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Performance analysis of a
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Technology and System Department, Wangzhijiang Innovation Center for Laser, Shanghai Institute of
Optics and Fine Mechanics of CAS, Shanghai, China

Optical inter-satellite links are a promising technology for constructing satellite
backbone networks, owing to their high data transmission capacity and
lightweight terminals. To circumvent the data-rate bottlenecks and structural
complexity associated with optical-electrical-optical conversion, all-optical
signal processing is essential. This paper addresses a common challenge at
the relaying nodes of satellite backbone networks: handling concurrent
access requests from multiple laser links. We propose and validate an all-
optical data access system based on an optical time-lens. The system
demonstrates robust performance and high modulation format compatibility.
It successfully processes intensity-modulated, phase-modulated, and hybrid-
format inputs entirely in the optical domain. The system’s reliability is further
confirmed under practical conditions, including uneven wavelength spans and
unequal data rates among the accessing links. It achieves bit-error rates below
1077 and supports optical inter-satellite link transmission distances exceeding
4,500 km, even under hybrid modulation formats. With its simple structure and
high compatibility, the proposed system offers a scalable solution for future
multi-format satellite backbone networks.

KEYWORDS

all-optical signal processing, four-wave mixing, modulation format compatibility,
optical inter-satellite links, space laser backbone network

1 Introduction

Satellite communication networks are now considered as an indispensable part of the
space-air-ground integrated network architecture. This architecture aims to offer seamless
coverage anytime and anywhere in the Beyond 5G (B5G) and 6G era. Especially for remote
or sparsely populated areas such as mountainous, desert, or oceanic regions, satellite
communication networks can be an effective alternative at lower economic costs for
construction, management and maintenance (Meenu et al, 2024; Li et al, 2024a;
Toyoshima, 2021; Mao et al., 2024; Zhou et al., 2024). Recently, the rapid expansion of
cloud computing, big data, and the Internet of Things (IoT) has created relentless demand
for high-bandwidth, large-capacity data transmission services. Consequently, optical inter-
satellite links (ISLs) are considered as a crucial enabler for massive data transmission. They
offer many advantages over existing radio frequency (RF) based ISLs. For example, optical
ISLs offer higher bandwidth, enhanced security and directivity, lower transmit power,
reduced terminal weight and volume. They also utilize an unlicensed spectrum, which is of
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FIGURE 1
Schematic diagram of the satellite network architecture with LEO
and GEO/MEO layers.

significant benefit given the escalating scarcity of the RF spectrum
(Qu et al., 2022; Bhatnagar and Arti, 2013; Chan, 2024). Moreover,
optical ISLs are free from atmospheric turbulence, resulting in
significantly enhanced reliability and transmission distance
(Hyun and Han, 2023). Consequently, low Earth orbit (LEO)
satellite constellations like Kuiper, Starlink and Lightspeed, as
well as geostationary orbit (GEO) satellites such as the European
Data Relay System (EDRS) and the High Throughput Optical
Network (HydRON) within the ScyLight program, are all actively
testing or deploying optical ISLs., User data rates now exceed 10 Gb/
s, with the total throughput approaching 100 Gb/s (Ricldnder et al.,
2022; Laguna et al., 2023).

The widely recognized architecture of optical-ISL-based satellite
networks primarily comprises two layers: the GEO/medium Earth
orbit (MEO) layer and the LEO layer, as illustrated in Figure 1
(Wang et al., 2024; Xia et al., 2023). LEO satellites, interconnected by
optical ISLs, typically function as low-latency relay nodes with short
paths. This makes them suitable for delay-sensitive services. In
contrast, GEO/MEO satellites provide wider coverage. They are
ideal for relaying delay-tolerant data from the LEO layer or deep
space to ground stations, thereby reducing the number of hops and
enhancing overall performance (Liang et al., 2024; Chaudhry et al.,
2023). This architecture enables seamless communication between
any space, air, or ground terminals via access to the satellite network.

Furthermore, space terminals may employ different modulation
formats depending on their specific purposes and functions. This
leads to a coexistence of diverse formats within the integrated
networks. For instance, on-off keying (OOK) is widely used
among LEO satellites due to its simplicity and maturity, as seen
in DLR’s OSIRIS. Pulse-position modulation (PPM) is often
considered for deep-space ultra-long-distance transmission
because of its superior power efficiency compared to OOK,
exemplified by NASA’s Deep Space Optical Communications
(DSOC). Meanwhile, coherent modulation formats, such as
differential phase-shift keying (DPSK) and quadrature phase-shift
keying (QPSK), are preferred for inter-satellite and high-capacity
data links. Their high receiver sensitivity and strong resistance to
background interference make them suitable for systems like,
Japan’s JDRS and ESA’s EDRS (Li et al., 2022; Vieira et al., 2023;
Ding et al., 2022). Consequently, when multiple optical ISLs arrive at
a relay satellite simultaneously, synchronous and rapid data access
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processing is essential. This processing must maintain high
bandwidth and low latency to ensure reliable and effective optical
data transmission. Therefore, relay satellites, whether in the LEO or
GEO/MEOQO layer, must be compatible with multiple modulation
formats to accommodate the diversity of existing and future space
terminals. They must also be capable of concurrently handling
multiple access optical ISLs with sufficient bandwidth to meet the
ever-growing data capacity demands.

To address these current and anticipated challenges, optical
signal processing (OSP) technologies present simple and versatile
solutions. They can effectively avoid the bandwidth bottlenecks and
complex configurations commonly associated with optical-
electrical-optical (OEO) conversion (Li et al, 2024b; Ji et al,
2019). Specifically, for the relay satellites described above, the
optical time lens (OTL) is a particular suitable OSP method. It
can optically and synchronously aggregate data from several parallel
ISLs onto a single backbone link with a high aggregating data rate.
This simultaneously responds to multiple access requests from
various optical ISLs (Lillicholm et al., 2022). This approach can
significantly reduce the size, weight, power and cost (SWaP-C) of the
data access unit, which are critical factors for space terminals.

Existing research on OTL mainly focuses on ultrafast spectral
analysis (Meir et al., 2025), modulation format conversion (Guan
et al., 2017), ultrafast optical signal processing (Liu et al., 2025;
Cheung et al, 2024) and transformation (Zhang et al, 2025).
However, when implemented in satellite networks, new specifics
appear that have not been considered or discussed before. These
include handling mixed modulation formats and non-uniform link
parameters.

In this paper, we present an OTL-based all-optical data access
system for relaying optical ISLs. By selecting the four-wave mixing
(FWM) nonlinear effect, we demonstrate the system’s significant
advantages. These include synchronous response to multi-ISL
access, high processing bandwidth and format compatibility. The
simplified architecture reduces the number of components, thereby
lowering the SWaP-C of a satellite relay unit. The ability to handle
mixed modulation formats and non-uniform link parameters
concurrently is a critical requirement for practical satellite relays.
Yet, this has been largely overlooked in prior OTL research. This
work comprehensively addresses this gap, highlighting system
innovations in multi-format and multi-ISL handling capabilities.
We also discuss practical factors that can affect relaying
performance, such as unequal wavelength spans and different
access data rates. The constructed system exhibits excellent
flexibility —of future satellite

reliability, ~enhancing the

backbone networks.

2 Materials and methods

The concept of optical space-time duality establishes a
correspondence between the spatial diffraction of a paraxial beam
and the temporal dispersion of an optical pulse (Kolner, 1994). An
OTL can be constructed by applying a temporal quadratic phase
modulation (QPM), @ (t) = Ct?/2 (where C is the linear chirp rate),
to a pulse sequence. This process is analogous to the function of a
spatial thin lens. When combined with a dispersive medium of
length L and accumulated dispersion D (where D = B,L, and B, is

frontiersin.org


https://www.frontiersin.org/journals/advanced-optical-technologies
https://www.frontiersin.org
https://doi.org/10.3389/aot.2025.1739755

Huang et al.

10.3389/a0t.2025.1739755

FIGURE 2
Schematic diagram of an OTL unit.
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Schematic diagram of the OTL-based all-optical data access system. (MZM, Mach-Zehnder modulator; VOA, variable optical attenuator; WDM,
wavelength-division multiplexer; EDFA, erbium-doped fiber amplifier; OBPF, optical bandpass filter; DCF, dispersion compensating fiber; SMF, single
mode fiber; Demux, demultiplexer; RX, receiver; BER, bit error ratio tester; OSC, oscilloscope; OSA, optical spectrum analyzer).

TABLE 1 Parameters of the optical fibers used in the OTL-based system.

Parameter SMF DCF HNLF#1 HNLF#2
D (ps/nm - km) 18 —-195.94 -1 -0.22
Dispersion — — 0.006 0.0045
slope (ps/nm? - km)
B, (ps*/km) 22.95 249.36 — —
Acff (pm?) 72 80 10 10
L (km) 1.7346 = 0.0798 0.5 0.5

the second-order group-velocity dispersion coefficient), and under
the condition C-D =1, the spectral profile of the input pulse
sequence is converted into the temporal intensity profile of the
output signal (Lillicholm et al., 2017; Mulvad et al., 2011). The input
spectral interval Av is also mapped onto the output temporal interval
At according to the relationship A7 =|D|-27Av , as shown
in Figure 2.

In the OTL unit, the required QPM can be achieved through
other electro-optic modulation (EOM), cross-phase modulation
(XPM), or FWM (Huang et al., 2023). In this work, we selected
the FWM-based scheme to implement the OTL. This choice is
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primarily due to its superior format transparency and precision
in phase manipulation, which are crucial for practical applications. In
this scheme, a pump pulse (with filed E, at frequency w,) is firstly
chirped at a rate C/2. It is then coupled with the input ISLs (with filed
E; at w;) into a highly nonlinear fiber (HNLF) to stimulate the FWM
effect. A newly generated idler via the FWM process (with field
E; ¢ EIZ, . E; at w; = 2w, — w,) acquires the QPM with chirp rate C
from the pump pulse (Ding et al., 2022). Subsequently, propagating
this idler through the dispersive medium, as described earlier, the data
from all input ISLs are simultaneously converted onto the single idler
wavelength, creating the relayed signal. A key advantage of this scheme
is the format transparency originating from the FWM process, which
imposes no restrictions on the modulation formats of the input ISLs.

Based on these principles, the diagram of the proposed all-
optical data access system based on OTL for optical ISLs relaying is
shown in Figure 3.

In the User ISLs unit, four optical carrier signals are used. Their
wavelengths are 1,554.94 nm, 1,555.74 nm, 1,556.55 nm and
1,557.36 nm (following the ITU standard wavelength), with a
spectral interval of Av=100GHz. They are independently
modulated with 10 Gb/s data streams to emulate the access ISLs
from different spatial platforms. By adjusting the bias voltage and
driving amplitude of the MZMs, the modulation format can be set to
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TABLE 2 Link budget for the ISL transmission configurations.

10.3389/a0t.2025.1739755

Link parameter Symbol/Unit Value Note
Optical launch power P,/dBm 10 —
Free space loss a/dB —271.24/-291.24 4,500km/45,000 km
Antenna aperture (transmitter) Dy/cm 12 —
Antenna gain (transmitter) G;/dB 107.7 G = 1010g10(”TDf)2
Antenna aperture (receiver) D,/cm 12 —
Antenna gain (receiver) G,/dB 107.7 G, = 10logy, (nf,)Z
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(d)

Simulation results of four identical RZ-OOK format access scenario. (a) Optical spectrum at the HNLF#2 output. (b) Optical waveform of the relayed
signal. (c) Eye diagram of the demodulated OOK. (d) BER curve of the demodulated OOK.

return-to-zero OOK (RZ-OOK) or RZ-DPSK. VOAs are used to
simulate the free-space loss experienced by the ISLs.

In the all-optical data access unit, a pump pulse train with
10 GHz repetition frequency and centered at 1,565.09 nm is firstly

Advanced Optical Technologies

amplified. Its spectrum is broadened to 21 nm via self-phase
modulation (SPM) in HNLF#1 to ensure coverage of all input
signals’ spectral range. After filtered with OBPF#1, the pump
pulse is then linearly chirped by propagating through the SMF to
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Simulation results of four identical RZ-DPSK format access scenario. (a) Eye diagram of the demodulated DPSK. (b) BER curve of the

demodulated DPSK.

achieve a chirp rate of C/2 = 2GHz/ps. This specific value of C is
precalculated in order to obtain a target relayed signal with data rate
of 40 Gbps and temporal interval of At = 25ps. Then this chirped
pump is injected into HNLF#2 along with the combined user ISLs to
stimulate the FWM process. At the output of HNLF#2, the newly
generated idler (centered at 1,574.5 nm and possessing the QPM
with chirp rate C = 4GHz/ps) is filtered out by OBPF#2. It is then
passed through a DCF with dispersion D = 1/C to finally generate
the target 40 Gb/s relayed signal. The specific parameters of the
optical fibers used in this unit are listed in Table 1. These parameters
values are selected to fulfill the OTL constructing requirements.

A test and analysis unit is finally constructed to evaluate the
quality of the relayed signal. The high-data-rate relayed signal is
demultiplexed and demodulated by corresponding receivers.
Afterwards, its waveform, eye diagram, and BER are measured.
The system was simulated and validated using Optisystem 15.

Furthermore, it should be noted that in practical satellite
communication, the received optical power of ISLs at relay nodes
can vary significantly. This is due to differing transmission distances,
which may range from 4,500km to 45,000 km (Chaudhry et al., 2023;
Klein et al., 2017; Qasim et al., 2024). Considering that free-space
loss is the dominated power loss mechanism in space environments,
this paper primarily focuses on this factor. The free-space loss a is
calculated as a = 201g (47d/)), where d is the transmission distance
and A is the link wavelength (Xia et al., 2023). Combing with the
antenna gain at the transmitter G, and receiver G,, the received
optical power P; is calculated by P, = Py + G; + o + G;, with P, the
optical launch power. The detailed link budget used in our analysis is
listed in Table 2, with the wavelength set to 1550 nm.

3 Results

We first evaluated the system performance under an identical
format scenario by setting all four ISLs to 33% RZ-OOK. After
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combining with the appropriately broadened and chirped pump,
they were injected into HNLF#2. During the FWM process, an idler
was generated (Figure 4a), which acquired the requisite QPM from
the pump and carried the data from all four ISLs. After filtering out
the idler and then propagating it through the subsequent DCF, we
obtained a 40 Gb/s relayed signal. Its time-domain waveform is
shown in Figure 4b, where four distinct peaks are observed within
each 100ps interval, corresponding to the four access ISLs.
Therefore, successful access processing is confirmed.

The four time-slot tributaries were then demodulated, and one
of the eye diagrams is exhibited in Figure 4c. The clean and widely
open eye diagram indicates excellent signal quality. The measured
BER curve is shown in Figure 4d with an average receiving
sensitivity of —48.95 dBm at a BER level of 107. This low
sensitivity implies a low insertion loss of the access unit. Based
on the aforementioned free-space loss calculation, it supports
transmission distance of the arriving ISLs up to 6,500 km.

We then configured all four ISLs as 33% RZ-DPSK to further
verify the system’s compatibility with phase-modulated formats,
keeping other parameters unchanged. The obtained results in
Figure 5 illustrate that the system still successfully relayed the
signals onto a single 40 Gb/s backbone link. One of the
demodulated tributaries’ eye diagram in Figure 5a remains open
and clean. The measured BER curve (Figure 5b) shows a receiver
sensitivity of —=50.75 dBm at a BER level of 107”. This corresponds to
a maximum transmission distance up to 8,000 km for the arriving
ISLs. This extended range, compared to the OOK scenario, is
attributed to the inherently superior receiver sensitivity of
DPSK format.

Subsequently, a hybrid access scenario was investigated. This
corresponds to the practical situation where ISLs from different
platform may employ different modulation formats. We set two ISLs
to RZ-OOK and other two to RZ-DPSK, while maintaining the same
system configuration. The simulated results are presented in
Figure 6. After QPM in HNLF#2 and filtering out the idler
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®

Simulation results of the hybrid access scenario. (a) Optical spectrum at the HNLF#2 output. (b) Optical waveform of relayed signal. (c) Eye diagram
of demodulated OOK. (d) Eye diagram of demodulated DPSK. (e) BER curve of demodulated OOK (-45.72 dBm). (f) BER curve of demodulated

DPSK (-49.65 dBm).

(Figure 6a), the generated 40 Gb/s relayed signal was transmitted
through the DCF, with its optical waveform shown in Figure 6b. It is
important to note that in this hybrid scenario, the relayed signal
exhibits unequal pulse intervals. The reason is that OOK signals own

Advanced Optical Technologies

two intensity level (“0” and “1”), whereas DPSK signals maintain a
constant intensity (“17), leading to a variable number of pulses
100ps interval, depending on the OOK
modulation state.

within  each
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Simulation results of the uneven wavelength access scenario. (a) Optical spectrum at the HNLF#2 input. (b) Optical waveform of relayed signal. (c)
Oscillograph of the demodulated DPSK. (d) Eye diagram of the demodulated DPSK.
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Simulation results of the demodulated signals at unequal data rates. (a) Eye diagram of 5 Gbps DPSK. (b) Eye diagram of 10 Gbps DPSK.
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TABLE 3 Performance comparison of the proposed system with representative prior works.

Modulation
format

References
(Year)

Application scenarios

Receiver sensitivity
(BER = 107)

Key features/Differences

Mulvad et al. (2011) Fiber optical communication OOK (single) ~-38 dBm Single modulation, lacks considerations
for space applications
Guan et al. (2014) ‘ Fiber optical communication DPSK (single) ‘ ~-41 dBm ‘
This work Satellite (free space) optical OOK & DPSK -48.95 dBm (OOK), -50.75 dBm Space applications related considerations
communication (simultaneously) (DPSK)

The relayed signal was then demodulated, and the  processing function, the degraded eye diagrams of the
corresponding eye diagrams for the OOK and DPSK tributaries ~ demodulated tributaries (Figure 8) reveal deteriorated
are shown in Figures 6¢,d, respectively. These results confirm that  performance and a high BER floor. This performance

the system can properly and simultaneously relay format-hybrid
access ISLs, demonstrating excellent format compatibility. This
feature has not been considered or discussed previously in the
existing literature. It significantly broadens the system’s potential
application scenarios.

The measured BER curves of the demodulated OOK and DPSK
tributaries are presented in Figures 6e,f. The average receiver
sensitivity for OOK is —45.72 dBm at a BER level of 1077,
supporting arriving ISLs with a transmission distance up to
4,500 km. For DPSK, the average sensitivity
is —49.65 dBm at a BER level of 1077, corresponding to a

receiver

maximum transmission distance of 7,100 km for the arriving ISLs.

Although in the hybrid scenario, the access unit shows some
sensitivity penalty compared to the identical-format cases, it
successfully fulfills the simultaneous access requirements for links
from at least 4,500 km away. This demonstrates greater flexibility
and enhanced compatibility with mixed modulation formats.

We further analyzed the scenario where the access ISLs are
located at unevenly spaced wavelengths. This is another practical
consideration when links originate from diverse users. Here, one ISL
was deactivated, leaving access signals at 1,554.94nm, 1,555.75nm,
and 1,557.36nm, all modulated with identical RZ-DPSK data
(Figure 7a). Other parameters remained unchanged. The optical
waveform of the obtained 30 Gb/s relayed signal is shown in
Figure 7b, with the temporal profile analogous to the input
spectrum of the three access ISLs. The oscillograph and eye
diagram of the demodulated DPSK tributaries are presented in
Figures 7c,d. These results indicate that unevenly distributed
wavelengths of the access ISLs do not impair the system
functionality. The key difference is the deleted time slots in the
relayed signal, as shown in Figure 7b. This appearance originates
from the space-time duality principle of the OTL. We also found that
the larger wavelength span in this case actually reduced the inter-
symbol interference, leading to a better eye diagram (Figure 7d)
compared to the uniform wavelength interval case (Figure 6d), and
consequently, improved BER performance.

Finally, we considered the unequal data rates scenario, where
accessing ISLs may operate at different data rates. We configured
two ISLs at 10 Gb/s and two at 5 Gb/s, keeping other parameters
unchanged. It is crucial to remember that the OTL-based system
directly maps the input ISLs’ spectral profile onto the relayed signal’s
temporal intensity profile. Consequently, the unequal data rates are
not directly discernible from the relayed signal’s overall waveform.
Its spectrum and waveform appear similar to those in Figures 5a,b.
However, while the system accurately performs the access
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degradation stems from the fact that the relayed signal contains
all input data rates. The unequal rates cause temporal overlap and
crosstalk within the relayed signal’s time slots because the pulses
from lower-rate links have a longer duration, severely degrading the
BER performance.

4 Discussion

The escalating demand for bandwidth is accelerating the
maturation of space laser communication technology. This
positions optical ISLs as indispensable components of the next-
generation space backbone networks. Consequently, all-optical
processing at the network’s relaying nodes is highly desirable.
This paper presented, simulated, and validated a low-complexity,
OTL-based all-optical data access system for satellite backbone
networks. The system’s reliability and modulation format
compatibility were thoroughly examined. Simulation results
confirm that the constructed system can simultaneously relay
multiple ISLs with good performance. This holds true even when
they employ different modulation formats or have uneven
wavelength spans. These practical and vital considerations for
satellite payload design have been largely overlooked in previous
studies. Moreover, the system supports ISL transmission distances of
at least 4,500 km under hybrid modulation formats at BER level of
1077, representing more excellent and compatible performance
compared to existing solutions. More importantly, the FWM-
based OTL in the proposed system is inherently format-
transparent. This means the fundamental principle imposes no
restriction on the modulation format, making the system
compatible with other formats.

Table 3 compares the key performance metrics of our proposed
OTL-based access system with those reported in representative
studies on OTL (Mulvad et al., 2011; Guan et al., 2014). Our
system demonstrates competitive or superior receiver sensitivity.
It uniquely offers simultaneous multi-format (OOK/DPSK) and
multi-ISL handling capability, which are not typically featured in
the compared works.

The performance degradation observed in the unequal data rate
scenario highlights a limitation of the current OTL mapping
principle for handling asynchronous rate mixtures. This suggests
an area for future investigation, potentially involving optical
buffering or rate adaptation techniques. As the construction of
global information interconnection networks accelerates, all-
optical relaying will be a cornerstone technology for space laser
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backbone networks. The relaying system demonstrated in this work
provides valuable technical support and a scalable architectural
framework for designing future space networks.

5 Conclusion

We have proposed and validated an all-optical data access
system based on an optical time lens for satellite backbone
networks. The system demonstrates robust performance,
achieving BERs below 107 with receiver sensitivities
of -48.95 dBm for OOK and -50.75 dBm for DPSK in
identical-format scenarios. This supports ISL transmission
distances beyond 6,500 km. Crucially, under a hybrid OOK/
DPSK input, it maintains a BER below 107 for distances up to
4,500 km,
compatibility. Its simple structure and scalability to handle

confirming its strong modulation format
non-uniform wavelength spans make it a promising candidate
for future multi-format satellite communication systems. Future
work will focus on extending the system to handle higher data
rates, a larger number of ISLs, and other advanced formats such
as QPSK or higher-order quadrature amplitude modulation
(QAM). We will also investigate methods to mitigate the
performance penalty in unequal data rate scenarios.
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