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Membrane diffraction imaging is one of the most widely used imaging 
technologies today, which offers the advantages such as lightweight 
design, large aperture, foldability, and low cost. However, the system 
imaging quality degrades because of the multiple order diffraction 
generated by the diffractive elements in practical applications. To 
eliminate the effects of multiple diffraction orders from the diffractive 
elements and optimize imaging quality, the system images are post 
processed. Iterative optimization algorithms are commonly used for image 
post processing. Particle swarm optimization is a commonly used iterative 
optimization algorithm, which is often used to search for optimal solutions 
within the solution space. The particle swarm optimization algorithm has the 
features of few parameters, simple behavior, and fast iteration speed, which 
can rapidly and effectively optimize imaging. This paper optimizes the 
simulated imaging of a diffraction imaging system based on Fresnel zone 
plates by adopting the particle swarm optimization algorithm. Optimize the 
system image based on known point spread functions and the system image. 
System imaging is optimized under the premise of known point spread 
functions and system imaging. The iteration speed is enhanced, reducing 
the number of iterations by approximately 99.6% compared to the random 
parallel gradient descent algorithm. Simultaneously, contrast is improved by 
about 5.4%, while gradient optimization effectiveness increases by 
approximately 25.4% after optimization by the particle swarm algorithm. 
Finally, the derived restoration model was applied to other images, 
achieving overall improvements in all evaluation metrics.

KEYWORDS

fresnel zone plate, imaging optimization, multiple orders diffraction, particle swarm 
optimization algorithm, point spread function

1 Introduction

The lightweight and high-resolution features of imaging systems have become a hot 
topic in the field of imaging development with the advancement of imaging technology. 
Membrane diffraction imaging was first proposed at the 1997 International Conference 
in Lure, France, which began to rapidly develop thereafter Chesnokov and Vasileisky 
(1997). This technology has been applied to space observation projects such as 
“Eyeglass”, “GISMO”, “MOIRE”, and “Falcon-7”, with a wealth of research findings 
and experience accumulated by relevant research institutions Hyde (1999), Hawarden 
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et al. (2004), Atcheson et al. (2014), Andersen et al. (2016). 
However, membrane diffraction imaging technology has not 
been widely adopted in practical applications, due to which the 
image quality is unable to meet the standards for spatial imaging 
in the imaging systems equipped with diffraction imaging 
elements Zhi et al. (2017), Jiang et al. (2020). Therefore, 
researchers from relevant institutions have conducted extensive 
research on diffraction imaging technology, such as optical system 
design Wang et al. (2002), Zhang et al. (2007), fabrication of 
binary optical elements Jian et al. (2016), Ruoqiu et al. (2017), 
system wavefront correction Wen et al. (2019), Zhu et al. (2019), 
and imaging optimization Yang et al. (2019), Yang et al. (2020). 
Image optimization is crucial for the practical application of 
subsequent imaging systems.

Recently, many research institutions have conducted 
extensive research on imaging optimization for diffraction 
imaging systems. Diffraction imaging systems based on 
Fresnel Zone Plates (FZP) are the most widely used in 
practical applications Bin et al. (2004), Wang et al. (2016). 
Optimizing the system image in diffraction systems differs 
significantly from traditional imaging systems. System image 
quality degrades due to multiple order diffraction generated due 
to the FZP’s sub-structures. Simultaneously, image quality 
further deteriorates due to wavefront distortion affecting the 
beam during transmission through the system. To solve the 
problem of degraded image quality in diffraction imaging 
systems, various algorithms for imaging optimization have 
been proposed. Mainstream optimization methods include 
inverse filtering algorithms for different types of blur kernels 
Lu et al. (2019),Liang et al. (2021), blind deconvolution methods 
Fish et al. (1995), Fish et al. (2003), Krishnan and Fergus (2009), 
deep learning Kupyn et al. (2019), Hong et al. (2020), Zamir et al. 
(2021), and model-based enhancement methods Lianghua et al. 
(2017), Lianghua et al. (2018). However, image optimization 
methods based on the FZP diffraction imaging model have been 
rarely reported in recent years, and the related research has 
primarily focused on algorithms with complex behaviors, which 
leads to inefficient optimization iterations. Between 2024 and 
2025, Li Jiaxun et al. conducted further research for imaging 
models. The Stochastic Parallel Gradient Descent (SPGD) 
algorithm, Simulated Annealing (SA), and Cuckoo Search 
algorithm are combined with imaging models. The PSF and 
the numerical solution of the optimized image are input to the 
imaging model, which optimizes the image of the imaging syste 
Wen et al. (2024), Li et al. (2025).

The paper is organized as follows: In Section 2, a diffraction 
imaging system based on FZP was simulated using optical 
simulation software. Image data was obtained through this 
system, and an imaging model was derived based on the 
imaging characteristics of FZP. Subsequently, in Section 3, 
an image optimization algorithm based on particle swarm 
optimization (PSO) was established in combination with the 
imaging model. The image was iteratively optimized, and the 
optimization results were analyzed. In Section 4, the results of 
the PSO iterative optimization were input into the imaging 
model to rapidly restore the image, and the rapid optimization 
results were analyzed. In Section 5, conclusions were drawn, 
and plans for future work were outlined.

2 Imaging system and model

This section provides research on the simulation and imaging 
model of the FZP diffraction system. The FZP-based diffraction 
imaging system is simulated and analyzed using optical simulation 
software. The system analysis includes the modulation transfer 
function (MTF), wavefront, point spread function (PSF), spot 
diagram, and extended target imaging, which can determine the 
system image performance and the accuracy of extended target 
imaging data, to ensure the effectiveness of image optimization. 
Subsequently, the imaging model of the imaging system is 
established based on the imaging characteristics of the FZP 
imaging system to solve for the optimized image.

2.1 FZP imaging principle

System simulation of the optical imaging model was 
conducted. An 800 mm-aperture FZP diffraction imaging 
system was constructed using simulation software. The 
imaging system comprised two FZP elements, three double 
bonded lenses, and a filter. The parameters of each element in 
the system are used as design parameters for the FZP diffraction 
imaging system, which include the radius of curvature, effective 
aperture, distance between optical surfaces, and corresponding 
materials. The FZP is parameterized. Simulation of the FZP is 
achieved by combining a binary surface with a standard optical 
surface. The setting of the binary surface requires not only setting 
the basic surface parameters but also setting the corresponding 
phase coefficients. The phase coefficient is determined by 
Equation 1. 

ϕ �M􏽘

N

i�1
aiρ2i (1)

Where ϕ denotes the phase of the optical surface, M denotes the 
diffraction order used by the optical surface, N corresponds to the 
index of the polynomial coefficient in the order, and ai is the 
coefficient of the 2i-th power of ρ (the phase coefficient). The 
phase coefficients a1 to a5 are to be set, and the phase 
coefficients are obtained by setting the optimization function 
with respect to the system wavefront aberration and the system 
focal length. Finally, quartz was selected as the substrate material for 
FZP, which determined all parameters of the FZP.

Subsequently, the double bond lens is designed and calculated in 
the system. Unlike traditional lens calculations, the radius of 
curvature for a double bond lens is calculated by selecting 
material combinations. The combination of crown glass in front 
and flint glass in back is commonly used in double bond lens design. 
Material refractive indices are obtained by searching the 
corresponding combinations. Parameters are substituted into 
equations Equations 2–4 to determine the optical surface 
curvature, which includes the radius of curvature, refractive 
index, focal length, and other parameters. 

φ �
1
f

(2)

φ1 � n1 − 1( ) p
1
r1

−
1
r2

􏼠 􏼡 (3)
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φ2 � n2 − 1( ) p
1
r2

−
1
r3

􏼠 􏼡 (4)

Where φ represents the optical power between adjacent optical 
surfaces, which is inversely proportional to the focal length f. 
Among them, φ1 represents the optical power from the first 
optical surface to the second optical surface, and φ2 represents 
the optical power from the second optical surface to the third 
optical surface. n represents the refractive index between 
adjacent optical surfaces. r is the radius of curvature of each 
optical surface.

The FZP imaging system, as shown in Figure 1a, is analyzed 
in terms of its imaging model. The analysis of the imaging model 

primarily involves the analysis of point target imaging and 
extended target imaging, such as the imaging system’s PSF, 
spot diagram, wavefront, MTF, and extended target 
imaging analysis.

As shown in Figure 1b, the inconsistent sizes of light spots 
focused at different wavelengths on the same image plane, which 
shows that chromatic aberration still exists in the system. Moreover, 
chromatic aberration causes image quality degradation.

As shown in Figure 1c, the PSF exhibits no distortion, the energy 
is concentrated, and the Airy disk size is 3.027 μm, which shows the 
system has excellent focusing performance.

In the wavefront Figure 1d, the wave trough is 
approximately −0.031 wavelengths, and the wave crest is 

FIGURE 1 
FZP imaging model and imaging performance. (A) FZP imaging system; (B) spot diagram; (C) PSF; (D) wavefront; (E) MTF; (F–I) extended 
target imaging.
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approximately 0.102 wavelengths. The wavefront aberration was 
calculated to be 0.132 wavelengths, which is less than one-quarter 
wavelength. This result is consistent with the Rayleigh criterion, 
which indicates that although wavefront distortion exists in the 
system, but wavefront distortion has little effect on imaging, which 
indicates the system image quality is good.

In Figure 1e, the optical transfer function (OTF) approaches 
zero when the spatial frequency reaches 414 cycles/mm. The system 
MTF closely matches the diffraction-limited MTF curve, which 
indicates that the system’s transmission capability approaches 
that of an ideal imaging system. However, the mid-frequency 
component of the system MTF differs by 9.2 cycles/mm from the 
diffraction-limited mid-frequency component, which indicates the 
presence of aberrations within the system. System chromatic 
aberration leads to reduced imaging quality.

After completing the point target imaging analysis, the 
extended target imaging is analyzed at 550 nm primary 
wavelength. The extended target imaging plane sampling is set 
to 1024 × 1024. The single-wavelength imaging is acquired as 
shown in Figures 1f–i. In the extended target imaging, the image 
exhibits not distortion, but the imaging has the problem of edge 
blurring and loss of imaging details. Combined with PSF analysis, 
the imaging blur was attributed to multiple order diffraction from 
the diffractive elements. To address the imaging blur issue, the 
imaging model was derived based on the imaging characteristics 
of the FZP.

2.2 Imaging model

During the process of imaging optimization research, the 
imaging model is established for the system, which is used for 
subsequent further development of imaging optimization studies. In 
2023, Li Jiaxun et al. proposed an imaging restoration method based 
on the FZP imaging model, performing mathematical derivations 
for the FZP diffraction imaging system. An imaging model for an 
FZP imaging system was derived, with the expression shown in 
Equation 5; Li et al. (2023). 

I � I0p PSF1 × η1 + PSFn × 1 − η1( 􏼁􏼂 􏼃 (5)

Where I denotes the extended target image directly obtained by the 
FZP imaging system, and I0 denotes the optimized result of the 
extended target image from the FZP system. η1 and PSF1 represent 
the diffraction efficiency and point spread function (PSF) of the 
designed imaging order, respectively. PSFn denotes the effective 
point spread function of stray light and noise in the imaging system. 
The imaging model is represented by the interaction between the 
designed-order light and scattered light and noise, where the 
designed-order light is expressed as I0p(PSF1 × η1), and the 
non-designed-order light and noise are expressed as 
I0p[PSFn × (1 − η1)].

However, Equation 5 cannot directly solve for numerical 
solutions, which only solves the analytical solutions in practical 
applications. Meanwhile, analytical solutions cannot intuitively 
reflect imaging effects. To solve the problem, data is input into 
imaging models for specific calculations. However, the imaging 
quality collected by the system cannot meet the requirements for 
direct solutions. Therefore, to solve the problem of degraded 
imaging quality, the input image is optimized. Optimizing the 
image actually constitutes a multi-objective optimization 
problem, which can be summarized as a multi-objective 
optimization expression, as shown in Equation 6. 

max or min( ) f x( )( 􏼁 � f1 x( ), f2 x( ), . . . , fn x( )􏼈 􏼉

s.tx ∈ Ω (6)

Where f(x) usually is the evaluation function of the optimization 
objective, which is also called the objective space. Meanwhile, Ω is 
the space where (x1, x2, . . . , xn) is located, which is called the 
decision space. For multi-objective optimization problems related 
to image optimization, image metrics are usually selected as 
evaluation functions. By combining the imaging model, the 
imaging of the FZP imaging system is converted into a 
mathematical expression, and the iterative optimization problem 
related to the image is converted into a multi-objective optimization 
problem. The expression is shown in Equation 7. 

Z � max f PSF( )( 􏼁 � f1 PSF( ), f2 PSF( ), . . . , fn PSF( )􏼈 􏼉

s.tPSF ∈ Ω (7)

Where image gradient and contrast are selected as optimization 
metrics. Parameters are adjusted while changes in gradient and 
contrast are observed throughout the optimization process. The 
decision space is populated through iterative updates, while the 
decision space values are continuously input to the target space. The 
Z-value is calculated, which corresponds to the PSF value in the 
decision space representing the optimized result. Finally, the 

FIGURE 2 
The optimization flow of imaging model parameters within 
PSO algorithm.

Advanced Optical Technologies frontiersin.org04

Li et al. 10.3389/aot.2025.1730807

https://www.frontiersin.org/journals/advanced-optical-technologies
https://www.frontiersin.org
https://doi.org/10.3389/aot.2025.1730807


optimized PSF is input to the imaging model to obtain the iteratively 
optimized image I.

However, some problems still exist in the specific research of 
PSF iterative optimization. Optimization algorithms such as 
Stochastic Parallel Gradient Descent (SPGD), Simulated 
Annealing (SA), and Cuckoo Search are applied to imaging 
optimization, which have some drawbacks including high 
iteration counts, slow iteration speeds, numerous parameters, and 
suboptimal optimization results. PSO effectively addresses these 
issues due to its simple behavior, fast iteration speed, and 
minimal parameter requirements.

3 Optimized solution of FZP 
imaging model

The PSO algorithm is an evolutionary computation technique 
that was developed by Kennedy and Eberhart (1995). The algorithm 
achieves global optimization through collaboration and competition 
among particles, which features in practice, including few 
parameters, simple behavior, and fast iteration speed Liping and 
Zhang (2003). By integrating with imaging models, the PSO 
algorithm can solve for numerical solutions to imaging models, 

which can effectively address the degradation of imaging quality 
caused by multiple-order diffraction. Simultaneously, PSO can 
simplify the optimization process, which can greatly reduce the 
time required for iterative optimization, thereby improving 
optimization efficiency.

3.1 PSO algorithm principle

The particle swarm optimization achieves global search 
optimization primarily through collaboration and competition 
among individuals. First, a group of random solutions must be 
generated through initialization, which are equivalently regarded as 
particles that have no mass or volume. Global optimization is 
completed by particles flying in the search space. This flight 
pattern references the flying behavior of flocks of birds or the 
foraging behavior of schools of fish, and the behavior function is 
shown in Equation 8. 

x
j+1( )

i � x
j

i + v
j+1( )

i (8)

The PSO iteration method is simple: particles move based on the 
velocity generated by weighting their current positions, and the 

FIGURE 3 
PSO optimization iterative results.
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FIGURE 4 
Comparison of optimization results between PSO and SPGD.

TABLE 1 Iterative optimization comparison.

Image Algorithm Contrast Gradient MAE NMSE Number of iterative

(a) SPGD 9271.9/9303.8 0.0145/0.015 15.8582 2.6510e-04 215395

PSO 9280/9314 0.0145/0.0151 21.1207 4.6841e-04 488

(b) SPGD 9827.5/10279 0.0211/0.022 54.2139 0.0027 94595

PSO 9908.1/10388 0.0211/0.0222 64.3485 0.0038 871

(c) SPGD 9217.9/9241.7 0.0093/0.0095 12.5631 4.1329e-04 243360

PSO 9223.1/9247.2 0.0093/0.0096 15.2258 6.0790e-04 646

(d) SPGD 7878.2/7960.5 0.0106/0.0108 21.2138 4.4073e-04 230533

PSO 7896.8/7986.7 0.0106/0.0109 26.7475 6.9743e-04 305
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velocity is continuously updated during the iteration process. The 
iteration formula for velocity is shown in Equation 9. 

v
j+1
i � ω × vji + c1 × rand nd, nd( ) × pbesti −xji􏼐 􏼑

+ c2 × rand nd, nd( ) × gbesti −xji􏼐 􏼑 (9)

Equation 9 is primarily used to update the velocity of particles 
in each movement within the PSO. The velocity iteration formula 
includes a memory term, an individual learning term, and a social 
learning term. Where ω is the inertia factor, which is required to 
be non-negative and it can be used to adjust the strength of the 
algorithm’s optimization capability. c is the learning factor, 
where c1 is the cognitive learning factor, c2 is the social 
learning factor. The learning factor can effectively adjust the 
search capability of the algorithm. Where nd represents the 
matrix size. where pbest denotes the local optimum of the 
particle swarm, which is the optimal population. Gbest 
denotes the global optimum of the particle swarm, which is 
the optimal particle. During velocity iteration, the first 
memory term is used to relate the previous generation’s 
velocity to the post-iteration velocity, because the velocity 
itself has no memory. If the memory term is absent, the 
iterative optimization process assumes that a particle at the 
globally optimal position remains stationary, while other 

particles move toward a weighted center between the 
individual optimal and global optimal positions. In this case, 
the optimal particle will only be found at the current best 
position. To induce particle movement and achieve global 
optimization, the inertia weight is added to the memory term. 
The inertia weight originates from the concept proposed by 
Clerc, which uses a decay factor to ensure algorithm 
convergence. However, subsequent research discovered that 
setting a maximum velocity limit can enhance algorithm 
performance. This method eliminates the link between the 
inertia factor and the learning factor, which ensures the 
effectiveness and independence of the memory term Clerc 
(1999). The second term represents the individual cognitive 
component, which indicates the particle’s own thinking, 
providing iterative particles with powerful global search 
capabilities and avoiding local minimal. Finally, the third term 
is the population cognitive component, embodying information 
sharing among particles. The PSO’s optimization is effectively 
achieved through the synergistic interaction of these three 
components.

Before the iteration begins, the input population, velocity, and 
optimal population must be initialized. To accommodate 
optimization requirements, each particle in the solution space is 
two dimensional data, which needs to be fitted. The input 

FIGURE 5 
Fast image restoration based on PSO.
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population, velocity, and initialized optimal population must be 
converted into two dimensional matrices. The initialization formula 
is shown in Equation 10. 

vi � DL. p ones nd, nd( ) + UL. p ones nd, nd( )[

− DL. p ones nd, nd( )]. p 0.01. p rand nd, nd( )[ ]

(10)

Where DL denotes the minimum value of a single pixel in the 
matrix, and UL denotes the maximum value. ‘ones ()’ is used to 
generate a matrix with all values set to 1, while ‘rand ()’ is used to 
generate a random matrix.

After outputting the new velocity, the particle update iteration is 
achieved: the new velocity is input into the PSO particle update 
behavior, which makes the particle move. Subsequently, the output 
particle swarm is evaluated. The gradient of the expanded target 
image is selected as the criterion for algorithm termination, which is 
also used as the judgment condition for iterative optimization. The 
calculation expression is shown in Equation 11. 

G � I x, y( 􏼁−
1

M × N
􏽘

M,N

x�1,y�1
I x, y( 􏼁⎡⎢⎢⎣ ⎤⎥⎥⎦

2

􏼬 M × N( ) (11)

Where I (x, y) is the restored image obtained through a single 
iteration of the optimization algorithm, (x, y) denotes the pixel 
coordinates in the Cartesian coordinate system, and M and N 
respectively represent the dimensions of the image.

Based on the above calculations, the operation flow of the PSO- 
based image optimization algorithm is shown in Figure 2.

In the optimization process of the target image, initial 
parameters are firstly input. The upper and lower limits are 
determined by collecting the maximum and minimum values of 
the PSF in the simulation system. Because of the simulation 
model operating under ideal conditions, the background noise 
of collected images is not considered in the input PSF and target 
image expansion process. After the initial parameters are input, 
the initial velocity and a random population are generated. The 
generated random population and random velocities are input to 
the evaluation function. The gradient and contrast are 
calculated, which are compared with the next-generation’s 
results. Subsequently, the corresponding parameters are input 
to the PSO for iterative optimization. Firstly, the velocity values 
for the next particle movement are calculated in the 
optimization process. Subsequently, the output velocity values 
are input to the particle movement behavior, and a new particle 
swarm is obtained. The new particle swarm is input to the 
evaluation function for assessment, which results in 
corresponding image metrics. Finally, the image metrics are 
evaluated to determine whether convergence conditions are met, 
thereby deciding whether to terminate the algorithm.

3.2 Algorithm simulation and analysis

This paper combines imaging models with the PSO algorithm to 
propose a PSO-based image optimization method. This approach 
logically simplifies the optimization iteration process, thereby 
reducing iteration time, and improving iterative optimization 

efficiency. To further validate the theoretical effectiveness, the 
expanded target image from the imaging model is input into the 
PSO-based optimization algorithm.

Randomly generated PSFs are treated as particles in the iterative 
optimization process, while PSFs and extended target images collected 
from the FZP system image model are input to the PSO optimization 
algorithm. Subsequently, PSO initial parameters are set, including the 
population size, upper and lower velocity bounds, filtering radius, 
learning factor, and inertia factor. The parameters are configured and 
adjusted, which ensures stable algorithm operation. Subsequently, to 
evaluate optimization effectiveness, the image gradient G is selected to 
assess convergence of the optimization iterations and serves as the 
algorithm’s termination condition. The algorithm then stops 
automatically upon meeting the specified optimization conditions. 
The corresponding pseudocode is shown in Algorithm 1.

Input: The inertia factor ω, the diffraction efficiency 
η0, the learning factors c1 and c2, the image size M and N, 
filter radius R, minimum value DL and maximum value UL, 
and number of population n

Output: gbest

1: Initialize particle swarm x(: , : ,i) � x1,x2, . . . ,xn{ }, 
velocity v(: , : ,i) � v1,v2, . . . ,vn{ }, and 
pbest(: , : ,i) � pbest1,pbest2, . . . ,pbestn{ } by 
Equation 12

2: for i � 1,2, . . . ,n{ } do
3: Calculate the gradient G(x) and G (pbest) 

(Equation 11)
4: end for
5: while (G (gbest) is convergent) do
6: if G(x) > G (pbest) then
7: pbest = x
8: else
9: pbest = pbest
10: end if
11: G (gbest) = Max (G (pbest (:,:,i))) ⇒ gbest
12: for i � 1,2, . . . ,n{ } do
13: Update the speed value 

v(j+1)(: , : ,i) (Equation 9)
14: Update the particle swarm 

x(j+1)(: , : ,i) (Equation 8)
15: if G(x) > G (pbest) then
16: pbest = x
17: else
18: pbest = pbest
19: end if
20: end for
21: G (gbest) = Max (G (pbest (:,:,i))) ⇒ gbest
22: if (Find (G (gbest) = Max (G (gbest))) ≥ 50) then
23: Break
24: end if
25: end while

Algorithm 1. Procedure of PSO algorithm. 

Where the diffraction efficiency η0 is calculated through the 
simulation system. The inertia factor is set to a small value, which 
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ensures the accuracy of optimization by reducing the influence of the 
previous generation’s particle positions on the next-generation. The 
cognitive learning factor c1 and the social learning factor c2 are set to 
the same value, which balances local and global optimization 
capabilities. After inputting the corresponding parameters, 
optimization results are obtained through continuous iterative 
optimization until the algorithm terminates. Unlike traditional 
PSO algorithms, the termination condition is explicitly defined, 
because the PSO applied to image optimization cannot complete 
optimization within a determined number of iterations. so, the 
termination condition is set: the algorithm stops when the image 
gradient G ceases to increase over a period of time.

At every iteration, the updated PSF, the PSF of the imaging 
system under consideration, and the expanded target image are 
input to the imaging model for computation, which results in the 
corresponding optimized image. The results including the PSFn
after optimization iterative, images before and after optimization, 
and the gradient enhancement curve of the optimization iteration. 
The relevant optimization results are shown in Figure 3.

As shown in Figure 3, four images are optimized through 
iterative processing, which results in enhanced imaging details 
and improved image resolution. The result confirms the 
feasibility of the PSO algorithm in image restoration.

The comparative analysis of SPGD optimization results and PSO 
optimization results, to systematically evaluate PSO’s image 
optimization capabilities and mitigate algorithmic randomness 
and chance effects. The optimization results comparison is shown 
in Figure 4.

By comparing the optimization results of the PSO and SPGD 
algorithms, the PSO-optimized images have richer and clearer 
details compared to those optimized by SPGD.

To quantitatively evaluate the optimization performance of both 
algorithms, the contrast, gradient, and number of iterations for each 
algorithm were compared, which further validates the feasibility of 
PSO for system image optimization. The iterative optimization 
comparison is shown in Table 1.

The relevant metrics for iterative optimization between the 
two methods were compared, which include contrast, gradient, 

FIGURE 6 
Comparison of restoration between PSO and SPGD.
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mean absolute error, normalized mean square error, and number 
of iterations. The relevant data from the iterative optimization of 
both methods were compared, leading to the conclusion: PSO 
achieves superior iterative optimization results for images, 
requiring fewer iterations and demonstrating higher 
optimization efficiency. PSO algorithm is particularly suitable 
for diffraction imaging systems based on FZP was further 
demonstrated.

4 Restoration imaging base on model

After completing the iterative optimization of the image, to 
accelerate the optimization speed, the imaging model is 
transformed, and a fast restoration model is derived. 
Subsequently, the iterative optimization results are extracted 
and processed. The processed results are input to the fast 
restoration model, which performs rapid image restoration. 
Finally, the SPGD iterative optimization results are processed 
and input to the fast restoration model. By comparing the fast 
recovery results from both algorithms, the feasibility of the fast 
restoration method is confirmed.

4.1 Restoration simulation

To obtain a fast restoration model, the imaging model is derived. 
First, the imaging model equation is transformed using a two- 
dimensional Fourier transform on both sides, obtaining the 
expression shown in Equation 12. 

FFT2 I( ) � FFT2 I0( ) × FFT2 PSF1 × η1 + PSFn × 1 − η1( 􏼁􏼂 􏼃􏼈 􏼉

(12)

Where FFT2 denotes the two-dimensional Fourier transform. If the 
data for PSFn, η1, and PSF1 can be obtained, images acquired by the 
FZP imaging system can be rapidly reconstructed. The analytical 
expression for the optimized image is derived through formula 
manipulation, as shown in Equation 13. 

I0 � IFFT2
FFT2 I( )

FFT2 PSFopt􏽮 􏽯

⎧⎨

⎩

⎫⎬

⎭ (13)

The IFFT2 denotes the two-dimensional inverse Fourier transform. 
The analytical solutions for the imaging model parameters PSFn, η1, 
and PSF1 are derived through analytical methods, which are 
substituted into Equation 13 to obtain the optimized image. This 
paper obtains the optimal numerical solution by using the particle 
swarm optimization algorithm, which achieves image optimization. 
The workflow is shown in Figure 5.

To achieve fast restoration of acquired images, PSFn for 
different images is extracted after PSO optimization iterations. 
PSFopt is obtained by averaging multiple PSFn. Subsequently, 
PSFopt and other images are input into the fast restoration 
model for reconstruction, which completes the PSO-based fast 
image reconstruction method.

4.2 Analysis

To further evaluate the optimization performance of the PSO 
algorithm, while avoiding the randomness and unpredictability of 
reconstruction, the reconstruction results from PSO-based imaging 
were compared with those from SPGD. Since fast reconstruction 
without iteration, the comparative analysis primarily included the 
image details, image gradients, and image resolution of the extended 
target imaging.

Restored images based on the PSO algorithm and SPGD 
algorithm are obtained through fast optimization. Comparison of 
the two algorithms is used to validate the feasibility and accuracy of 
the fast optimization. The comparison of the fast-restored images is 
shown in Figure 6.

Four images are selected for comparison, and when compared 
with the original images, the conclusion is reached: The PSFopt
obtained through iterations of both algorithms is input to the fast 
restoration model. The optimized images are locally enlarged and 
compared, which reveals that the fast-optimized images exhibit 
increased imaging details and improved image resolution. 
However, compared to the SPGD algorithm, the restoration 
results obtained by PSO iteration when PSFopt is input into the 
imaging model output demonstrate superior performance. 
However, the comparison of images cannot quantitatively 
describe the restoration effect. Therefore, the restoration metrics 
of SPGD and PSO are compared with the original image metrics, as 
shown in Table 2.

TABLE 2 Restoration comparison.

Image Algorithm Contrast Gradient MAE NMSE

(a) SPGD 9950.4/10143 0.0273/0.0276 34.1911 8.3463e-04

PSO 9950.4/10207 0.0273/0.0276 43.6508 0.0014

(b) SPGD 1049.8/1218.7 0.0518/0.0523 32.0392 9.1840e-04

PSO 1049.8/1270.9 0.0518/0.0518 40.4641 0.0015

(c) SPGD 11356/11559 0.0121/0.0125 36.7806 0.0028

PSO 11356/11646 0.0121/0.0126 48.9242 0.0050

(d) SPGD 392.6525/482.6343 0.0484/0.0487 23.7830 9.2797e-04

PSO 392.6525/510.3621 0.0484/0.0486 39.9106 0.0015
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Through the comparison, the conclusion that PSO achieves 
superior optimization results in imaging is verified. PSO 
optimizes image contrast and gradient more effectively. In the 
optimization of extended target imaging, PSO significantly 
enhances image detail compared to SPGD optimization. 
Consequently, the conclusion can be reached that PSO effectively 
optimizes imaging with superior results.

5 Conclusion

The multiple levels of FZP diffraction imaging system are 
simulated and analyzed. Subsequently, the PSO optimization 
algorithm was established, which combines the imaging model 
with the principle of PSO iterative optimization. The extended 
target image are input to PSO, the output images of iterative 
optimization are obtained. The optimized PSFn is extracted from 
the iterative optimization results. The average PSF across multiple 
images is calculated as PSFopt and input to the fast restoration model, 
which is used to achieve rapid optimization for other extended target 
images. The test results demonstrate: the restored diffraction images 
exhibit enhanced contrast, gradient, and other aspects. The output 
images are compared with SPGD optimization for diffraction 
imaging systems, concluding that PSO achieves superior 
optimization effects for the system image with higher efficiency.

The paper aims to validate the feasibility of full simulation for 
diffraction imaging systems. The images are optimized combining 
the PSO optimization algorithm, which is derived from the FZP 
diffraction imaging system. Subsequent research will focus primarily 
on wavefront correction for adaptive optics systems. The optical 
platform is planned to be constructed to verify the practical 
applicability of the FZP diffraction imaging system.
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