODEL-CHECKING
Model-checking, a formal and automated verification method, is widely used in various fields, including computer software, hardware systems, communication protocols, control systems, and security authentication protocols (Baier and Katoen, 2008). When verifying complex concurrent systems, it is typical to come across uncertain and inconsistent information. For example, intelligent autonomous transport systems often generate complex computing tasks for autonomous vehicles (Gao et al., 2022). Model-checking is a technique to verify whether a given system model satisfies a specified property, typically expressed in temporal logic such as CTLogic, which is branching-time logic. This means that it allows one to express properties over trees of possible execution paths (states) rather than linear paths.
2.1 System model
First, let us define the system model as a tuple M=S,R,L, where:
	• S is a set of states.
	• R⊆S×S is a state transition relation.
	• L:S→2|AP| is a labeling function that maps each state to a set of Atomic Propositions (AP) that are true in that state.

2.2 CTLogic syntax
The CTLogic formulas are built from APs, boolean operators, and path quantifiers along with temporal operators. Some common CTLogic operators include:
	• EXϕ: There exists a next state such that ϕ as the required condition, holds.
	• AXϕ: For all next states, ϕ holds.
	• EFϕ: There exists a path where ϕ eventually holds.
	• AFϕ: On all paths, ϕ eventually holds.
	• EGϕ: There exists a path where ϕ always holds.
	• AGϕ: On all paths, ϕ always holds.

2.3 Basic model-checking algorithm
This section includes previously developed material, reintroduced here to enhance clarity and ensure completeness of the discussion. A high-level approach to the CTLogic model-checking algorithm is provided below:
	1. Labeling states with APs: Each state in S is labeled with the APs that are true in that state based on the function L.
	2. Recursive Check: For each subformula ϕ of the CTLogic formula:	• If ϕ is an AP, return the set of states for which ϕ is true.
	• For Boolean operations (AND, OR, NOT), compute the result based on the results of the operands.
	• For temporal operations involving path quantifiers (E or A combined with X, F, G), compute the set of states that satisfy these formulas by:	□ EXϕ: Return states for which there exists a transition to a state satisfying ϕ.
	□ AXϕ: Return states for which all transitions lead to states satisfying ϕ.
	□ EF, EG, AF, AG: Use fixpoint computations. For instance: □ EFϕ starts with the set of states satisfying ϕ and iteratively adds states that can reach this set until no more states can be added.




	3. Evaluate the main formula: The root of the CTLogic formula (or the main property to check) is evaluated last, utilizing the results from the evaluations of its subformulas.
	4. Interpret results: The algorithm returns whether the initial state (or any specified state) of the model satisfies the CTLogic formula.

2.4 Model-checking algorithm for an ML system
Using model-checking to verify properties of an ML model involves a fairly abstract and theoretical approach, as CTLogic is traditionally used to check logical properties in systems described by state-transition models. However, we can conceptualize how this might be approached by considering the ML model as a dynamic system where each state represents a set of parameters or decisions, and transitions reflect changes or iterations in the learning process, or the final outcomes of the model.
2.4.1 Steps to conceptualize CTLogic model-checking for ML models
	1. Define the System Model:	• States: In the context of an ML model, states could represent specific configurations or snapshots of the model during training (e.g., after each epoch), testing, or/and validating.
	• Transitions: Transitions between states could represent the update steps of model parameters.


	2. Specify Properties in CTLogic: You would need to define the properties you want to verify in CTLogic. For an ML model, these might involve convergence, stability over epochs, or fairness metrics, depending on the interpretability of the ML model’s operations as logical transitions.
	3. Labeling States: Each state must be labeled with APs that are true in that state. For an ML model, these labels could be derived from the performance metrics, error rates, or other measurable output of the model at each point.
	4. Build the Transition System: Construct a transition system where each node corresponds to a state of the ML model at a given point, and directed edges represent transitions due to steps.
	5. Run CTLogic model-checking: Using a model-checking tool or library that supports CTLogic (e.g., NuSMV, SPIN), run the model-checking process on the constructed transition system with the CTLogic properties defined in Step 2.
	6. Interpret Results: Analyze the results from the model checker to understand whether the ML model satisfies the specified properties.

We should note that the formal model-checking is conducted after training to verify the safety constraint satisfaction of the RCA tool for both synthetic and real wind condition scenarios. Training in offline reinforcement learning is separate from verification. The RCA tool is first trained using historical data via CQL. Then, the verification module uses CTLogic-based model-checking to check if the output of the trained model satisfies operational safety constraints for a range of wind conditions.
2.5 Model-checking algorithm on RCA tool
In this section, we will present the model-checking algorithm for the RCA tool and check the basic CTLogic formulas, i.e., (EF, EG)ϕ, where ϕ is the safety criteria for selecting the runway configuration. It is important to note that we employ these formulas because the computation of the criteria occurs at a fixed point within the system, where states are fixed and the criteria are checked at this point. This means that in the preceding nodes in the search tree, there are fixed-in-time states. The formulas can be described as follows.
	• EFϕ: There is at least one path in the model such that the safety criteria are always satisfied.
	• EGϕ: For each path, the safety criteria are always satisfied.

We should note that here model-checking was performed using the NuSMV tool due to its support for CTL logic. Simulations and policy inference are executed using Python 3.9 and NumPy/Pandas for data manipulation. Historical wind transitions are modeled using custom-built probabilistic transition matrices derived from datasets.
2.5.1 Safety criteria
The criteria that ensure safe runway selection are based on crosswind and tailwind limits. These limits are determined according to the active runway and state that wind components must not exceed specified thresholds. These thresholds are typically derived from aircraft performance manuals or operational regulations, which stipulate the maximum allowable values for crosswind and tailwind. For instance, for a Boeing 737–300 on a dry runway, the maximum permitted crosswind and tailwind speeds are 29 and 10 knots, respectively. If the surface wind speed exceeds these limits during takeoff or landing, the structural safety of the aircraft could be compromised. Both the Federal Aviation Administration (FAA) and the International Civil Aviation Organization (ICAO) recommend these maximum limits of the wind component to ensure safe flight operations. According to FAA Order 8400.9 (FAA, 1981), the safety standards are as follows:
	• Maximum crosswind component (including gust)	1. Dry Runway: 25 kts
	2. Wet Runway: 15 kts
	3. Contaminated Runway: 15 kts


	• Maximum tailwind component (including gust)	1. Dry Runway: 10 kts
	2. Wet Runway: 10 kts
	3. Contaminated Runway (< 8000 ft): <3 kts (reported as calm)
	4. Contaminated Runway (> 8000 ft): 5 kts



A contaminated runway is one that has standing water, ice, snow, slush, or any material that will reduce braking ability. The FAA defines certain values of the wind component for contaminated surfaces due to increased risk during takeoff and landing. Before establishing the crosswind and tailwind criteria, it is essential to define the coordinate system used in aviation. This system, as illustrated in Figure 1, is a right-hand Cartesian system where the x-axis points north and the y-axis points east, and the z-axis points down into the earth as the NED (north-east-down) convention.
[image: A diagram illustrating wind direction relative to a runway. The runway is shown as a green arrow pointing northeast. A purple arrow represents wind, with blue and red dashed lines indicating tailwind and crosswind components, respectively. North and east axes are labeled. Shaded regions indicate criteria for satisfying tailwind, crosswind, and both. Angle theta is marked on the diagram. A legend explains the shading patterns.]FIGURE 1 | Tailwind and crosswind components and their corresponding criterias in the coordinate system. α is the angle between the wind vector and the north axis.In this framework, variables θ and α represent the runway direction, and the wind direction respect to the north axis, respectively. The direction of the runway is determined by the direction of the aircraft during landing or takeoff. In contrast, the direction of the wind indicates where the wind originates. Both angles are measured from the true north, with their values ranging from 0 to 360°. In Figure 1, the runway is represented by a solid green line marked with an arrow that indicates the direction of the runway. Additionally, a solid red line segment is used to represent the wind vector, with its length and orientation indicating the wind’s strength and direction, respectively.
Let V represent the wind magnitude, with Lcross and Ltail being the limits for the crosswind and tailwind, respectively. The criteria for crosswind and tailwind are then defined on the basis of these parameters (Equation 1) as follows:
VtailVcross=cos⁡θ−sin⁡θsin⁡θcos⁡θV⁡cos⁡αV⁡sin⁡α=V⁡cos⁡θ⁡cos⁡α−V⁡sin⁡θ⁡sin⁡αV⁡sin⁡θ⁡cos⁡α+V⁡cos⁡θ⁡sin⁡α=V⁡cosθ+αV⁡sinθ+α(1)
Vtail<Ltail(2)
Vcross<Lcross(3)
where, Vtail and Vcross are the tailwind and crosswind components of the wind in the runway direction. In Figure 1, the area to the right of the line perpendicular to the runway encompasses all wind vectors that comply with Equation 2, related to tailwind criteria. Likewise, the space between the two parallel lines with runway direction visually represents all wind velocities that meet the criteria outlined in Equation 3, which pertains to crosswind. Therefore, the intersecting region of these two areas indicates all wind vectors that fulfill both sets of criteria, indicating that the runway in question is operable under wind conditions depicted by the overlapping area.
2.5.2 Definitions of model-checking steps
Building on the concept introduced in Section 2.4.1, we now define wind states (wind speed and direction (V,α)) for an airport with multiple runways. For an airport with Nr runways, we introduce an indicator function for each runway. This function determines whether a runway is operational under specific wind conditions shown in Equation 4.
IiV,α,θi∀i=1,2,…,Nr=1runwayriis active for wind condition setV,α0runwayriis inactive(4)
All wind conditions that produce identical values for all indicator functions collectively form a wind state, denoted ωj. Essentially, a wind state corresponds to a specific combination of active runways Rj⊆R (See Equations 5, 6), where R represents the complete set of runways at the airport and NW is the length of the wind state vector.
Rj∀j=1,…,NW:rj|ifIiV,α,θi=1,∀i=1,…,Nr(5)
ωj∀j=1,…,NW:V,α|IiV,α,θi=1,∀ri∈RjandIi=0,∀ri∉Rj(6)
Transitions, in the context of this research, are changes over time in environmental conditions, namely, wind speed and direction, rather than alterations to the static set of runway configurations. The system transitions through various wind states and, at any given point, the RCA tool determines an appropriate configuration. Verification checks whether these configurations remain compliant with all temporal changes in wind conditions.
By these definitions, we establish a one-to-one mapping transition between runway configuration and wind state. We select two CTLogic properties to verify the safe selection decision made by the RCA tool. These properties are (EF, EG)ϕ, where ϕ is the safety criteria to select the runway configuration defined by Equations 2, 3. We calculate the properties in each state transition explained above and check the safety at each point.
To place the use of CTLogic in the context of this research, it is important to redefine the terms “path” and “transition” as they apply to the dynamics of changing runway configurations. Although runway configurations are static by definition (in that each configuration represents a stable operating state), the transitions of interest in this research are defined as changes in environmental conditions, namely, changes in wind speed and direction, over a particular temporal frame. These wind conditions influence the RCA tool’s decisions at different time steps. Thus, a path in CTLogic corresponds to a trajectory of wind state changes throughout a day or simulation time interval, with the RCA tool making a configuration choice at every time step.
We utilize two temporal logic formulas to check the safety of model outputs:
	• EFϕ: This expression calculates if there exists at least one path (i.e., series of wind conditions) in which the RCA tool suggests a configuration that satisfies the safety constraints ϕ (i.e., the crosswind and tailwind limits).
	• EGϕ: This finer property demands that throughout the entire trajectory, for each discrete time step, the configuration of the RCA tool satisfies ϕ. With this condition, the safety retention can be assessed in the face of changing dynamic conditions.

Accordingly, while a static logic verification might ensure that a particular configuration is safe under given wind conditions, the CTLogic-based model-checking framework utilized here allows us to assess safety temporally—ensuring that the RCA tool always produces safe choices under varying operational conditions. This is a requirement in safety-critical systems, where ongoing compliance over time, not just at a moment, is a basic requirement. Let us consider a smaller example: an airport having two runways, A and B. Suppose that under wind direction α=30° and velocity V=20 knots, Runway A is safe, Runway B is not. For EFϕ, the model checker verifies if there is at least one such safe wind condition under which RCA selects Runway A. For EGϕ, it verifies that for all hourly wind conditions during the day, RCA never recommends Runway B. Experimental results are presented in the next section. For a formal summary of the RCA-to-CTLogic model-checking procedure, please see Appendix A.
3 RESULTS
The results section is divided into two main parts that examine the verification process in three different airports CLT, DEN, and DFW. The first part of our analysis involves a Monte Carlo simulation, which comprehensively evaluates the tool under all possible wind conditions. In these simulations, we rigorously assess the safety criteria to determine how the model performs under worst-case conditions. In the second part, we refine our approach by conducting simulations based on more realistic scenarios that are informed by actual historical data. This two-pronged strategy allows us not only to test against worst-case wind profiles (which may or may not occur in the real world for the specified airport), but also validate model performance against real-world conditions. All runway configurations and the usage frequency (how often each configuration is used historically) for all three airports are reported in Table 1. Here, N/N means that the north configuration is used for both arrivals and departures, and an example runway identifier: 36R/C/L means runway 36 (which is oriented 360° from true North) and R/C/L stands for Right/Center/Left. Figure 2 shows the CLT airport diagram FAA (2024) with pictorial details of the runways with the corresponding labels.
TABLE 1 | The runway configurations for all three airports.	Config. [Arr/Dep]	Arrival runways	Departure runways	Usage frequency (%)
	CLT
	N/N	36R/C/L	36R/C	60.8
	S/S	18R/C/L	18C/L	39.2
	DEN
	SE/SE	16R/L, 17R/L, 7, 8	16R/L, 17R/L, 7, 8	18.8
	S/S	16R/L, 17R/L	16R/L, 17R/L	15
	N/NEW	34R/L, 35 R/L	34R/L, 35 R/L 8, 25	14.5
	S/SEW	16R/L, 17R/L	16R/L, 17R/L, 8, 25	12.6
	N/N	34R/L, 35R/L	34R/L, 35R/L	12.3
	NE/NE	34R/L, 35R/L, 7, 8	34R/L, 35R/L, 7, 8	11.7
	NW/NW	34R/L, 35R/L, 25,26	34R/L, 35R/L, 25,26	8.6
	SW/SW	16R/L, 17R/L, 25, 26	16R/L, 17R/L, 25, 26	3.4
	E/E	7,8	7,8	1.6
	NS/EW	34R/L, 35R/L, 16R/L, 17R/L	8,25	1.2
	W/W	25, 26	25, 26	0.3
	DFW
	SSE/S	13R, 17R/C/L, 18R	17R, 18R/L	61.5
	NNW/NNW	31R, 35R/C/L, 36R/L	31L, 35C/L, 36R/L	21.3
	S/S	17R/C/L, 18R	17R, 18R/L	7.6
	N/NNW	35R/C/L, 36R/L	31R, 35R/C/L, 36R/L	5.1
	NNW/N	31R, 35R/C/L, 36R/L	35R/C/L, 36R/L	3
	N/N	35R/C/L, 36R/L	35R/C/L, 36R/L	1.1
	SSE/NNW	13R, 17C/L, 18R	31R, 35R/C/L, 36R/L	0.2
	NNW/S	31R, 35R/C/L, 36R/L	17R, 18L	0.1
	NW/NW	31R/L	31R/L	0.1


[image: Airport diagram showing runways labeled 36L/18R, 36C/18C, and 36R/18L, with measurements in feet. Key areas include the Air Carrier Terminal, Air Cargo, Tower, General Aviation Ramp, and U.S. Customs. North Carolina Air National Guard is marked as NC ANG. Arrows indicate magnetic variation westward.]FIGURE 2 | Charlotte douglas international airport surface diagram.3.1 Monte Carlo random wind condition simulation
In the first part of our analysis, we randomly generate wind conditions to serve as input for the RCA tool. Wind conditions are sampled uniformly within the ranges of 0 knots to the maximum wind speed specified in Table 2 and 0–360° for wind direction. For each wind condition, we utilize the RCA tool to determine the recommended runway configuration. We then evaluate whether the tool output satisfied the established safety criteria, specifically focusing on crosswind and tailwind limits. This procedure is repeated 100,000 times for each airport (CLT, DEN, and DFW) to ensure a comprehensive analysis.
TABLE 2 | Safety criteria of RCA tool prediction through randomly generated wind conditions.	Airport	CLT	DEN	DFW
	Max wind speed (kts)	30	40	40
	Tailwind violation (%)	0	15	20.3
	Crosswind violation (%)	4.7	16.7	6.2
	Safe RCA prediction (%)	100	70.5	84.5
	Safe arrival prediction (%)	—	69	86.6
	Safe departure prediction (%)	—	99	78.7
	Efficient runway prediction (%)	63	—	74


To clarify this procedure, we look at three examples of runway configurations in different airports with random wind conditions. Figure 3 represents different wind conditions in three selected runways of different airports. The colored boxes indicate the safety criteria for the chosen runway configurations, each labeled in a format divided by dashes. The first segment of the label displays the takeoff configuration—N representing north for CLT and DEN, and SSE indicates south-southeast for DFW. The second segment details the landing configuration. If the wind vector is shown in green, it indicates that the runway selection is safe for both takeoff and landing. If the wind vector appears red, it signifies that the runway selection is unsafe and should not be used for aircraft operations for this wind condition, and when the wind vector is yellow, it denotes that the runway is safe for either takeoff or landing but not both. A safe (feasible) runway configuration selection indicates that the operating runway complies with the safety criteria for the current wind conditions. Also, the tool’s efficiency is assessed by how frequently each configuration is deemed optimal under varying wind conditions. In the following, we show the validation results of the RCA tool in the Monte Carlo simulations. Additionally, as detailed in Table 1, the most efficient preferred runway configurations based on their frequency of use are N/N for CLT and SSE/S for DFW.
[image: Three polar plots labeled CLT, DEN, and DFW each display wind direction data. CLT has vectors in red and green, oriented north and northwest. DEN shows vectors in red, green, and yellow, oriented north, northeast, and another unspecified direction. DFW includes vectors in red, green, and yellow, oriented southeast, south, and another unspecified direction. Each plot includes a different colored box encasing the vectors.]FIGURE 3 | Safe and unsafe wind conditions on selected runway configurations for different airports. Each colored boxes represents the area satisfying the safety criteria. Two boxes in the middle and right subfigures show two different configurations for takeoff and landing. The first part in the box’s label represents the takeoff configuration and second one is for the landing. If the wind vector is shown in green, the selected runway configuration is safe for both takeoff and landing. A red vector indicates that the configuration is unsafe for both operations. A yellow vector signifies partial safety—safe for either takeoff or landing, but not both.Table 2 shows the results of randomly generated wind condition simulation procedure. The results are calculated based on EGϕ values on all configurations. The RCA tool demonstrates an overall effectiveness of above 70% in selecting safe runway configurations under simulated wind conditions for all airports. In both CLT and DFW, the tool identifies efficient and preferred runway configurations. In scenarios where multiple runways are viable, the RCA tool successfully selects the optimal configuration 63% of the time for CLT and 74% for DFW. These figures underscore the tool’s capability to effectively prioritize safety while accommodating varying airport layouts and conditions. The results highlight the RCA tool’s robust performance in ensuring compliance with established safety criteria. This performance is especially noteworthy given the complexity of managing multiple variables, including varying wind conditions and airport-specific runway configurations. The tool’s success in these areas suggests it could serve as a valuable asset in enhancing operational safety and efficiency in dynamic airport environments. The objective of this analysis was to assess how well the model’s predictions aligned with safety standards in a wide variety of wind scenarios. The results were analyzed to identify the safe versus unsafe predictions faced with the worst-case scenarios.
3.2 Simulated daily wind transitions
In the second part of the analysis, we utilize actual weather data for years 2018 and 2019 to construct a transition matrix that describes changes in wind conditions throughout a day. This transition matrix provides a probabilistic framework for simulating realistic changes in wind conditions over time.
We estimate reasonable changes on an hourly basis in wind and meteorological conditions and simulate realistic operations (based on historical data), each multiple times to consider random variations. In each episode, the wind speed and direction, the hour of the day, and the meteorological conditions are sampled, and the RCA tool predicts the runway configuration.
3.2.1 Procedure
	1. Random Day Selection: A day is randomly selected from the dataset.
	2. Initial Condition: A random wind condition is chosen as the starting point for the simulation.
	3. Simulation Process:	• Using the transition matrix, we simulate the evolution of the wind conditions for the entire day.
	• This process is repeated 100 times for each selected day to capture a broad spectrum of possible wind condition transitions.
	• The tool predicts the runway configuration


	4. Safety Evaluation:	• For each simulated day, the output of the ML model is evaluated against the safety criteria.
	• This entire procedure was repeated for 100 different days to ensure the robustness and reliability of the results.



We showcase a series of figures depicting the simulated days in various scenarios. For CLT, we chose a randomly selected day. Similarly, for DEN and DFW, we selected and analyzed the most challenging scenarios involving random cases of tailwind and crosswind violations. We then compared these realistic scenario outcomes with those generated by Monte Carlo simulations. Each figure provides detailed information, displaying the mean and standard deviations calculated from 100 simulation iterations. This approach offers a comprehensive view of the variability of each scenario and the robustness of our simulation methodology in capturing the dynamics of runway safety under different wind conditions. Figure 4 illustrates a realistic simulation of a whole day in CLT. It captures fluctuations in wind speed and direction throughout the day, along with instances of tailwind violations. The depicted tailwind violation data represent the mean of 100 values, each coded as 0 or 1, where 0 indicates a safe scenario and 1 denotes an unsafe scenario. This provides a clear visual representation of the frequency and distribution of tailwind violations throughout the day.
[image: Three-panel graph showing wind data over 24 hours. The top panel displays wind direction with a red dashed line indicating variations between east and south. The middle panel shows wind speed, decreasing throughout the day, represented with a green dashed line. The bottom panel displays tail wind violation with a minimal purple shaded area indicating low incidence.]FIGURE 4 | Realistic scenario simulation of CLT airport.Figures 5, 6 show three different scenarios, worst-case scenarios of tailwind and crosswind violation, and a random one for DEN and DFW, respectively. The worst-case scenarios highlight instances of maximum safety violations within the system. By adjusting the predictions made by the RCA tool, we can effectively address and mitigate these violations. The tailwind and crosswind violations sub figures show that the model predictions decrease the safety violation throughout the day. The random scenario sub-figures also show significant low violations among 100 simulations during a day. The dashed line indicates the mean value, and the colored boundary shows the standard deviation.
[image: Three rows of graphs illustrate wind scenarios over 24-hour periods. The first row shows wind direction in red for tailwind, crosswind, and random scenarios. The second row features wind speed in green. The third row highlights tail and crosswind violations in purple and orange. Each scenario displays varying trends and confidence intervals.]FIGURE 5 | Realistic scenario simulation of DEN airport.[image: Three rows of graphs display wind scenarios over 24 hours. The first row shows wind direction trends for tail, crosswind, and random scenarios. The second row illustrates wind speed variations, with shaded areas indicating variation ranges. The third row presents tail and crosswind violation probabilities, marked by purple and orange lines, respectively.]FIGURE 6 | Realistic scenario simulation of DFW airport.Table 3 shows the instances in which safety criteria are violated during both types of simulation. Notably, there is a significant reduction in the percentage of violations when comparing the results of Monte Carlo simulations to those from realistic scenarios. This indicates a marked improvement in the adherence to safety standards under more realistic operating conditions. This notable discrepancy between the two simulation scenarios, Monte Carlo and realistic, underscores the robustness and adaptability of our realistic simulation method, particularly in its superior ability to capture and respond to dynamic environmental variables when compared to the Monte Carlo simulations. This suggests that realistic simulation provides a more effective framework for understanding and managing complex real-world scenarios. The goal was to evaluate the performance of the model in predicting safe outputs over extended periods, reflecting realistic daily variations in wind conditions. This approach helps us understand how temporal changes in wind conditions impact the safety and reliability of the model’s predictions.
TABLE 3 | Comparison between Monte Carlo (MC) and realistic simulations for all airports.	Airport	CLT	DEN	DFW
	Sim.	MC	Realistic	MC	Realistic	MC	Realistic
	Crosswind violation (%)	4.7	0.4	16.7	3.7	6.2	1.3
	Tailwind violation (%)	0	0	15	5.8	20.3	2.6


4 CONCLUSION
The application of formal verification methods to the RCA tool helps us validate the tool’s output in adhering to crucial safety criteria in air traffic control. This study underscores the value of using formal methods, such as model-checking, to rigorously assess the safety of machine learning algorithms within a safety critical operational setting. By validating the RCA tool’s compliance with safety criteria in various simulated wind conditions, the research highlights the potential of formal verification to enhance the trustworthiness of automated decision-support systems. The results of the Monte Carlo random wind condition simulations provided insight into the model’s ability to handle a wide range of wind speeds and directions, highlighting potential biases or limitations in handling extreme conditions. In addition, the simulations based on the (historical data-based) transition matrix offered a detailed view of the model’s performance in realistic and dynamic wind scenarios, revealing how well the model maintains safety standards throughout typical daily wind fluctuations.
It is worth to mention that while the RCA tool currently uses CQL with tabular representation and function approximators, future extensions to deep RL architectures could leverage abstractions or symbolic encodings (e.g., decision trees, BDDs) to preserve tractability in model-checking. Existing approaches in neural-symbolic verification (e.g., abstraction-refinement) could support scalability.
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APPENDIX A. RCA-CTLOGIC VERIFICATION ALGORITHM
To complement the formal definitions and theoretical model-checking framework described above, Algorithm 1 outlines the complete verification procedure used to assess the safety of RCA tool outputs under varying wind conditions. The algorithm receives historical or simulated wind data as input, applies the RCA model to generate runway configuration decisions, and evaluates each decision against established crosswind and tailwind safety thresholds. The results are then analyzed using CTLogic to determine whether the model satisfies the temporal safety properties EFφ and EGφ.
Algorithm 1. RCA-CTLogic Model Checking Algorithm.
	Require: RCA_model, Wind_Data, Runway_Set, Safety_Limits, Transition_Matrix (optional)
	Ensure: EFφ and EGφ satisfaction results
	 1: Initialize CTL_State_Set ← [ ]
	 2: for each (V,α) in Wind_Data do
	 3:   config ← RCA_model.predict(V,α)
	 4:   (Vtail,Vcross)← compute_components(V,α,config)
	 5:   is_safe ←(Vtail<Ltail)∧(Vcross<Lcross)
	 6:   Append (V,α,config,is_safe) to CTL_State_Set
	 7: end for
	 8: Build Transition_Graph from CTL_State_Set using temporal ordering
	 9: EFφ← exists_path(CTL_State_Set, λs: s.is_safe)
	 10: EGφ← all_paths_always(CTL_State_Set, λs: s.is_safe)
	 11: return EFφ, EGφ
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2: for each (V,a) in Wind_Data do
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temporal ordering

9: EFg « Exists_pATH(CTL_State_Set, As: s.is_safe)

10: EGo « aLL_paTHS_ALWAYS(CTL_State_Set, As: s.is_safe)
11: return EFg, EGo
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