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Optical inter-satellite links are a promising technology for constructing satellite 
backbone networks, owing to their high data transmission capacity and 
lightweight terminals. To circumvent the data-rate bottlenecks and structural 
complexity associated with optical-electrical-optical conversion, all-optical 
signal processing is essential. This paper addresses a common challenge at 
the relaying nodes of satellite backbone networks: handling concurrent 
access requests from multiple laser links. We propose and validate an all- 
optical data access system based on an optical time-lens. The system 
demonstrates robust performance and high modulation format compatibility. 
It successfully processes intensity-modulated, phase-modulated, and hybrid- 
format inputs entirely in the optical domain. The system’s reliability is further 
confirmed under practical conditions, including uneven wavelength spans and 
unequal data rates among the accessing links. It achieves bit-error rates below 
10−7 and supports optical inter-satellite link transmission distances exceeding 
4,500 km, even under hybrid modulation formats. With its simple structure and 
high compatibility, the proposed system offers a scalable solution for future 
multi-format satellite backbone networks.
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1 Introduction

Satellite communication networks are now considered as an indispensable part of the 
space-air-ground integrated network architecture. This architecture aims to offer seamless 
coverage anytime and anywhere in the Beyond 5G (B5G) and 6G era. Especially for remote 
or sparsely populated areas such as mountainous, desert, or oceanic regions, satellite 
communication networks can be an effective alternative at lower economic costs for 
construction, management and maintenance (Meenu et al., 2024; Li et al., 2024a; 
Toyoshima, 2021; Mao et al., 2024; Zhou et al., 2024). Recently, the rapid expansion of 
cloud computing, big data, and the Internet of Things (IoT) has created relentless demand 
for high-bandwidth, large-capacity data transmission services. Consequently, optical inter- 
satellite links (ISLs) are considered as a crucial enabler for massive data transmission. They 
offer many advantages over existing radio frequency (RF) based ISLs. For example, optical 
ISLs offer higher bandwidth, enhanced security and directivity, lower transmit power, 
reduced terminal weight and volume. They also utilize an unlicensed spectrum, which is of 
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significant benefit given the escalating scarcity of the RF spectrum 
(Qu et al., 2022; Bhatnagar and Arti, 2013; Chan, 2024). Moreover, 
optical ISLs are free from atmospheric turbulence, resulting in 
significantly enhanced reliability and transmission distance 
(Hyun and Han, 2023). Consequently, low Earth orbit (LEO) 
satellite constellations like Kuiper, Starlink and Lightspeed, as 
well as geostationary orbit (GEO) satellites such as the European 
Data Relay System (EDRS) and the High Throughput Optical 
Network (HydRON) within the ScyLight program, are all actively 
testing or deploying optical ISLs., User data rates now exceed 10 Gb/ 
s, with the total throughput approaching 100 Gb/s (Rieländer et al., 
2022; Laguna et al., 2023).

The widely recognized architecture of optical-ISL-based satellite 
networks primarily comprises two layers: the GEO/medium Earth 
orbit (MEO) layer and the LEO layer, as illustrated in Figure 1
(Wang et al., 2024; Xia et al., 2023). LEO satellites, interconnected by 
optical ISLs, typically function as low-latency relay nodes with short 
paths. This makes them suitable for delay-sensitive services. In 
contrast, GEO/MEO satellites provide wider coverage. They are 
ideal for relaying delay-tolerant data from the LEO layer or deep 
space to ground stations, thereby reducing the number of hops and 
enhancing overall performance (Liang et al., 2024; Chaudhry et al., 
2023). This architecture enables seamless communication between 
any space, air, or ground terminals via access to the satellite network.

Furthermore, space terminals may employ different modulation 
formats depending on their specific purposes and functions. This 
leads to a coexistence of diverse formats within the integrated 
networks. For instance, on-off keying (OOK) is widely used 
among LEO satellites due to its simplicity and maturity, as seen 
in DLR’s OSIRIS. Pulse-position modulation (PPM) is often 
considered for deep-space ultra-long-distance transmission 
because of its superior power efficiency compared to OOK, 
exemplified by NASA’s Deep Space Optical Communications 
(DSOC). Meanwhile, coherent modulation formats, such as 
differential phase-shift keying (DPSK) and quadrature phase-shift 
keying (QPSK), are preferred for inter-satellite and high-capacity 
data links. Their high receiver sensitivity and strong resistance to 
background interference make them suitable for systems like, 
Japan’s JDRS and ESA’s EDRS (Li et al., 2022; Vieira et al., 2023; 
Ding et al., 2022). Consequently, when multiple optical ISLs arrive at 
a relay satellite simultaneously, synchronous and rapid data access 

processing is essential. This processing must maintain high 
bandwidth and low latency to ensure reliable and effective optical 
data transmission. Therefore, relay satellites, whether in the LEO or 
GEO/MEO layer, must be compatible with multiple modulation 
formats to accommodate the diversity of existing and future space 
terminals. They must also be capable of concurrently handling 
multiple access optical ISLs with sufficient bandwidth to meet the 
ever-growing data capacity demands.

To address these current and anticipated challenges, optical 
signal processing (OSP) technologies present simple and versatile 
solutions. They can effectively avoid the bandwidth bottlenecks and 
complex configurations commonly associated with optical- 
electrical-optical (OEO) conversion (Li et al., 2024b; Ji et al., 
2019). Specifically, for the relay satellites described above, the 
optical time lens (OTL) is a particular suitable OSP method. It 
can optically and synchronously aggregate data from several parallel 
ISLs onto a single backbone link with a high aggregating data rate. 
This simultaneously responds to multiple access requests from 
various optical ISLs (Lillieholm et al., 2022). This approach can 
significantly reduce the size, weight, power and cost (SWaP-C) of the 
data access unit, which are critical factors for space terminals.

Existing research on OTL mainly focuses on ultrafast spectral 
analysis (Meir et al., 2025), modulation format conversion (Guan 
et al., 2017), ultrafast optical signal processing (Liu et al., 2025; 
Cheung et al., 2024) and transformation (Zhang et al., 2025). 
However, when implemented in satellite networks, new specifics 
appear that have not been considered or discussed before. These 
include handling mixed modulation formats and non-uniform link 
parameters.

In this paper, we present an OTL-based all-optical data access 
system for relaying optical ISLs. By selecting the four-wave mixing 
(FWM) nonlinear effect, we demonstrate the system’s significant 
advantages. These include synchronous response to multi-ISL 
access, high processing bandwidth and format compatibility. The 
simplified architecture reduces the number of components, thereby 
lowering the SWaP-C of a satellite relay unit. The ability to handle 
mixed modulation formats and non-uniform link parameters 
concurrently is a critical requirement for practical satellite relays. 
Yet, this has been largely overlooked in prior OTL research. This 
work comprehensively addresses this gap, highlighting system 
innovations in multi-format and multi-ISL handling capabilities. 
We also discuss practical factors that can affect relaying 
performance, such as unequal wavelength spans and different 
access data rates. The constructed system exhibits excellent 
reliability, enhancing the flexibility of future satellite 
backbone networks.

2 Materials and methods

The concept of optical space-time duality establishes a 
correspondence between the spatial diffraction of a paraxial beam 
and the temporal dispersion of an optical pulse (Kolner, 1994). An 
OTL can be constructed by applying a temporal quadratic phase 
modulation (QPM), φ(t) � Ct2/2 (where C is the linear chirp rate), 
to a pulse sequence. This process is analogous to the function of a 
spatial thin lens. When combined with a dispersive medium of 
length L and accumulated dispersion D (where D � β2L, and β2 is 

FIGURE 1 
Schematic diagram of the satellite network architecture with LEO 
and GEO/MEO layers.
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the second-order group-velocity dispersion coefficient), and under 
the condition C · D � 1, the spectral profile of the input pulse 
sequence is converted into the temporal intensity profile of the 
output signal (Lillieholm et al., 2017; Mulvad et al., 2011). The input 
spectral interval Δ] is also mapped onto the output temporal interval 
Δτ according to the relationship Δτ � |D| · 2πΔ] , as shown 
in Figure 2.

In the OTL unit, the required QPM can be achieved through 
other electro-optic modulation (EOM), cross-phase modulation 
(XPM), or FWM (Huang et al., 2023). In this work, we selected 
the FWM-based scheme to implement the OTL. This choice is 

primarily due to its superior format transparency and precision 
in phase manipulation, which are crucial for practical applications. In 
this scheme, a pump pulse (with filed Ep at frequency ωp) is firstly 
chirped at a rate C/2. It is then coupled with the input ISLs (with filed 
Es at ωs) into a highly nonlinear fiber (HNLF) to stimulate the FWM 
effect. A newly generated idler via the FWM process (with field 
Ei∝E2

p · E
*
s at ωi � 2ωp −ωs) acquires the QPM with chirp rate C

from the pump pulse (Ding et al., 2022). Subsequently, propagating 
this idler through the dispersive medium, as described earlier, the data 
from all input ISLs are simultaneously converted onto the single idler 
wavelength, creating the relayed signal. A key advantage of this scheme 
is the format transparency originating from the FWM process, which 
imposes no restrictions on the modulation formats of the input ISLs.

Based on these principles, the diagram of the proposed all- 
optical data access system based on OTL for optical ISLs relaying is 
shown in Figure 3.

In the User ISLs unit, four optical carrier signals are used. Their 
wavelengths are 1,554.94 nm, 1,555.74 nm, 1,556.55 nm and 
1,557.36 nm (following the ITU standard wavelength), with a 
spectral interval of Δ] � 100GHz. They are independently 
modulated with 10 Gb/s data streams to emulate the access ISLs 
from different spatial platforms. By adjusting the bias voltage and 
driving amplitude of the MZMs, the modulation format can be set to 

FIGURE 2 
Schematic diagram of an OTL unit.

FIGURE 3 
Schematic diagram of the OTL-based all-optical data access system. (MZM, Mach-Zehnder modulator; VOA, variable optical attenuator; WDM, 
wavelength-division multiplexer; EDFA, erbium-doped fiber amplifier; OBPF, optical bandpass filter; DCF, dispersion compensating fiber; SMF, single 
mode fiber; Demux, demultiplexer; RX, receiver; BER, bit error ratio tester; OSC, oscilloscope; OSA, optical spectrum analyzer).

TABLE 1 Parameters of the optical fibers used in the OTL-based system.

Parameter SMF DCF HNLF#1 HNLF#2

D (ps/nm · km) 18 −195.94 −1 −0.22

Dispersion 
slope (ps/nm2 · km)

— — 0.006 0.0045

β2(ps
2/km) 22.95 249.36 — —

Aeff(μm2) 72 80 10 10

L (km) 1.7346 0.0798 0.5 0.5
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return-to-zero OOK (RZ-OOK) or RZ-DPSK. VOAs are used to 
simulate the free-space loss experienced by the ISLs.

In the all-optical data access unit, a pump pulse train with 
10 GHz repetition frequency and centered at 1,565.09 nm is firstly 

amplified. Its spectrum is broadened to 21 nm via self-phase 
modulation (SPM) in HNLF#1 to ensure coverage of all input 
signals’ spectral range. After filtered with OBPF#1, the pump 
pulse is then linearly chirped by propagating through the SMF to 

TABLE 2 Link budget for the ISL transmission configurations.

Link parameter Symbol/Unit Value Note

Optical launch power Pt/dBm 10 —

Free space loss α/dB −271.24/-291.24 4,500km/45,000 km

Antenna aperture (transmitter) Dt/cm 12 —

Antenna gain (transmitter) Gt/dB 107.7 Gt � 10 log10(
πDt

λ )
2

Antenna aperture (receiver) Dr/cm 12 —

Antenna gain (receiver) Gr/dB 107.7 Gr � 10 log10(
πDr

λ )
2

FIGURE 4 
Simulation results of four identical RZ-OOK format access scenario. (a) Optical spectrum at the HNLF#2 output. (b) Optical waveform of the relayed 
signal. (c) Eye diagram of the demodulated OOK. (d) BER curve of the demodulated OOK.
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achieve a chirp rate of C/2 � 2GHz/ps. This specific value of C is 
precalculated in order to obtain a target relayed signal with data rate 
of 40 Gbps and temporal interval of Δτ � 25ps. Then this chirped 
pump is injected into HNLF#2 along with the combined user ISLs to 
stimulate the FWM process. At the output of HNLF#2, the newly 
generated idler (centered at 1,574.5 nm and possessing the QPM 
with chirp rate C � 4GHz/ps) is filtered out by OBPF#2. It is then 
passed through a DCF with dispersion D � 1/C to finally generate 
the target 40 Gb/s relayed signal. The specific parameters of the 
optical fibers used in this unit are listed in Table 1. These parameters 
values are selected to fulfill the OTL constructing requirements.

A test and analysis unit is finally constructed to evaluate the 
quality of the relayed signal. The high-data-rate relayed signal is 
demultiplexed and demodulated by corresponding receivers. 
Afterwards, its waveform, eye diagram, and BER are measured. 
The system was simulated and validated using Optisystem 15.

Furthermore, it should be noted that in practical satellite 
communication, the received optical power of ISLs at relay nodes 
can vary significantly. This is due to differing transmission distances, 
which may range from 4,500km to 45,000 km (Chaudhry et al., 2023; 
Klein et al., 2017; Qasim et al., 2024). Considering that free-space 
loss is the dominated power loss mechanism in space environments, 
this paper primarily focuses on this factor. The free-space loss α is 
calculated as α � 20 lg(4πd/λ), where d is the transmission distance 
and λ is the link wavelength (Xia et al., 2023). Combing with the 
antenna gain at the transmitter Gt and receiver Gr, the received 
optical power Pr is calculated by Pr � Pt + Gt + α + Gr, with Pt the 
optical launch power. The detailed link budget used in our analysis is 
listed in Table 2, with the wavelength set to 1550 nm.

3 Results

We first evaluated the system performance under an identical 
format scenario by setting all four ISLs to 33% RZ-OOK. After 

combining with the appropriately broadened and chirped pump, 
they were injected into HNLF#2. During the FWM process, an idler 
was generated (Figure 4a), which acquired the requisite QPM from 
the pump and carried the data from all four ISLs. After filtering out 
the idler and then propagating it through the subsequent DCF, we 
obtained a 40 Gb/s relayed signal. Its time-domain waveform is 
shown in Figure 4b, where four distinct peaks are observed within 
each 100ps interval, corresponding to the four access ISLs. 
Therefore, successful access processing is confirmed.

The four time-slot tributaries were then demodulated, and one 
of the eye diagrams is exhibited in Figure 4c. The clean and widely 
open eye diagram indicates excellent signal quality. The measured 
BER curve is shown in Figure 4d with an average receiving 
sensitivity of −48.95 dBm at a BER level of 10−7. This low 
sensitivity implies a low insertion loss of the access unit. Based 
on the aforementioned free-space loss calculation, it supports 
transmission distance of the arriving ISLs up to 6,500 km.

We then configured all four ISLs as 33% RZ-DPSK to further 
verify the system’s compatibility with phase-modulated formats, 
keeping other parameters unchanged. The obtained results in 
Figure 5 illustrate that the system still successfully relayed the 
signals onto a single 40 Gb/s backbone link. One of the 
demodulated tributaries’ eye diagram in Figure 5a remains open 
and clean. The measured BER curve (Figure 5b) shows a receiver 
sensitivity of −50.75 dBm at a BER level of 10−7. This corresponds to 
a maximum transmission distance up to 8,000 km for the arriving 
ISLs. This extended range, compared to the OOK scenario, is 
attributed to the inherently superior receiver sensitivity of 
DPSK format.

Subsequently, a hybrid access scenario was investigated. This 
corresponds to the practical situation where ISLs from different 
platform may employ different modulation formats. We set two ISLs 
to RZ-OOK and other two to RZ-DPSK, while maintaining the same 
system configuration. The simulated results are presented in 
Figure 6. After QPM in HNLF#2 and filtering out the idler 

FIGURE 5 
Simulation results of four identical RZ-DPSK format access scenario. (a) Eye diagram of the demodulated DPSK. (b) BER curve of the 
demodulated DPSK.
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(Figure 6a), the generated 40 Gb/s relayed signal was transmitted 
through the DCF, with its optical waveform shown in Figure 6b. It is 
important to note that in this hybrid scenario, the relayed signal 
exhibits unequal pulse intervals. The reason is that OOK signals own 

two intensity level (“0” and “1”), whereas DPSK signals maintain a 
constant intensity (“1”), leading to a variable number of pulses 
within each 100ps interval, depending on the OOK 
modulation state.

FIGURE 6 
Simulation results of the hybrid access scenario. (a) Optical spectrum at the HNLF#2 output. (b) Optical waveform of relayed signal. (c) Eye diagram 
of demodulated OOK. (d) Eye diagram of demodulated DPSK. (e) BER curve of demodulated OOK (−45.72 dBm). (f) BER curve of demodulated 
DPSK (−49.65 dBm).
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FIGURE 7 
Simulation results of the uneven wavelength access scenario. (a) Optical spectrum at the HNLF#2 input. (b) Optical waveform of relayed signal. (c) 
Oscillograph of the demodulated DPSK. (d) Eye diagram of the demodulated DPSK.

FIGURE 8 
Simulation results of the demodulated signals at unequal data rates. (a) Eye diagram of 5 Gbps DPSK. (b) Eye diagram of 10 Gbps DPSK.
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The relayed signal was then demodulated, and the 
corresponding eye diagrams for the OOK and DPSK tributaries 
are shown in Figures 6c,d, respectively. These results confirm that 
the system can properly and simultaneously relay format-hybrid 
access ISLs, demonstrating excellent format compatibility. This 
feature has not been considered or discussed previously in the 
existing literature. It significantly broadens the system’s potential 
application scenarios.

The measured BER curves of the demodulated OOK and DPSK 
tributaries are presented in Figures 6e,f. The average receiver 
sensitivity for OOK is −45.72 dBm at a BER level of 10−7, 
supporting arriving ISLs with a transmission distance up to 
4,500 km. For DPSK, the average receiver sensitivity 
is −49.65 dBm at a BER level of 10−7, corresponding to a 
maximum transmission distance of 7,100 km for the arriving ISLs.

Although in the hybrid scenario, the access unit shows some 
sensitivity penalty compared to the identical-format cases, it 
successfully fulfills the simultaneous access requirements for links 
from at least 4,500 km away. This demonstrates greater flexibility 
and enhanced compatibility with mixed modulation formats.

We further analyzed the scenario where the access ISLs are 
located at unevenly spaced wavelengths. This is another practical 
consideration when links originate from diverse users. Here, one ISL 
was deactivated, leaving access signals at 1,554.94nm, 1,555.75nm, 
and 1,557.36nm, all modulated with identical RZ-DPSK data 
(Figure 7a). Other parameters remained unchanged. The optical 
waveform of the obtained 30 Gb/s relayed signal is shown in 
Figure 7b, with the temporal profile analogous to the input 
spectrum of the three access ISLs. The oscillograph and eye 
diagram of the demodulated DPSK tributaries are presented in 
Figures 7c,d. These results indicate that unevenly distributed 
wavelengths of the access ISLs do not impair the system 
functionality. The key difference is the deleted time slots in the 
relayed signal, as shown in Figure 7b. This appearance originates 
from the space-time duality principle of the OTL. We also found that 
the larger wavelength span in this case actually reduced the inter- 
symbol interference, leading to a better eye diagram (Figure 7d) 
compared to the uniform wavelength interval case (Figure 6d), and 
consequently, improved BER performance.

Finally, we considered the unequal data rates scenario, where 
accessing ISLs may operate at different data rates. We configured 
two ISLs at 10 Gb/s and two at 5 Gb/s, keeping other parameters 
unchanged. It is crucial to remember that the OTL-based system 
directly maps the input ISLs’ spectral profile onto the relayed signal’s 
temporal intensity profile. Consequently, the unequal data rates are 
not directly discernible from the relayed signal’s overall waveform. 
Its spectrum and waveform appear similar to those in Figures 5a,b. 
However, while the system accurately performs the access 

processing function, the degraded eye diagrams of the 
demodulated tributaries (Figure 8) reveal deteriorated 
performance and a high BER floor. This performance 
degradation stems from the fact that the relayed signal contains 
all input data rates. The unequal rates cause temporal overlap and 
crosstalk within the relayed signal’s time slots because the pulses 
from lower-rate links have a longer duration, severely degrading the 
BER performance.

4 Discussion

The escalating demand for bandwidth is accelerating the 
maturation of space laser communication technology. This 
positions optical ISLs as indispensable components of the next- 
generation space backbone networks. Consequently, all-optical 
processing at the network’s relaying nodes is highly desirable. 
This paper presented, simulated, and validated a low-complexity, 
OTL-based all-optical data access system for satellite backbone 
networks. The system’s reliability and modulation format 
compatibility were thoroughly examined. Simulation results 
confirm that the constructed system can simultaneously relay 
multiple ISLs with good performance. This holds true even when 
they employ different modulation formats or have uneven 
wavelength spans. These practical and vital considerations for 
satellite payload design have been largely overlooked in previous 
studies. Moreover, the system supports ISL transmission distances of 
at least 4,500 km under hybrid modulation formats at BER level of 
10−7, representing more excellent and compatible performance 
compared to existing solutions. More importantly, the FWM- 
based OTL in the proposed system is inherently format- 
transparent. This means the fundamental principle imposes no 
restriction on the modulation format, making the system 
compatible with other formats.

Table 3 compares the key performance metrics of our proposed 
OTL-based access system with those reported in representative 
studies on OTL (Mulvad et al., 2011; Guan et al., 2014). Our 
system demonstrates competitive or superior receiver sensitivity. 
It uniquely offers simultaneous multi-format (OOK/DPSK) and 
multi-ISL handling capability, which are not typically featured in 
the compared works.

The performance degradation observed in the unequal data rate 
scenario highlights a limitation of the current OTL mapping 
principle for handling asynchronous rate mixtures. This suggests 
an area for future investigation, potentially involving optical 
buffering or rate adaptation techniques. As the construction of 
global information interconnection networks accelerates, all- 
optical relaying will be a cornerstone technology for space laser 

TABLE 3 Performance comparison of the proposed system with representative prior works.

References 
(Year)

Application scenarios Modulation 
format

Receiver sensitivity 
(BER = 10−7)

Key features/Differences

Mulvad et al. (2011) Fiber optical communication OOK (single) ~-38 dBm Single modulation, lacks considerations 
for space applications

Guan et al. (2014) Fiber optical communication DPSK (single) ~-41 dBm

This work Satellite (free space) optical 
communication

OOK & DPSK 
(simultaneously)

−48.95 dBm (OOK), −50.75 dBm 
(DPSK)

Space applications related considerations
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backbone networks. The relaying system demonstrated in this work 
provides valuable technical support and a scalable architectural 
framework for designing future space networks.

5 Conclusion

We have proposed and validated an all-optical data access 
system based on an optical time lens for satellite backbone 
networks. The system demonstrates robust performance, 
achieving BERs below 10−7 with receiver sensitivities 
of −48.95 dBm for OOK and −50.75 dBm for DPSK in 
identical-format scenarios. This supports ISL transmission 
distances beyond 6,500 km. Crucially, under a hybrid OOK/ 
DPSK input, it maintains a BER below 10−7 for distances up to 
4,500 km, confirming its strong modulation format 
compatibility. Its simple structure and scalability to handle 
non-uniform wavelength spans make it a promising candidate 
for future multi-format satellite communication systems. Future 
work will focus on extending the system to handle higher data 
rates, a larger number of ISLs, and other advanced formats such 
as QPSK or higher-order quadrature amplitude modulation 
(QAM). We will also investigate methods to mitigate the 
performance penalty in unequal data rate scenarios.
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