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Membrane diffraction imaging is one of the most widely used imaging
technologies today, which offers the advantages such as lightweight
design, large aperture, foldability, and low cost. However, the system
imaging quality degrades because of the multiple order diffraction
generated by the diffractive elements in practical applications. To
eliminate the effects of multiple diffraction orders from the diffractive
elements and optimize imaging quality, the system images are post
processed. Iterative optimization algorithms are commonly used for image
post processing. Particle swarm optimization is a commonly used iterative
optimization algorithm, which is often used to search for optimal solutions
within the solution space. The particle swarm optimization algorithm has the
features of few parameters, simple behavior, and fast iteration speed, which
can rapidly and effectively optimize imaging. This paper optimizes the
simulated imaging of a diffraction imaging system based on Fresnel zone
plates by adopting the particle swarm optimization algorithm. Optimize the
system image based on known point spread functions and the system image.
System imaging is optimized under the premise of known point spread
functions and system imaging. The iteration speed is enhanced, reducing
the number of iterations by approximately 99.6% compared to the random
parallel gradient descent algorithm. Simultaneously, contrast is improved by
about 5.4%, while gradient optimization effectiveness increases by
approximately 25.4% after optimization by the particle swarm algorithm.
Finally, the derived restoration model was applied to other images,
achieving overall improvements in all evaluation metrics.

KEYWORDS

fresnel zone plate, imaging optimization, multiple orders diffraction, particle swarm
optimization algorithm, point spread function

1 Introduction

The lightweight and high-resolution features of imaging systems have become a hot
topic in the field of imaging development with the advancement of imaging technology.
Membrane diffraction imaging was first proposed at the 1997 International Conference
in Lure, France, which began to rapidly develop thereafter Chesnokov and Vasileisky
(1997). This technology has been applied to space observation projects such as
“Eyeglass”, “GISMO”, “MOIRE”, and “Falcon-7”, with a wealth of research findings
and experience accumulated by relevant research institutions Hyde (1999), Hawarden
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et al. (2004), Atcheson et al. (2014), Andersen et al. (2016).
However, membrane diffraction imaging technology has not
been widely adopted in practical applications, due to which the
image quality is unable to meet the standards for spatial imaging
in the imaging systems equipped with diffraction imaging
elements Zhi et al. (2017), Jiang et al. (2020). Therefore,
researchers from relevant institutions have conducted extensive
research on diffraction imaging technology, such as optical system
design Wang et al. (2002), Zhang et al. (2007), fabrication of
binary optical elements Jian et al. (2016), Ruoqiu et al. (2017),
system wavefront correction Wen et al. (2019), Zhu et al. (2019),
and imaging optimization Yang et al. (2019), Yang et al. (2020).
Image optimization is crucial for the practical application of
subsequent imaging systems.

Recently, many research institutions have conducted
extensive research on imaging optimization for diffraction
Diffraction

Fresnel Zone Plates (FZP) are the most widely used in

imaging systems. imaging systems based on
practical applications Bin et al. (2004), Wang et al. (2016).
Optimizing the system image in diffraction systems differs
significantly from traditional imaging systems. System image
quality degrades due to multiple order diffraction generated due
to the FZP’s sub-structures. Simultaneously, image quality
further deteriorates due to wavefront distortion affecting the
beam during transmission through the system. To solve the
problem of degraded image quality in diffraction imaging
systems, various algorithms for imaging optimization have
been proposed. Mainstream optimization methods include
inverse filtering algorithms for different types of blur kernels
Luetal. (2019),Liang et al. (2021), blind deconvolution methods
Fish et al. (1995), Fish et al. (2003), Krishnan and Fergus (2009),
deep learning Kupyn et al. (2019), Hong et al. (2020), Zamir et al.
(2021), and model-based enhancement methods Lianghua et al.
(2017), Lianghua et al. (2018). However, image optimization
methods based on the FZP diffraction imaging model have been
rarely reported in recent years, and the related research has
primarily focused on algorithms with complex behaviors, which
leads to inefficient optimization iterations. Between 2024 and
2025, Li Jiaxun et al. conducted further research for imaging
models. The Stochastic Parallel Gradient Descent (SPGD)
algorithm, Simulated Annealing (SA), and Cuckoo Search
algorithm are combined with imaging models. The PSF and
the numerical solution of the optimized image are input to the
imaging model, which optimizes the image of the imaging syste
Wen et al. (2024), Li et al. (2025).

The paper is organized as follows: In Section 2, a diffraction
imaging system based on FZP was simulated using optical
simulation software. Image data was obtained through this
system, and an imaging model was derived based on the
imaging characteristics of FZP. Subsequently, in Section 3,
an image optimization algorithm based on particle swarm
optimization (PSO) was established in combination with the
imaging model. The image was iteratively optimized, and the
optimization results were analyzed. In Section 4, the results of
the PSO iterative optimization were input into the imaging
model to rapidly restore the image, and the rapid optimization
results were analyzed. In Section 5, conclusions were drawn,
and plans for future work were outlined.
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2 Imaging system and model

This section provides research on the simulation and imaging
model of the FZP diffraction system. The FZP-based diffraction
imaging system is simulated and analyzed using optical simulation
software. The system analysis includes the modulation transfer
function (MTF), wavefront, point spread function (PSF), spot
diagram, and extended target imaging, which can determine the
system image performance and the accuracy of extended target
imaging data, to ensure the effectiveness of image optimization.
Subsequently, the imaging model of the imaging system is
established based on the imaging characteristics of the FZP
imaging system to solve for the optimized image.

2.1 FZP imaging principle

System simulation of the optical imaging model was
conducted. An 800 mm-aperture FZP diffraction imaging
The
imaging system comprised two FZP elements, three double

system was constructed using simulation software.
bonded lenses, and a filter. The parameters of each element in
the system are used as design parameters for the FZP diffraction
imaging system, which include the radius of curvature, effective
aperture, distance between optical surfaces, and corresponding
materials. The FZP is parameterized. Simulation of the FZP is
achieved by combining a binary surface with a standard optical
surface. The setting of the binary surface requires not only setting
the basic surface parameters but also setting the corresponding
phase coefficients. The phase coefficient is determined by
Equation 1.

N .
¢=Mzaip2’ (1)

Where ¢ denotes the phase of the optical surface, M denotes the
diffraction order used by the optical surface, N corresponds to the
index of the polynomial coefficient in the order, and g; is the
coefficient of the 2i-th power of p (the phase coefficient). The
phase coefficients a; to as are to be set, and the phase
coefficients are obtained by setting the optimization function
with respect to the system wavefront aberration and the system
focal length. Finally, quartz was selected as the substrate material for
FZP, which determined all parameters of the FZP.

Subsequently, the double bond lens is designed and calculated in
the system. Unlike traditional lens calculations, the radius of
curvature for a double bond lens is calculated by selecting
material combinations. The combination of crown glass in front
and flint glass in back is commonly used in double bond lens design.
Material refractive indices are obtained by searching the
corresponding combinations. Parameters are substituted into
equations Equations 2-4 to determine the optical surface
curvature, which includes the radius of curvature, refractive
index, focal length, and other parameters.

1
= _ 2
% 7 (2)
1 1
¢, = (”1—1)*<r—1—z> (3)
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¢, = (”2—1)*<i—i> (4)

r, 13

Where ¢ represents the optical power between adjacent optical
surfaces, which is inversely proportional to the focal length f.
Among them, ¢, represents the optical power from the first
optical surface to the second optical surface, and ¢, represents
the optical power from the second optical surface to the third
optical surface. n represents the refractive index between
adjacent optical surfaces. r is the radius of curvature of each
optical surface.

The FZP imaging system, as shown in Figure 1a, is analyzed
in terms of its imaging model. The analysis of the imaging model
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primarily involves the analysis of point target imaging and
extended target imaging, such as the imaging system’s PSF,
spot diagram, wavefront, MTF, and extended target
imaging analysis.

As shown in Figure 1b, the inconsistent sizes of light spots
focused at different wavelengths on the same image plane, which
shows that chromatic aberration still exists in the system. Moreover,
chromatic aberration causes image quality degradation.

As shown in Figure 1¢, the PSF exhibits no distortion, the energy
is concentrated, and the Airy disk size is 3.027 ym, which shows the
system has excellent focusing performance.

In the 1d, the trough s

approximately —0.031 wavelengths, and the wave crest is

wavefront  Figure wave
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FIGURE 2
The optimization flow of imaging model parameters within
PSO algorithm.

approximately 0.102 wavelengths. The wavefront aberration was
calculated to be 0.132 wavelengths, which is less than one-quarter
wavelength. This result is consistent with the Rayleigh criterion,
which indicates that although wavefront distortion exists in the
system, but wavefront distortion has little effect on imaging, which
indicates the system image quality is good.

In Figure le, the optical transfer function (OTF) approaches
zero when the spatial frequency reaches 414 cycles/mm. The system
MTF closely matches the diffraction-limited MTF curve, which
indicates that the system’s transmission capability approaches
that of an ideal imaging system. However, the mid-frequency
component of the system MTF differs by 9.2 cycles/mm from the
diffraction-limited mid-frequency component, which indicates the
presence of aberrations within the system. System chromatic
aberration leads to reduced imaging quality.

After completing the point target imaging analysis, the
extended target imaging is analyzed at 550 nm primary
wavelength. The extended target imaging plane sampling is set
to 1024 x 1024. The single-wavelength imaging is acquired as
shown in Figures 1f-i. In the extended target imaging, the image
exhibits not distortion, but the imaging has the problem of edge
blurring and loss of imaging details. Combined with PSF analysis,
the imaging blur was attributed to multiple order diffraction from
the diffractive elements. To address the imaging blur issue, the
imaging model was derived based on the imaging characteristics
of the FZP.

Advanced Optical Technologies

10.3389/a0t.2025.1730807

2.2 Imaging model

During the process of imaging optimization research, the
imaging model is established for the system, which is used for
subsequent further development of imaging optimization studies. In
2023, Li Jiaxun et al. proposed an imaging restoration method based
on the FZP imaging model, performing mathematical derivations
for the FZP diffraction imaging system. An imaging model for an
FZP imaging system was derived, with the expression shown in
Equation 5; Li et al. (2023).

I =1y%[PSF, x 1, + PSF, x (1-1,)] )

Where I denotes the extended target image directly obtained by the
FZP imaging system, and I, denotes the optimized result of the
extended target image from the FZP system. 7, and PSF, represent
the diffraction efficiency and point spread function (PSF) of the
designed imaging order, respectively. PSF, denotes the effective
point spread function of stray light and noise in the imaging system.
The imaging model is represented by the interaction between the
designed-order light and scattered light and noise, where the
designed-order light is expressed as Io*(PSF; x #;), and the
non-designed-order light and noise are
Io*[PSF, x (1-7,)].

However, Equation 5 cannot directly solve for numerical

expressed  as

solutions, which only solves the analytical solutions in practical
applications. Meanwhile, analytical solutions cannot intuitively
reflect imaging effects. To solve the problem, data is input into
imaging models for specific calculations. However, the imaging
quality collected by the system cannot meet the requirements for
direct solutions. Therefore, to solve the problem of degraded
imaging quality, the input image is optimized. Optimizing the
constitutes  a

image actually

problem, which can be summarized as a multi-objective

multi-objective  optimization

optimization expression, as shown in Equation 6.

max (ormin) (f (x)) = {f1 (%), f2(x),..., fu(x)} (6)
s.tx € Q)

Where f(x) usually is the evaluation function of the optimization
objective, which is also called the objective space. Meanwhile, Q) is
the space where (xi,x5,...,x,) is located, which is called the
decision space. For multi-objective optimization problems related
to image optimization, image metrics are usually selected as
evaluation functions. By combining the imaging model, the
imaging of the FZP imaging system is converted into a
mathematical expression, and the iterative optimization problem
related to the image is converted into a multi-objective optimization
problem. The expression is shown in Equation 7.

Z = max (f (PSF)) = {1 (PSF), f,(PSF),..., f, (PSF)}

s.tPSF € () @)

Where image gradient and contrast are selected as optimization
metrics. Parameters are adjusted while changes in gradient and
contrast are observed throughout the optimization process. The
decision space is populated through iterative updates, while the
decision space values are continuously input to the target space. The
Z-value is calculated, which corresponds to the PSF value in the
decision space representing the optimized result. Finally, the
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PSO optimization iterative results.

optimized PSF is input to the imaging model to obtain the iteratively
optimized image I.

However, some problems still exist in the specific research of
PSF iterative optimization. Optimization algorithms such as
Stochastic  Parallel ~Gradient (SPGD),
Annealing (SA), and Cuckoo Search are applied to imaging

Descent Simulated
optimization, which have some drawbacks including high
iteration counts, slow iteration speeds, numerous parameters, and
suboptimal optimization results. PSO effectively addresses these
issues due to its simple behavior, fast iteration speed, and
minimal parameter requirements.

3 Optimized solution of FZP
imaging model

The PSO algorithm is an evolutionary computation technique
that was developed by Kennedy and Eberhart (1995). The algorithm
achieves global optimization through collaboration and competition
among particles, which features in practice, including few
parameters, simple behavior, and fast iteration speed Liping and
Zhang (2003). By integrating with imaging models, the PSO
algorithm can solve for numerical solutions to imaging models,
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which can effectively address the degradation of imaging quality
caused by multiple-order diffraction. Simultaneously, PSO can
simplify the optimization process, which can greatly reduce the
time required for iterative optimization, thereby improving
optimization efficiency.

3.1 PSO algorithm principle

The particle swarm optimization achieves global search
optimization primarily through collaboration and competition
among individuals. First, a group of random solutions must be
generated through initialization, which are equivalently regarded as
particles that have no mass or volume. Global optimization is
completed by particles flying in the search space. This flight
pattern references the flying behavior of flocks of birds or the
foraging behavior of schools of fish, and the behavior function is
shown in Equation 8.

x,-(jﬂ) = x{ + v,-(jﬂ) (8)

The PSO iteration method is simple: particles move based on the
velocity generated by weighting their current positions, and the
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Original SPGD
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Comparison of optimization results between PSO and SPGD.

FIGURE 4

TABLE 1 Iterative optimization comparison.

Image Algorithm Contrast Gradient MAE NMSE Number of iterative
(a) SPGD 9271.9/9303.8 0.0145/0.015 15.8582 2.6510e-04 215395
PSO 9280/9314 0.0145/0.0151 21.1207 4.6841e-04 488
(b) SPGD 9827.5/10279 0.0211/0.022 54.2139 0.0027 94595
PSO 9908.1/10388 0.0211/0.0222 64.3485 0.0038 871
(0) SPGD 9217.9/9241.7 0.0093/0.0095 12.5631 4.1329¢-04 243360
PSO 9223.1/9247.2 0.0093/0.0096 15.2258 6.0790e-04 646
(d) SPGD 7878.2/7960.5 0.0106/0.0108 21.2138 4.4073e-04 230533
PSO 7896.8/7986.7 0.0106/0.0109 26.7475 6.9743e-04 305

Advanced Optical Technologies 06

frontiersin.org


https://www.frontiersin.org/journals/advanced-optical-technologies
https://www.frontiersin.org
https://doi.org/10.3389/aot.2025.1730807

Li et al. 10.3389/a0t.2025.1730807
(a) (b) (© (d)
PSF,
Original
-
[Optimized average
PSFopt
.
. FFT5(1
Iy = IFFIz{ = -(,' )
FFT {[PSFop]}
FIGURE 5

Fast image restoration based on PSO.

velocity is continuously updated during the iteration process. The
iteration formula for velocity is shown in Equation 9.

V™ = w x v + ¢, x rand (nd, nd) x (pbesti —x{)
+ ¢, X rand (nd, nd) x (gbest,- - x,]) 9)

Equation 9 is primarily used to update the velocity of particles
in each movement within the PSO. The velocity iteration formula
includes a memory term, an individual learning term, and a social
learning term. Where w is the inertia factor, which is required to
be non-negative and it can be used to adjust the strength of the
algorithm’s optimization capability. ¢ is the learning factor,
where ¢; is the cognitive learning factor, c, is the social
learning factor. The learning factor can effectively adjust the
search capability of the algorithm. Where nd represents the
matrix size. where pbest denotes the local optimum of the
particle swarm, which is the optimal population. Gbest
denotes the global optimum of the particle swarm, which is
the optimal particle. During velocity iteration, the first
memory term is used to relate the previous generation’s
velocity to the post-iteration velocity, because the velocity
itself has no memory. If the memory term is absent, the
iterative optimization process assumes that a particle at the
globally optimal position remains stationary, while other

Advanced Optical Technologies

particles move toward a weighted center between the
individual optimal and global optimal positions. In this case,
the optimal particle will only be found at the current best
position. To induce particle movement and achieve global
optimization, the inertia weight is added to the memory term.
The inertia weight originates from the concept proposed by
Clerc, which uses a decay factor to ensure algorithm
convergence. However, subsequent research discovered that
setting a maximum velocity limit can enhance algorithm
performance. This method eliminates the link between the
inertia factor and the learning factor, which ensures the
effectiveness and independence of the memory term Clerc
(1999). The second term represents the individual cognitive
component, which indicates the particle’s own thinking,
providing iterative particles with powerful global search
capabilities and avoiding local minimal. Finally, the third term
is the population cognitive component, embodying information
sharing among particles. The PSO’s optimization is effectively
achieved through the synergistic interaction of these three
components.

Before the iteration begins, the input population, velocity, and
optimal population must be initialized. To accommodate
optimization requirements, each particle in the solution space is

two dimensional data, which needs to be fitted. The input
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population, velocity, and initialized optimal population must be
converted into two dimensional matrices. The initialization formula
is shown in Equation 10.

v; = DL. * ones (nd, nd) + [UL. * ones (nd, nd)
— DL. * ones (nd, nd)]. % 0.01. * [rand (nd, nd)]
(10)

Where DL denotes the minimum value of a single pixel in the
matrix, and UL denotes the maximum value. ‘ones ()’ is used to
generate a matrix with all values set to 1, while ‘rand ()’ is used to
generate a random matrix.

After outputting the new velocity, the particle update iteration is
achieved: the new velocity is input into the PSO particle update
behavior, which makes the particle move. Subsequently, the output
particle swarm is evaluated. The gradient of the expanded target
image is selected as the criterion for algorithm termination, which is
also used as the judgment condition for iterative optimization. The
calculation expression is shown in Equation 11.

M,N

Y I(x,y)]/(MxN) (1)

x=1,y=1

G=|I(x,y)-

M x N

Where I (x, y) is the restored image obtained through a single
iteration of the optimization algorithm, (x, y) denotes the pixel
coordinates in the Cartesian coordinate system, and M and N
respectively represent the dimensions of the image.

Based on the above calculations, the operation flow of the PSO-
based image optimization algorithm is shown in Figure 2.

In the optimization process of the target image, initial
parameters are firstly input. The upper and lower limits are
determined by collecting the maximum and minimum values of
the PSF in the simulation system. Because of the simulation
model operating under ideal conditions, the background noise
of collected images is not considered in the input PSF and target
image expansion process. After the initial parameters are input,
the initial velocity and a random population are generated. The
generated random population and random velocities are input to
the evaluation function. The gradient and contrast are
calculated, which are compared with the next-generation’s
results. Subsequently, the corresponding parameters are input
to the PSO for iterative optimization. Firstly, the velocity values
for the next particle movement are calculated in the
optimization process. Subsequently, the output velocity values
are input to the particle movement behavior, and a new particle
swarm is obtained. The new particle swarm is input to the
which
corresponding image metrics. Finally, the image metrics are

evaluation function for assessment, results in
evaluated to determine whether convergence conditions are met,

thereby deciding whether to terminate the algorithm.

3.2 Algorithm simulation and analysis

This paper combines imaging models with the PSO algorithm to
propose a PSO-based image optimization method. This approach
logically simplifies the optimization iteration process, thereby
reducing iteration time, and improving iterative optimization
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efficiency. To further validate the theoretical effectiveness, the
expanded target image from the imaging model is input into the
PSO-based optimization algorithm.

Randomly generated PSFs are treated as particles in the iterative
optimization process, while PSFs and extended target images collected
from the FZP system image model are input to the PSO optimization
algorithm. Subsequently, PSO initial parameters are set, including the
population size, upper and lower velocity bounds, filtering radius,
learning factor, and inertia factor. The parameters are configured and
adjusted, which ensures stable algorithm operation. Subsequently, to
evaluate optimization effectiveness, the image gradient G is selected to
assess convergence of the optimization iterations and serves as the
algorithm’s termination condition. The algorithm then stops
automatically upon meeting the specified optimization conditions.
The corresponding pseudocode is shown in Algorithm 1.

Input: The inertia factor w, the diffraction efficiency
ng, the learning factorscqy and c,, the image sizeMandN,
filter radius R, minimum value DL and maximum value UL,
and number of population n

Output: gbest

1: Initialize particle swarm x(:,:,1)={X1,X2,...,Xn},
velocity V(1) ={vi, Vo, Vi, and
pbest(:,:,1)={pbestq,pbest,,...,pbest,} by
Equation 12

2: fori={1,2,...,n} do

3: Calculate the gradient G(x) and G (pbest)

(Equation 11)

4: end for

5: while (G (gbest) is convergent) do

6: if G(x) > G (pbest) then

7: pbest = x

8: else

9: pbest = pbest

10: end if

11: G (ghest) = Max (G (pbest (:,:,1))) = gbest
12 for i ={1,2,...,n} do

13: Update the speed value
vUD(:,:,1) (Equation 9)

14: Update the particle swarm
xU*D(:,:,1) (Equation 8)

15: if G(x) > G (pbest) then

16: pbest = x

17: else

18: pbest = pbest

19: end if

20: end for

21: G (gbest) = Max (G (pbest (:,:,1))) = gbest
22 if (Find (G (gbest) =Max (G (ghest))) = 50) then
23: Break

24 end if

25: end while

Algorithm 1. Procedure of PSO algorithm.

Where the diffraction efficiency 7, is calculated through the
simulation system. The inertia factor is set to a small value, which
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Comparison of restoration between PSO and SPGD.

ensures the accuracy of optimization by reducing the influence of the
previous generation’s particle positions on the next-generation. The
cognitive learning factor c¢; and the social learning factor c, are set to
the same value, which balances local and global optimization
capabilities. After inputting the corresponding parameters,
optimization results are obtained through continuous iterative
optimization until the algorithm terminates. Unlike traditional
PSO algorithms, the termination condition is explicitly defined,
because the PSO applied to image optimization cannot complete
optimization within a determined number of iterations. so, the
termination condition is set: the algorithm stops when the image
gradient G ceases to increase over a period of time.

At every iteration, the updated PSF, the PSF of the imaging
system under consideration, and the expanded target image are
input to the imaging model for computation, which results in the
corresponding optimized image. The results including the PSF,
after optimization iterative, images before and after optimization,
and the gradient enhancement curve of the optimization iteration.
The relevant optimization results are shown in Figure 3.

Advanced Optical Technologies

As shown in Figure 3, four images are optimized through
iterative processing, which results in enhanced imaging details
and improved image resolution. The result confirms the
feasibility of the PSO algorithm in image restoration.

The comparative analysis of SPGD optimization results and PSO
optimization results, to systematically evaluate PSO’s image
optimization capabilities and mitigate algorithmic randomness
and chance effects. The optimization results comparison is shown
in Figure 4.

By comparing the optimization results of the PSO and SPGD
algorithms, the PSO-optimized images have richer and clearer
details compared to those optimized by SPGD.

To quantitatively evaluate the optimization performance of both
algorithms, the contrast, gradient, and number of iterations for each
algorithm were compared, which further validates the feasibility of
PSO for system image optimization. The iterative optimization
comparison is shown in Table 1.

The relevant metrics for iterative optimization between the
two methods were compared, which include contrast, gradient,
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TABLE 2 Restoration comparison.

10.3389/a0t.2025.1730807

Image Algorithm Contrast Gradient MAE NMSE

(a) SPGD 9950.4/10143 0.0273/0.0276 34.1911 8.3463e-04
PSO 9950.4/10207 0.0273/0.0276 43.6508 0.0014

(b) SPGD 1049.8/1218.7 0.0518/0.0523 32.0392 9.1840e-04
PSO 1049.8/1270.9 0.0518/0.0518 40.4641 0.0015

(© SPGD 11356/11559 0.0121/0.0125 36.7806 0.0028
PSO 11356/11646 0.0121/0.0126 48.9242 0.0050

(d) SPGD 392.6525/482.6343 0.0484/0.0487 23.7830 9.2797e-04
PSO 392.6525/510.3621 0.0484/0.0486 39.9106 0.0015

mean absolute error, normalized mean square error, and number
of iterations. The relevant data from the iterative optimization of
both methods were compared, leading to the conclusion: PSO
achieves superior iterative optimization results for images,
requiring fewer iterations and demonstrating higher
optimization efficiency. PSO algorithm is particularly suitable
for diffraction imaging systems based on FZP was further

demonstrated.

4 Restoration imaging base on model

After completing the iterative optimization of the image, to
accelerate the optimization speed, the imaging model is
transformed, and a fast restoration model is derived.
Subsequently, the iterative optimization results are extracted
and processed. The processed results are input to the fast
restoration model, which performs rapid image restoration.
Finally, the SPGD iterative optimization results are processed
and input to the fast restoration model. By comparing the fast
recovery results from both algorithms, the feasibility of the fast

restoration method is confirmed.

4.1 Restoration simulation

To obtain a fast restoration model, the imaging model is derived.
First, the imaging model equation is transformed using a two-
dimensional Fourier transform on both sides, obtaining the
expression shown in Equation 12.

FFT,(I) = FFT, (I,) x FFT,{[PSF, x n, + PSF, x (1-n,)]}
(12)

Where FFT, denotes the two-dimensional Fourier transform. If the
data for PSF,, 1, and PSF, can be obtained, images acquired by the
FZP imaging system can be rapidly reconstructed. The analytical
expression for the optimized image is derived through formula
manipulation, as shown in Equation 13.
I, = IFFT, { _FFLA) }
FFT,{PSF,y}
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The IFFT, denotes the two-dimensional inverse Fourier transform.
The analytical solutions for the imaging model parameters PSF,,, 7, ,
and PSF, are derived through analytical methods, which are
substituted into Equation 13 to obtain the optimized image. This
paper obtains the optimal numerical solution by using the particle
swarm optimization algorithm, which achieves image optimization.
The workflow is shown in Figure 5.

To achieve fast restoration of acquired images, PSF, for
different images is extracted after PSO optimization iterations.
PSF,p; is obtained by averaging multiple PSF,. Subsequently,
PSFp and other images are input into the fast restoration
model for reconstruction, which completes the PSO-based fast
image reconstruction method.

4.2 Analysis

To further evaluate the optimization performance of the PSO
algorithm, while avoiding the randomness and unpredictability of
reconstruction, the reconstruction results from PSO-based imaging
were compared with those from SPGD. Since fast reconstruction
without iteration, the comparative analysis primarily included the
image details, image gradients, and image resolution of the extended
target imaging.

Restored images based on the PSO algorithm and SPGD
algorithm are obtained through fast optimization. Comparison of
the two algorithms is used to validate the feasibility and accuracy of
the fast optimization. The comparison of the fast-restored images is
shown in Figure 6.

Four images are selected for comparison, and when compared
with the original images, the conclusion is reached: The PSF,
obtained through iterations of both algorithms is input to the fast
restoration model. The optimized images are locally enlarged and
compared, which reveals that the fast-optimized images exhibit
increased imaging details and improved image resolution.
However, compared to the SPGD algorithm, the restoration
results obtained by PSO iteration when PSF,, is input into the
output
However, the comparison of images cannot quantitatively

imaging model demonstrate superior performance.
describe the restoration effect. Therefore, the restoration metrics
of SPGD and PSO are compared with the original image metrics, as

shown in Table 2.
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Through the comparison, the conclusion that PSO achieves
is verified. PSO
optimizes image contrast and gradient more effectively. In the

superior optimization results in imaging
optimization of extended target imaging, PSO significantly

enhances image detail compared to SPGD optimization.
Consequently, the conclusion can be reached that PSO effectively

optimizes imaging with superior results.

5 Conclusion

The multiple levels of FZP diffraction imaging system are
simulated and analyzed. Subsequently, the PSO optimization
algorithm was established, which combines the imaging model
with the principle of PSO iterative optimization. The extended
target image are input to PSO, the output images of iterative
optimization are obtained. The optimized PSF, is extracted from
the iterative optimization results. The average PSF across multiple
images is calculated as PSF,,; and input to the fast restoration model,
which is used to achieve rapid optimization for other extended target
images. The test results demonstrate: the restored diffraction images
exhibit enhanced contrast, gradient, and other aspects. The output
images are compared with SPGD optimization for diffraction
imaging systems, concluding that PSO superior
optimization effects for the system image with higher efficiency.

achieves

The paper aims to validate the feasibility of full simulation for
diffraction imaging systems. The images are optimized combining
the PSO optimization algorithm, which is derived from the FZP
diffraction imaging system. Subsequent research will focus primarily
on wavefront correction for adaptive optics systems. The optical
platform is planned to be constructed to verify the practical
applicability of the FZP diffraction imaging system.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

CL: Validation, Methodology, Writing — review and editing, Formal
Analysis, Conceptualization, Data curation, Investigation, Software,
Writing — original draft, Visualization. LW: Project administration,
Methodology, Formal Analysis, Data curation, Supervision,
Writing - review and editing, Funding acquisition, Conceptualization,
Software, Resources. GL: Methodology, Supervision, Writing — review

References

Andersen, G., Asmolova, O., McHarg, M. G., Quiller, T., and Maldonado, C. (2016).
FalconSAT-7: a membrane space solar telescope. Space Telesc. Instrum. 2016 Opt.
Infrared, Millim. Wave. July. 9904, 574-581. doi:10.1117/12.2229711

Atcheson, P., Domber, J., Whiteaker, K., Britten, J. A., Dixit, S. N., and Farmer, B.
(2014). MOIRE: ground demonstration of a large aperture diffractive transmissive
telescope. Space Telesc. Instrum. 2014 Opt. Infrared, Millim. Wave. August 5487,
535-549. doi:10.1117/12.2054104

Advanced Optical Technologies

11

10.3389/a0t.2025.1730807

and editing, Data curation, Conceptualization. ZD: Data curation,
Resources, Project administration, Writing - review and editing,
Supervision, Funding acquisition. JL: Methodology, Formal Analysis,
Supervision, Writing - review and editing, Visualization. TY:
Writing - review and editing, Investigation, Formal Analysis. SJ:
Writing — review and editing.

Funding

The author(s) declared that financial support was received for
this work and/or its publication. This work was supported by
Sichuan Science and Technology Program under Grant NO.
20247ZYDO026 and National Natural Science Foundation of China
under Grant No.61975171.

Acknowledgements

We extend our appreciation to our colleagues for their
constructive discussions and valuable suggestions, which have
greatly enriched the quality of this work.

Conflict of interest

The author(s) declared that this work was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declared that generative AI was not used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Bin, Z., Ming, W., Shouping, N., and Suqing, T. (2004). Design and fabrication of
fresnel zone plates. Laser J. January. 24, 20-21. doi:10.3969/j.issn.0253-2743.2003.01.007

Chesnokov, Y. M., and Vasileisky, A. S. (1997). “Space-based very high resolution
telescope based on amplitude zoned plate,” in Paper presented at the international
conference on space optics. Toulouse, France.

Clerc, M. (1999). 3. June, 1951-1957. doi:10.1109/CEC.1999.785513

frontiersin.org


https://doi.org/10.1117/12.2229711
https://doi.org/10.1117/12.2054104
https://doi.org/10.3969/j.issn.0253-2743.2003.01.007
https://doi.org/10.1109/CEC.1999.785513
https://www.frontiersin.org/journals/advanced-optical-technologies
https://www.frontiersin.org
https://doi.org/10.3389/aot.2025.1730807

Li et al.

Fish, D., Brinicombe, A., Pike, E., and Walker, J. (1995). Blind deconvolution by
means of the richardson-lucy algorithm. J. Opt. Soc. Am. A 12, 58-65. doi:10.1364/josaa.
12.000058

Fish, D., Brinicombe, A., Pike, E., and Walker, J. (2003). Development of blind image
deconvolution and its applications. J. X-ray Sci. Technol. 11, 13-19. doi:10.3233/xst-
2003-00065

Hawarden, T. G., Cliffe, M. C., Henry, D. M., Stevens, J. A., and Greve, T. (2004).
Design aspects of a 30-m Giant Infrared and Submillimeter Observatory in space
(“GISMO”): a new “flavor” for SAFIR?. Opt. Infrared, Millim. Space Telesc. Oct. 9143,
1054-1065. doi:10.1117/12.551300

Hong, D., Gao, L., Yokoya, N, Yao, J., Chanussot, J., Du, Q,, et al. (2020). More diverse
means better: multimodal deep learning meets remote-sensing imagery classification.
IEEE Trans. Geoscience Remote Sens. 59, 4340-4354. doi:lO.l109/tgrs.202043016820

Hyde, R. A. (1999). Eyeglass. 1. Very large aperture diffractive telescopes. Appl. Optics
38, 4198-4212. doi:10.1364/20.38.004198

Jian, Z., Mengjuan, L., Ganghua, Y., Jiao Jian-chao, £ Liu Zheng-kun, X, Xu Xiang-
dong, #%., et al. (2016). Large-diameter membrane Frensnel diffraction elements for
space Telescope. Opt. Precis. Eng. 24, 1289-1296. doi:10.3788/0pe.20162406.1289

Jiang, S., Zhi, X., Dong, Y., Zhang, W., and Wang, D. (2020). “Inversion restoration for
space diffractive membrane imaging system,”, 125. Opt. Lasers Eng. doi:10.1016/j.
optlaseng.2019.105863

Kennedy, J., and Eberhart, R. (1995). Particle swarm optimization. Proc. ICNN’95-
international Conference Neural Networks 4, 1942-1948. doi:10.1109/ICNN.1995.
488968

Krishnan, D., and Fergus, R. (2009). Fast image deconvolution using hyper-laplacian
priors. Adv. Neural Information Processing Systems 22. doi:10.5555/2984093.2984210

Kupyn, O., Martyniuk, T., Wu, J., and Wang, Z. (2019). Deblurgan-v2: deblurring
(orders-of-magnitude) faster and better paper presented at the International Conf.on
Computer Vision 2019. Seoul, Korea.

Li,J., Wen, L., Liu, H., Wei, G, Cheng, X, Li, Q,, et al. (2023). A novel SPGD algorithm
for wavefront sensorless adaptive optics system. IEEE Photonics J. 15, 1-9. doi:10.1109/
jphot.2023.3285871

Li, J., Can, L., Zhengcong, D., Xiang, C., Qing, L., Lianghua, W, et al. (2025). A model-
based image restoration method for diffraction imaging systems. ACTA PHOTONICA
SIN. 54. doi:10.3788/gzxb20255402.0211002

Liang, W., Long, J., Li, K.-C., Xu, J., Ma, N., and Lei, X. (2021). A fast defogging
image recognition algorithm based on bilateral hybrid filtering. ACM Transactions
Multimedia Computing, Communications, Applications (TOMM). 17, 1-16. doi:10.
1145/3391297

Lianghua, W., Yang, P., Kangjian, Y., Shanqiu, C., Shuai, W., Wenjing, L., et al. (2017).
Synchronous model-based approach for wavefront sensorless adaptive optics system.
Opt. Express 25, 20584-20597. doi:10.1364/OE.25.020584

Advanced Optical Technologies

12

10.3389/a0t.2025.1730807

Lianghua, W, Yang, P., Shuai, W., Wenjing, L., Shanqiu, C., and Xu, B. (2018). A high
speed model-based approach for wavefront sensorless adaptive optics systems. Opt. and
Laser Technol. 99, 124-132. doi:10.1016/j.optlastec.2017.08.022

Liping, H. Y., and Zhang, S. H. (2003). “A new approach to improve particle swarm
optimization,”, 2723. Genet. Evol. Comput. 134-139. doi:10.1007/3-540-45105-6_12

Lu, J., Qiao, K., Li, X,, Lu, Z., and Zou, Y. (2019). Minimization methods for image
restoration problems based on wavelet frames. Inverse Probl. 35, 064001. doi:10.1088/
1361-6420/ab08de

Ruoqiu, W., Zhiyu, Z., and Donglin, X. (2017). Thin film fresnel diffractive elements
with large aperture and high diffractive efficiency for space telescopes. Infrared Laser
Eng. 46, 123-130. doi:10.3788/IRLA201746.0920001

Wang, Z.-Q., Zhang, H.-],, Fu, R.-L., Mu, G.-G,, Lu, Z.-W., Cartwright, C. M,, et al.
(2002). Hybrid diffractive-refractive ultra-wide-angle eyepieces. Optik 113, 159-162.
doi:10.1078/0030-4026-00134

Wang, L., Wu, S, and Yang, W. (2016). Mirror misalignment analysis of spliced
Fresnel mirror. Acta Opt. Sin. 36, 0712002.

Wen, L., Huang, Q., and Xu, X. (2019). Adaptive optical optimization correction
algorithm based on wavefront gradient squared. Adv. Lasers and Optoelectron. 56,
240103. doi:10.3788/L0P56.240103

Wen, L, Li, ], Du, Z, Li, Q., Cheng, X., Zhang, W., et al. (2024). “A novel image
restoration approach based on model for Fresnel zone plate imaging system,” in Paper
presented at the 2024 IEEE 4th international conference on information technology, big
data and artificial intelligence (ICIBA).

Yang, J., Wang, S., Wen, L., Yang, P., Yang, W., Guan, C,, et al. (2019). Experimental
study on imaging and image deconvolution of a diffractive telescope system. Appl. Opt.
58, 9059-9068. doi:10.1364/A0.58.009059

Yang, J., Wang, S., Wen, L., Yang Ping, #., Yang Wei, #%., Guan Chunlin, &, et al.
(2020). Faint-object imaging of diffractive telescopes based on image restoration. Acta
Opt. Sin. 40, 1411005. doi:10.3788/a0s202040.1411005

Zamir, S. W., Arora, A., Khan, S., Hayat, M., Khan, F. S,, Yang, M.-H,, et al. (2021).
“Multi-stage progressive image restoration Paper presented at the 2021,” in IEEE/CVF
conference on computer vision and pattern recognition (CVPR), Nashville, TN, USA,
20-25 June,2021.

Zhang, N., Lu, Z., and Li, F. (2007). Optical design of diffractive telescope. Infrared
Laser Eng. 36, 106. doi:10.3969/j.issn.1007-2276.2007.01.026

Zhi, X,, Jiang, S., Zhang, W., Wang, D., and Li, Y. (2017). Image degradation
characteristics and restoration based on regularization for diffractive imaging.
Infrared Phys. and Technol. 86, 226-238. doi:10.1016/j.infrared.2017.09.014

Zhu, L., Wen, L., Yang, P., Guo, Z., Yang, W., Xu, B, et al. (2019). Aberration
correction based on wavefront sensorless adaptive optics in membrane diffractive

optical telescope. Opt. Commun. 451, 220-225. doi:10.1016/j.0ptcom.2019.
06.063

frontiersin.org


https://doi.org/10.1364/josaa.12.000058
https://doi.org/10.1364/josaa.12.000058
https://doi.org/10.3233/xst-2003-00065
https://doi.org/10.3233/xst-2003-00065
https://doi.org/10.1117/12.551300
https://doi.org/10.1109/tgrs.2020.3016820
https://doi.org/10.1364/ao.38.004198
https://doi.org/10.3788/ope.20162406.1289
https://doi.org/10.1016/j.optlaseng.2019.105863
https://doi.org/10.1016/j.optlaseng.2019.105863
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.5555/2984093.2984210
https://doi.org/10.1109/jphot.2023.3285871
https://doi.org/10.1109/jphot.2023.3285871
https://doi.org/10.3788/gzxb20255402.0211002
https://doi.org/10.1145/3391297
https://doi.org/10.1145/3391297
https://doi.org/10.1364/OE.25.020584
https://doi.org/10.1016/j.optlastec.2017.08.022
https://doi.org/10.1007/3-540-45105-6_12
https://doi.org/10.1088/1361-6420/ab08de
https://doi.org/10.1088/1361-6420/ab08de
https://doi.org/10.3788/IRLA201746.0920001
https://doi.org/10.1078/0030-4026-00134
https://doi.org/10.3788/L0P56.240103
https://doi.org/10.1364/AO.58.009059
https://doi.org/10.3788/aos202040.1411005
https://doi.org/10.3969/j.issn.1007-2276.2007.01.026
https://doi.org/10.1016/j.infrared.2017.09.014
https://doi.org/10.1016/j.optcom.2019.06.063
https://doi.org/10.1016/j.optcom.2019.06.063
https://www.frontiersin.org/journals/advanced-optical-technologies
https://www.frontiersin.org
https://doi.org/10.3389/aot.2025.1730807

	PSO-based imaging restoration method for diffraction imaging systems
	1 Introduction
	2 Imaging system and model
	2.1 FZP imaging principle
	2.2 Imaging model

	3 Optimized solution of FZP imaging model
	3.1 PSO algorithm principle
	3.2 Algorithm simulation and analysis

	4 Restoration imaging base on model
	4.1 Restoration simulation
	4.2 Analysis

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgements
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


